1932

Abstract

All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces, expand by monomeric growth and oriented attachment, and undergo phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can affect their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical andnonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and growth of nanoparticles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082720-100947
2022-04-20
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082720-100947.html?itemId=/content/journals/10.1146/annurev-physchem-082720-100947&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen HE et al. 2013. Direct observations of atmospheric aerosol nucleation. Science 339:943–46
    [Google Scholar]
  2. 2. 
    Jung H, Lee B, Lengyel M, Axelbaum R, Yoo J et al. 2018. Nanoscale in situ detection of nucleation and growth of Li electrodeposition at various current densities. J. Mater. Chem. A 6:4629–35
    [Google Scholar]
  3. 3. 
    Li Q, Fernandez-Martinez A, Lee B, Waychunas GA, Jun Y-S. 2014. Interfacial energies for heterogeneous nucleation of calcium carbonate on mica and quartz. Environ. Sci. Technol. 48:5745–53
    [Google Scholar]
  4. 4. 
    Butterfield CN, Soldatova AV, Lee S-W, Spiro TG, Tebo BM 2013. Mn (II, III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase. PNAS 110:11731–35
    [Google Scholar]
  5. 5. 
    Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, Kappler A 2015. Redox cycling of Fe (II) and Fe (III) in magnetite by Fe-metabolizing bacteria. Science 347:1473–76
    [Google Scholar]
  6. 6. 
    Jung H, Taillefert M, Sun J, Wang Q, Borkiewicz OJ et al. 2020. Redox cycling driven transformation of layered manganese oxides to tunnel structures. J. Am. Chem. Soc. 142:2506–13
    [Google Scholar]
  7. 7. 
    Nudelman F, Pieterse K, George A, Bomans PHH, Friedrich H et al. 2010. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 9:1004–9
    [Google Scholar]
  8. 8. 
    Addadi L, Raz S, Weiner S 2003. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15:959–70
    [Google Scholar]
  9. 9. 
    Treat ND, Malik JAN, Reid O, Yu L, Shuttle CG et al. 2013. Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nat. Mater. 12:628–33
    [Google Scholar]
  10. 10. 
    Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL. 1997. Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys. Rev. Lett. 79:1873
    [Google Scholar]
  11. 11. 
    Alivisatos AP. 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–37
    [Google Scholar]
  12. 12. 
    Friedman G, Schultz D. 1994. Precipitation of vaterite (CaCO3) during oil field drilling. Mineral. Mag. 58:401–8
    [Google Scholar]
  13. 13. 
    Moghadasi J, Jamialahmadi M, Müller-Steinhagen H, Sharif A, Izadpanah M et al. 2002. Formation damage in Iranian oil fields Paper presented at the International Symposium and Exhibition on Formation Damage Control Lafayette, La.: Feb.
  14. 14. 
    Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N et al. 2008. Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–35
    [Google Scholar]
  15. 15. 
    Chen Q, Yuk JM, Hauwiller MR, Park J, Dae KS et al. 2020. Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy. MRS Bull 45:713–26
    [Google Scholar]
  16. 16. 
    Zhang TH, Liu XY. 2014. Experimental modelling of single-particle dynamic processes in crystallization by controlled colloidal assembly. Chem. Soc. Rev. 43:2324–47
    [Google Scholar]
  17. 17. 
    Lioliou MG, Paraskeva CA, Koutsoukos PG, Payatakes AC. 2007. Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz. J. Colloid Interface Sci. 308:421–28
    [Google Scholar]
  18. 18. 
    Gasser U, Weeks ER, Schofield A, Pusey P, Weitz D. 2001. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292:258–62
    [Google Scholar]
  19. 19. 
    Barrere F, Snel MM, van Blitterswijk CA, de Groot K, Layrolle P. 2004. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials 25:2901–10
    [Google Scholar]
  20. 20. 
    Nielsen MH, Aloni S, De Yoreo JJ 2014. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345:1158–62
    [Google Scholar]
  21. 21. 
    Xu Y, Tijssen KC, Bomans PH, Akiva A, Friedrich H et al. 2018. Microscopic structure of the polymer-induced liquid precursor for calcium carbonate. Nat. Commun. 9:2582
    [Google Scholar]
  22. 22. 
    Jun Y-S, Kendall TA, Martin ST, Friend CM, Vlassak JJ. 2005. Heteroepitaxial nucleation and oriented growth of manganese oxide islands on carbonate minerals under aqueous conditions. Environ. Sci. Technol. 39:1239–49
    [Google Scholar]
  23. 23. 
