1932

Abstract

The vibrational spectroscopy of the water dimer provides an understanding of basic hydrogen bonding in water clusters, and with about one water dimer for every 1,000 water molecules, it plays a critical role in atmospheric science. Here, we review how the experimental and theoretical progress of the past decades has improved our understanding of water dimer vibrational spectroscopy under both cold and warm conditions. We focus on the intramolecular OH-stretching transitions of the donor unit, because these are the ones mostly affected by dimer formation and because their assignment has proven a challenge. We review cold experimental results from early matrix isolation to recent mass-selected jet expansion techniques and, in parallel, the improvements in the theoretical anharmonic models. We discuss and illustrate changes in the vibrational spectra of complexes upon increasing temperature, and the difficulties in recording and calculating these spectra. In the atmosphere, water dimer spectra at ambient temperature are crucial.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082720-104659
2022-04-20
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082720-104659.html?itemId=/content/journals/10.1146/annurev-physchem-082720-104659&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Scheiner S. 1994. Ab initio studies of hydrogen bonds: the water dimer paradigm. Annu. Rev. Phys. Chem. 45:23–56
    [Google Scholar]
  2. 2. 
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S et al. 2011. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 83:81637–41
    [Google Scholar]
  3. 3. 
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S et al. 2011. Defining the hydrogen bond: an account (IUPAC Technical Report). Pure Appl. Chem. 83:81619–36
    [Google Scholar]
  4. 4. 
    Schenter GK, Kathmann SM, Garrett BC. 1999. Dynamical nucleation theory: a new molecular approach to vapor-liquid nucleation. Phys. Rev. Lett. 82:173484–87
    [Google Scholar]
  5. 5. 
    Chýlek P, Geldart DJW. 1997. Water vapor dimers and atmospheric absorption of electromagnetic radiation. Geophys. Res. Lett. 24:162015–18
    [Google Scholar]
  6. 6. 
    Daniel JS, Solomon S, Kjaergaard HG, Schofield DP. 2004. Atmospheric water vapor complexes and the continuum. Geophys. Res. Lett. 31:6L06118
    [Google Scholar]
  7. 7. 
    Vaida V. 2011. Water cluster mediated atmospheric chemistry. J. Chem. Phys. 135:2020901
    [Google Scholar]
  8. 8. 
    Shine KP, Ptashnik IV, Rädel G. 2012. The water vapour continuum: brief history and recent developments. Surv. Geophys. 33:3535–55
    [Google Scholar]
  9. 9. 
    Ptashnik I, Shine K, Vigasin A. 2011. Water vapour self-continuum and water dimers: 1. Analysis of recent work. J. Quant. Spectrosc. Radiat. Transf. 112:81286–303
    [Google Scholar]
  10. 10. 
    Serov EA, Odintsova TA, Tretyakov MY, Semenov VE. 2017. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands. J. Quant. Spectrosc. Radiat. Transf. 193:1–12
    [Google Scholar]
  11. 11. 
    León I, Montero R, Longarte A, Fernández JA 2021. Revisiting the spectroscopy of water dimer in jets. J. Phys. Chem. Lett. 12:41316–20
    [Google Scholar]
  12. 12. 
    Tretyakov MY, Koshelev MA, Serov EA, Parshin VV, Odintsova TA, Bubnov GM. 2014. Water dimer and the atmospheric continuum. Phys.-Usp 57:111083–98
    [Google Scholar]
  13. 13. 
    Mukhopadhyay A, Cole WT, Saykally RJ. 2015. The water dimer I: experimental characterization. Chem. Phys. Lett. 633:13–26
    [Google Scholar]
  14. 14. 
    Mukhopadhyay A, Xantheas SS, Saykally RJ. 2018. The water dimer II: theoretical investigations. Chem. Phys. Lett. 700:163–75
    [Google Scholar]
  15. 15. 
    Zhang B, Yu Y, Zhang Z, Zhang YY, Jiang S et al. 2020. Infrared spectroscopy of neutral water dimer based on a tunable vacuum ultraviolet free electron laser. J. Phys. Chem. Lett. 11:3851–55
    [Google Scholar]
  16. 16. 
    Gottschalk HC, Fischer TL, Meyer V, Hildebrandt R, Schmitt U, Suhm MA. 2021. A sustainable slit jet FTIR spectrometer for hydrate complexes and beyond. Instruments 5:112
    [Google Scholar]
  17. 17. 
    Fischer TL, Wagner T, Gottschalk HC, Nejad A, Suhm MA 2021. A rather universal vibrational resonance in 1:1 hydrates of carbonyl compounds. J. Phys. Chem. Lett. 12:1138–44
    [Google Scholar]
  18. 18. 