    Zhang X, Shen Z, Liu J, Kerisit S, Bowden M et al. 2017. Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. Nat. Commun. 8:835
    [Google Scholar]
  24. 24. 
    Li T, Senesi AJ, Lee B. 2016. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116:11128–80
    [Google Scholar]
  25. 25. 
    Hu Y, Lee B, Bell C, Jun Y-S. 2012. Environmentally abundant anions influence the nucleation, growth, Ostwald ripening, and aggregation of hydrous Fe (III) oxides. Langmuir 28:7737–46
    [Google Scholar]
  26. 26. 
    Jun Y-S, Lee B, Waychunas GA 2010. In situ observations of nanoparticle early development kinetics at mineral−water interfaces. Environ. Sci. Technol. 44:8182–89
    [Google Scholar]
  27. 27. 
    Wu X, Lee B, Jun Y-S 2020. Interfacial and activation energies of environmentally abundant heterogeneously nucleated iron (III)(hydr)oxide on quartz. Environ. Sci. Technol. 54:12119–29
    [Google Scholar]
  28. 28. 
    Guinier A, Fournet G, Yudowitch KL. 1955. Small-Angle Scattering of X-Rays transl. CB Walker. New York: John Wiley & Sons
  29. 29. 
    Porod G, Glatter O, Kratky O. 1982. Small Angle X-Ray Scattering London: Academic17 pp.
  30. 30. 
    Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ et al. 2012. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64
    [Google Scholar]
  31. 31. 
    Nudelman F, Sommerdijk NA. 2011. Cryo-electron tomography: 3-dimensional imaging of soft matter. Soft Matter 7:17–24
    [Google Scholar]
  32. 32. 
    De Yoreo JJ, Vekilov PG. 2003. Principles of crystal nucleation and growth. Rev. Mineral. 54:57–93
    [Google Scholar]
  33. 33. 
    Ruiz-Agudo E, Putnis C 2012. Direct observations of mineral fluid reactions using atomic force microscopy: the specific example of calcite. Mineral. Mag. 76:227–53
    [Google Scholar]
  34. 34. 
    Wang L, Ruiz-Agudo E, Putnis CV, Menneken M, Putnis A 2012. Kinetics of calcium phosphate nucleation and growth on calcite: Implications for predicting the fate of dissolved phosphate species in alkaline soils. Environ. Sci. Technol. 46:834–42
    [Google Scholar]
  35. 35. 
    Cao Y, Li M, Cheng M, Song J, Hu Z 2014. An in situ AFM investigation on the morphology of the (100) growth interface of ZTS crystal. J. Cryst. Growth 388:22–28
    [Google Scholar]
  36. 36. 
    Teng HH, Dove PM, Orme CA, De Yoreo JJ. 1998. Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science 282:724–27
    [Google Scholar]
  37. 37. 
    Cammarata M, Levantino M, Schotte F, Anfinrud PA, Ewald F et al. 2008. Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Nat. Methods 5:881–86
    [Google Scholar]
  38. 38. 
    Levine JR, Cohen J, Chung Y, Georgopoulos P 1989. Grazing-incidence small-angle X-ray scattering: new tool for studying thin film growth. J. Appl. Crystallogr. 22:528–32
    [Google Scholar]
  39. 39. 
    Rauscher M, Paniago R, Metzger H, Kovats Z, Domke J et al. 1999. Grazing incidence small angle X-ray scattering from free-standing nanostructures. J. Appl. Phys. 86:6763–69
    [Google Scholar]
  40. 40. 
    Zhu Y, Li Q, Kim D, Min Y, Lee B, Jun Y-S. 2021. Sulfate-controlled heterogeneous CaCO3 nucleation and its non-linear interfacial energy evolution. Environ. Sci. Technol. 55:1611455–64
    [Google Scholar]
  41. 41. 
    Gibbs JW. 1874–78. On the equilibrium of heterogeneous substances. . Trans. Conn. Acad. Arts Sci. 3:108–248 343–524
    [Google Scholar]
  42. 42. 
    Volmer M, Weber A. 1926. Germ-formation in oversaturated figures. Z. Phys. Chem. 119:277–301
    [Google Scholar]
  43. 43. 
    Farkas L. 1927. Nucleation rates in supersaturated vapours. Z. Phys. Chem. 125:236–42
    [Google Scholar]
  44. 44. 
    Becker R, Döring W. 1935. Kinetische behandlung der keimbildung in übersättigten dämpfen. Ann. Phys. Leipz. 416:719–52
    [Google Scholar]
  45. 45. 
    Zeldovich YB. 1943. On the theory of new phase formation: cavitation. Acta Physicochim. USSR 18:1–22
    [Google Scholar]
  46. 46. 
    Sosso GC, Chen J, Cox SJ, Fitzner M, Pedevilla P et al. 2016. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev. 116:7078–116
    [Google Scholar]
  47. 47. 
    Wagner P, Strey R. 1984. Measurements of homogeneous nucleation rates for n-nanone vapor using a two-piston expansion chamber. J. Chem. Phys. 80:5266–75
    [Google Scholar]
  48. 48. 
    Liu X. 2000. Heterogeneous nucleation or homogeneous nucleation?. J. Chem. Phys. 112:9949–55
    [Google Scholar]
  49. 49. 
    Li Q, Jun Y-S. 2018. The apparent activation energy and pre-exponential kinetic factor for heterogeneous calcium carbonate nucleation on quartz. Commun. Chem. 1:56
    [Google Scholar]
  50. 50. 
    Gebauer D, Völkel A, Cölfen H. 2008. Stable prenucleation calcium carbonate clusters. Science 322:1819–22
    [Google Scholar]
  51. 51. 
    Habraken WJ, Tao J, Brylka LJ, Friedrich H, Bertinetti L et al. 2013. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 4:1507
    [Google Scholar]
  52. 52. 
    Hamm LM, Giuffre AJ, Han N, Tao J, Wang D et al. 2014. Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. PNAS 111:1304–9
    [Google Scholar]
  53. 53. 
    Joswiak MN, Peters B, Doherty MF. 2018. Nonequilibrium kink density from one-dimensional nucleation for step velocity predictions. Cryst. Growth Des. 18:723–27
    [Google Scholar]
  54. 54. 
    Wallace AF, DeYoreo JJ, Dove PM. 2009. Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: insights for biomineralization. J. Am. Chem. Soc. 131:5244–50
    [Google Scholar]
  55. 55. 
    Yau S-T, Vekilov PG. 2000. Quasi-planar nucleus structure in apoferritin crystallization. Nature 406:494–97
    [Google Scholar]
  56. 56. 
    Karthika S, Radhakrishnan T, Kalaichelvi P. 2016. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 16:6663–81
    [Google Scholar]
  57. 57. 
    Smeets PJ, Finney AR, Habraken WJ, Nudelman F, Friedrich H et al. 2017. A classical view on nonclassical nucleation. PNAS 114:E7882–90
    [Google Scholar]
  58. 58. 
    Pouget EM, Bomans PH, Goos JA, Frederik PM, Sommerdijk NA 2009. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323:1455–58
    [Google Scholar]
  59. 59. 
    Wolf SE, Müller L, Barrea R, Kampf CJ, Leiterer J et al. 2011. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates. Nanoscale 3:1158–65
    [Google Scholar]
  60. 60. 
    Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D. 2011. Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat. Commun. 2:590
    [Google Scholar]
  61. 61. 
    Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD et al. 2013. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341:885–89
    [Google Scholar]
  62. 62. 
    Mancardi G, Terranova U, de Leeuw NH. 2016. Calcium phosphate prenucleation complexes in water by means of ab initio molecular dynamics simulations. Cryst. Growth Des. 16:3353–58
    [Google Scholar]
  63. 63. 
    Yang X, Wang M, Yang Y, Cui B, Xu Z, Yang X. 2019. Physical origin underlying the prenucleation-cluster-mediated nonclassical nucleation pathways for calcium phosphate. Phys. Chem. Chem. Phys. 21:14530–40
    [Google Scholar]
  64. 64. 
    Hu Q, Nielsen MH, Freeman C, Hamm L, Tao J et al. 2012. The thermodynamics of calcite nucleation at organic interfaces: classical versus non-classical pathways. Faraday Discuss 159:509–23
    [Google Scholar]
  65. 65. 
    Burton W-K, Cabrera N, Frank F 1951. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. A 243:299–358
    [Google Scholar]
  66. 66. 
    Chernov AA. 2012. Modern Crystallography III: Crystal Growth Berlin: Springer Sci. Bus. Media
  67. 67. 
    Choudhary MK, Jain R, Rimer JD. 2020. In situ imaging of two-dimensional surface growth reveals the prevalence and role of defects in zeolite crystallization. PNAS 117:28632–39
    [Google Scholar]
  68. 68. 
    De Yoreo J, Zepeda-Ruiz L, Friddle R, Qiu S, Wasylenki L et al. 2009. Rethinking classical crystal growth models through molecular scale insights: consequences of kink-limited kinetics. Cryst. Growth Des. 9:5135–44
    [Google Scholar]
  69. 69. 
    Zhu C, Liang S, Song E, Zhou Y, Wang W et al. 2018. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 9:421
    [Google Scholar]
  70. 70. 
    Van Driessche AE, Kellermeier M, Benning LG, Gebauer D. 2016. New Perspectives on Mineral Nucleation and Growth: From Solution Precursors to Solid Materials Cham, Switz: Springer
  71. 71. 
    Zhang J, Nancollas GH. 1990. Kink densities along a crystal surface step at low temperatures and under nonequilibrium conditions. J. Cryst. Growth 106:181–90
    [Google Scholar]
  72. 72. 
    Stack AG, Grantham MC. 2010. Growth rate of calcite steps as a function of aqueous calcium-to-carbonate ratio: independent attachment and detachment of calcium and carbonate ions. Cryst. Growth Des. 10:1409–13
    [Google Scholar]
  73. 73. 
    Andersson M, Dobberschütz S, Sand KK, Tobler D, De Yoreo JJ, Stipp S. 2016. A microkinetic model of calcite step growth. Angew. Chem. 128:11252–56
    [Google Scholar]
  74. 74. 
    Penn RL, Banfield JF. 1999. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Acta 63:1549–57
    [Google Scholar]
  75. 75. 
    Penn RL, Banfield JF. 1998. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–71
    [Google Scholar]
  76. 76. 
    Dirksen J, Benjelloun S, Ring T 1990. Modelling the precipitation of copper oxalate aggregates. Colloid Polym. Sci. 268:864–76
    [Google Scholar]
  77. 77. 
    Park J, Privman V, Matijević E 2001. Model of formation of monodispersed colloids. J. Phys. Chem. B 105:11630–35
    [Google Scholar]
  78. 78. 
    Huang F, Zhang H, Banfield JF. 2003. The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS. J. Phys. Chem. B 107:10470–75
    [Google Scholar]
  79. 79. 
    Zhang J, Lin Z, Lan Y, Ren G, Chen D et al. 2006. A multistep oriented attachment kinetics: coarsening of ZnS nanoparticle in concentrated NaOH. J. Am. Chem. Soc. 128:12981–87
    [Google Scholar]
  80. 80. 
    Davis TM, Drews TO, Ramanan H, He C, Dong J et al. 2006. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat. Mater. 5:400–8
    [Google Scholar]
  81. 81. 
    Woehl TJ, Prozorov T. 2015. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J. Phys. Chem. C 119:21261–69
    [Google Scholar]
  82. 82. 
    Hopkins JC, Podgornik R, Ching W-Y, French RH, Parsegian VA 2015. Disentangling the effects of shape and dielectric response in van der Waals interactions between anisotropic bodies. J. Phys. Chem. C 119:19083–94
    [Google Scholar]
  83. 83. 
    Li D, Chun J, Xiao D, Zhou W, Cai H et al. 2017. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment. PNAS 114:7537–42
    [Google Scholar]
  84. 84. 
    Liu L, Nakouzi E, Sushko ML, Schenter GK, Mundy CJ et al. 2020. Connecting energetics to dynamics in particle growth by oriented attachment using real-time observations. Nat. Commun. 11:1045
    [Google Scholar]
  85. 85. 
    De Yoreo JJ, Gilbert PU, Sommerdijk NA, Penn RL, Whitelam S et al. 2015. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349:6247aaa6760
    [Google Scholar]
  86. 86. 
    Liu Z, Zhang Z, Wang Z, Jin B, Li D et al. 2020. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. PNAS 117:3397–404
    [Google Scholar]
  87. 87. 
    Hoeher AJ, Mergelsberg ST, Borkiewicz OJ, Michel FM. 2021. Impacts of initial Ca/P on amorphous calcium phosphate. Cryst. Growth Des. 21:73736–45
    [Google Scholar]
  88. 88. 
    Davis KJ, Dove PM, De Yoreo JJ. 2000. The role of Mg2+ as an impurity in calcite growth. Science 290:1134–37
    [Google Scholar]
  89. 89. 
    Radha A, Fernandez-Martinez A, Hu Y, Jun Y-S, Waychunas GA, Navrotsky A. 2012. Energetic and structural studies of amorphous Ca1−xMgxCO3⋅nH2O (0 ⩽ x ⩽ 1). Geochim. Cosmochim. Acta 90:83–95
    [Google Scholar]
  90. 90. 
    Zou Z, Habraken WJ, Matveeva G, Jensen AC, Bertinetti L et al. 2019. A hydrated crystalline calcium carbonate phase: calcium carbonate hemihydrate. Science 363:396–400
    [Google Scholar]
  91. 91. 
    Zhu Q, Pan Z, Zhao Z, Cao G, Luo L et al. 2021. Defect-driven selective metal oxidation at atomic scale. Nat. Commun. 12:558
    [Google Scholar]
  92. 92. 
    Burrows ND, Hale CR, Penn RL. 2012. Effect of ionic strength on the kinetics of crystal growth by oriented aggregation. Cryst. Growth Des. 12:4787–97
    [Google Scholar]
  93. 93. 
    Liao H-G, Zherebetskyy D, Xin H, Czarnik C, Ercius P et al. 2014. Facet development during platinum nanocube growth. Science 345:916–19
    [Google Scholar]
  94. 94. 
    Hu Y, Neil C, Lee B, Jun Y-S 2013. Control of heterogeneous Fe (III)(hydr)oxide nucleation and growth by interfacial energies and local saturations. Environ. Sci. Technol. 47:9198–206
    [Google Scholar]
  95. 95. 
    Dewan S, Carnevale V, Bankura A, Eftekhari-Bafrooei A, Fiorin G et al. 2014. Structure of water at charged interfaces: a molecular dynamics study. Langmuir 30:8056–65
    [Google Scholar]
  96. 96. 
    Stack AG, Raiteri P, Gale JD 2012. Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare-event theories. J. Am. Chem. Soc. 134:11–14
    [Google Scholar]
  97. 97. 
    Kim D, Lee B, Thomopoulos S, Jun Y-S 2018. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nat. Commun. 9:962
    [Google Scholar]
  98. 98. 
    Xiao J, Qi L 2011. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3:1383–96
    [Google Scholar]
  99. 99. 
    Jun Y-W, Casula MF, Sim J-H, Kim SY, Cheon J, Alivisatos AP 2003. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc. 125:15981–85
    [Google Scholar]
  100. 100. 
    Werner F, Mueller CW, Thieme J, Gianoncelli A, Rivard C et al. 2017. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth. Sci. Rep. 7:3203
    [Google Scholar]
  101. 101. 
    Ray JR, Lee B, Baltrusaitis J, Jun Y-S. 2012. Formation of iron (III)(hydr)oxides on polyaspartate- and alginate-coated substrates: effects of coating hydrophilicity and functional group. Environ. Sci. Technol. 46:13167–75
    [Google Scholar]
  102. 102. 
    Liu J, Inoué S, Zhu R, He H, Hochella MF Jr. 2021. Facet-specific oxidation of Mn (II) and heterogeneous growth of manganese (oxyhydr)oxides on hematite nanoparticles. Geochim. Cosmochim. Acta 307:151–67
    [Google Scholar]
  103. 103. 
    Elhadj S, De Yoreo JJ, Hoyer JR, Dove PM. 2006. Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth. PNAS 103:19237–42
    [Google Scholar]
  104. 104. 
    Ohlin CA, Villa EM, Rustad JR, Casey WH 2010. Dissolution of insulating oxide materials at the molecular scale. Nat. Mater. 9:11–19
    [Google Scholar]
  105. 105. 
    Gonella G, Backus EHG, Nagata Y, Bonthuis DJ, Loche P et al. 2021. Water at charged interfaces. Nat. Rev. Chem. 5:466–85
    [Google Scholar]
  106. 106. 
    Li L, Fijneman AJ, Kaandorp JA, Aizenberg J, Noorduin WL. 2018. Directed nucleation and growth by balancing local supersaturation and substrate/nucleus lattice mismatch. PNAS 115:3575–80
    [Google Scholar]
  107. 107. 
    Aber JE, Arnold S, Garetz BA, Myerson AS 2005. Strong dc electric field applied to supersaturated aqueous glycine solution induces nucleation of the γ polymorph. Phys. Rev. Lett. 94:145503
    [Google Scholar]
  108. 108. 
    Gibbs-Davis JM, Kruk JJ, Konek CT, Scheidt KA, Geiger FM. 2008. Jammed acid−base reactions at interfaces. J. Am. Chem. Soc. 130:15444–47
    [Google Scholar]
  109. 109. 
    Katsounaros I, Meier JC, Klemm SO, Topalov AA, Biedermann PU et al. 2011. The effective surface pH during reactions at the solid–liquid interface. Electrochem. Commun. 13:634–37
    [Google Scholar]
  110. 110. 
    Lee SS, Koishi A, Bourg IC, Fenter P. 2021. Ion correlations drive charge overscreening and heterogeneous nucleation at solid–aqueous electrolyte interfaces. PNAS 118:e2105154118
    [Google Scholar]
  111. 111. 
    Kendall TA, Na C, Jun YS, Martin ST 2008. Electrical properties of mineral surfaces for increasing water sorption. Langmuir 24:2519–24
    [Google Scholar]
  112. 112. 
    DePaolo DJ. 2011. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim. Cosmochim. Acta 75:1039–56
    [Google Scholar]
  113. 113. 
    Stocks-Fischer S, Galinat JK, Bang SS. 1999. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31:1563–71
    [Google Scholar]
  114. 114. 
    Schultze-Lam S, Fortin D, Davis B, Beveridge T 1996. Mineralization of bacterial surfaces. Chem. Geol. 132:171–81
    [Google Scholar]
  115. 115. 
    Anderson C, Pedersen K 2003. In situ growth of Gallionella biofilms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides. Geobiology 1:169–78
    [Google Scholar]
  116. 116. 
    Rivadeneyra MA, Martín-Algarra A, Sánchez-Román M, Sánchez-Navas A, Martín-Ramos JD. 2010. Amorphous Ca-phosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui. ISME J 4:922–32
    [Google Scholar]
  117. 117. 
    González-Muñoz MT, Rodriguez-Navarro C, Martínez-Ruiz F, Arias JM, Merroun ML, Rodriguez-Gallego M. 2010. Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation. Geol. Soc., London, Spec. Publ. 336:31–50
    [Google Scholar]
  118. 118. 
    Ferris F, Fyfe W, Beveridge T. 1987. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem. Geol. 63:225–32
    [Google Scholar]
  119. 119. 
    Frankel RB, Bazylinski DA. 2003. Biologically induced mineralization by bacteria. Rev. Mineral. Geochem. 54:95–114
    [Google Scholar]
  120. 120. 
    Chave KE. 1965. Carbonates: association with organic matter in surface seawater. Science 148:1723–24
    [Google Scholar]
  121. 121. 
    Wu X, Bowers B, Kim D, Lee B, Jun Y-S 2019. Dissolved organic matter affects arsenic mobility and iron (III)(hydr)oxide formation: implications for managed aquifer recharge. Environ. Sci. Technol. 53:14357–67
    [Google Scholar]
  122. 122. 
    Van Driessche A, Stawski T, Kellermeier M. 2019. Calcium sulfate precipitation pathways in natural and engineered environments. Chem. Geol. 530:119274
    [Google Scholar]
  123. 123. 
    Lau BL, Hsu-Kim H. 2008. Precipitation and growth of zinc sulfide nanoparticles in the presence of thiol-containing natural organic ligands. Environ. Sci. Technol. 42:7236–41
    [Google Scholar]
  124. 124. 
    Barati D, Walters JD, Pajoum Shariati SR, Moeinzadeh S, Jabbari E 2015. Effect of organic acids on calcium phosphate nucleation and osteogenic differentiation of human mesenchymal stem cells on peptide functionalized nanofibers. Langmuir 31:5130–40
    [Google Scholar]
  125. 125. 
    Chave KE, Suess E. 1970. Calcium carbonate saturation in seawater: effects of dissolved organic matter. Limnol. Oceanogr. 15:633–37
    [Google Scholar]
  126. 126. 
    Rose AL, Waite TD. 2002. Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter. Environ. Sci. Technol. 36:433–44
    [Google Scholar]
  127. 127. 
    Wang Y. 2014. Nanogeochemistry: nanostructures, emergent properties and their control on geochemical reactions and mass transfers. Chem. Geol. 378–79:1–23
    [Google Scholar]
  128. 128. 
    Yang L, Killian CE, Kunz M, Tamura N, Gilbert PUPA. 2011. Biomineral nanoparticles are space-filling. Nanoscale 3:603–9
    [Google Scholar]
  129. 129. 
    Artusio F, Pisano R. 2018. Surface-induced crystallization of pharmaceuticals and biopharmaceuticals: a review. Int. J. Pharm. 547:190–208
    [Google Scholar]
  130. 130. 
    Alaei A, Zong K, Asawa K, Chou T-M, Briseño AL et al. 2021. Orienting and shaping organic semiconductor single crystals through selective nanoconfinement. Soft Matter 17:3603–8
    [Google Scholar]
  131. 131. 
    Qian J, Gao X, Pan B. 2020. Nanoconfinement-mediated water treatment: from fundamental to application. Environ. Sci. Technol. 54:8509–26
    [Google Scholar]
  132. 132. 
    Jiang Q, Ward MD. 2014. Crystallization under nanoscale confinement. Chem. Soc. Rev. 43:2066–79
    [Google Scholar]
  133. 133. 
    Hamilton BD, Ha J-M, Hillmyer MA, Ward MD. 2012. Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers. Acc. Chem. Res. 45:414–23
    [Google Scholar]
  134. 134. 
    Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P et al. 2018. Anomalously low dielectric constant of confined water. Science 360:1339–42
    [Google Scholar]
  135. 135. 
    Le Caër S, Pin S, Esnouf S, Raffy Q, Renault JP et al. 2011. A trapped water network in nanoporous material: the role of interfaces. Phys. Chem. Chem. Phys. 13:17658–66
    [Google Scholar]
  136. 136. 
    Jin D, Coasne B 2021. Reduced phase stability and faster formation/dissociation kinetics in confined methane hydrate. PNAS 118:16e2024025118
    [Google Scholar]
  137. 137. 
    Cantaert B, Beniash E, Meldrum FC 2013. Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation. Chem. - Eur. J. 19:14918–24
    [Google Scholar]
  138. 138. 
    Alexander B, Daulton TL, Genin GM, Lipner J, Pasteris JD et al. 2012. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure. J. R. Soc. Interface 9:1774–86
    [Google Scholar]
  139. 139. 
    Kim D, Lee B, Marshall BP, Thomopoulos S, Jun Y-S 2021. Cyclic strain enhances the early stage mineral nucleation and the modulus of demineralized bone matrix. Biomater. Sci. 9:5907–16
    [Google Scholar]
  140. 140. 
    Zhu G, Sushko ML, Loring JS, Legg BA, Song M et al. 2021. Self-similar mesocrystals form via interface-driven nucleation and assembly. Nature 590:416–22
    [Google Scholar]
  141. 141. 
    Takahashi K, Takahashi L. 2019. Data driven determination in growth of silver from clusters to nanoparticles and bulk. J. Phys. Chem. Lett. 10:4063–68
    [Google Scholar]
  142. 142. 
    Liu R, Hao J, Li J, Wang S, Liu H et al. 2020. Causal inference machine learning leads original experimental discovery in CdSe/CdS core/shell nanoparticles. J. Phys. Chem. Lett. 11:7232–38
    [Google Scholar]
  143. 143. 
    Marx D, Hutter J. 2009. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods Cambridge, UK: Cambridge Univ. Press
  144. 144. 
    Sun W, Jayaraman S, Chen W, Persson KA, Ceder G 2015. Nucleation of metastable aragonite CaCO3 in seawater. PNAS 112:3199–204
    [Google Scholar]
  145. 145. 
    Behler J. 2014. Representing potential energy surfaces by high-dimensional neural network potentials. J. Phys. Condens. Matter 26:183001
    [Google Scholar]
  146. 146. 
    Handley CM, Behler J. 2014. Next generation interatomic potentials for condensed systems. Eur. Phys. J. B 87:152
    [Google Scholar]
  147. 147. 
    Behler J. 2016. Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys. 145:170901
    [Google Scholar]
  148. 148. 
    Gilberti F, Salvalaglio M, Parrinello M. 2015. Metadynamics studies of crystal nucleation. IUCrJ 2:256–66
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-082720-100947
Loading
/content/journals/10.1146/annurev-physchem-082720-100947
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error