    Van Thiel M, Becker ED, Pimentel GC. 1957. Infrared studies of hydrogen bonding of water by the matrix isolation technique. J. Chem. Phys. 27:2486–90
    [Google Scholar]
  19. 19. 
    Engdahl A, Nelander B. 1987. On the structure of the water trimer. A matrix isolation study. J. Chem. Phys. 86:94831–37
    [Google Scholar]
  20. 20. 
    Engdahl A, Nelander B. 1989. Water in krypton matrices. J. Mol. Struct. 193:101–9
    [Google Scholar]
  21. 21. 
    Hirabayashi S, Yamada KMT. 2005. Infrared spectra of water clusters in krypton and xenon matrices. J. Chem. Phys. 122:24244501
    [Google Scholar]
  22. 22. 
    Tursi AJ, Nixon ER. 1970. Matrix-isolation study of the water dimer in solid nitrogen. J. Chem. Phys. 52:31521–28
    [Google Scholar]
  23. 23. 
    Fredin L, Nelander B, Ribbegård G. 1977. Infrared spectrum of the water dimer in solid nitrogen. I. Assignment and force constant calculations. J. Chem. Phys. 66:94065–72
    [Google Scholar]
  24. 24. 
    Perchard J. 2001. Anharmonicity and hydrogen bonding: II – A near infrared study of water trapped in nitrogen matrix. Chem. Phys. 266:1109–24
    [Google Scholar]
  25. 25. 
    Ayers G, Pullin A. 1976. The i.r. spectra of matrix isolated water species—IV. The configuration of the water dimer in argon matrices. Spectrochim. Acta A Mol. Spectrosc. 32:111695–704
    [Google Scholar]
  26. 26. 
    Perchard J. 2001. Anharmonicity and hydrogen bonding. III. Analysis of the near infrared spectrum of water trapped in argon matrix. Chem. Phys. 273:2217–33
    [Google Scholar]
  27. 27. 
    Bouteiller Y, Tremblay B, Perchard J. 2011. The vibrational spectrum of the water dimer: comparison between anharmonic ab initio calculations and neon matrix infrared data between 14,000 and 90 cm−1. Chem. Phys. 386:129–40
    [Google Scholar]
  28. 28. 
    Bouteiller Y, Perchard J. 2004. The vibrational spectrum of (H2O)2: comparison between anharmonic ab initio calculations and neon matrix infrared data between 9000 and 90 cm−1. Chem. Phys. 305:1–31–12
    [Google Scholar]
  29. 29. 
    Ceponkus J, Uvdal P, Nelander B. 2010. Acceptor switching and axial rotation of the water dimer in matrices, observed by infrared spectroscopy. J. Chem. Phys. 133:7074301
    [Google Scholar]
  30. 30. 
    Ceponkus J, Uvdal P, Nelander B. 2011. Observations of host guest interactions specific to molecular matrices: water monomers and dimers in hydrogen matrices. J. Phys. Chem. A 115:277921–27
    [Google Scholar]
  31. 31. 
    Nauta K, Miller RE. 2000. Formation of cyclic water hexamer in liquid helium: the smallest piece of ice. Science 287:5451293–95
    [Google Scholar]
  32. 32. 
    Slipchenko MN, Kuyanov KE, Sartakov BG, Vilesov AF. 2006. Infrared intensity in small ammonia and water clusters. J. Chem. Phys. 124:24241101
    [Google Scholar]
  33. 33. 
    Lindsay C, Douberly G, Miller R. 2006. Rotational and vibrational dynamics of H2O and HDO in helium nanodroplets. J. Mol. Struct. 786:296–104
    [Google Scholar]
  34. 34. 
    Kuyanov-Prozument K, Choi MY, Vilesov AF. 2010. Spectrum and infrared intensities of OH-stretching bands of water dimers. J. Chem. Phys. 132:1014304
    [Google Scholar]
  35. 35. 
    Schwan R, Kaufmann M, Leicht D, Schwaab G, Havenith M. 2016. Infrared spectroscopy of the v2 band of the water monomer and small water clusters (H2O)n=2,3,4 in helium droplets. Phys. Chem. Chem. Phys. 18:3424063–69
    [Google Scholar]
  36. 36. 
    Schwan R, Qu C, Mani D, Pal N, van der Meer L et al. 2019. Observation of the low-frequency spectrum of the water dimer as a sensitive test of the water dimer potential and dipole moment surfaces. Angew. Chem. 131:3713253–60
    [Google Scholar]
  37. 37. 
    Page RH, Frey JG, Shen YR, Lee Y. 1984. Infrared predissociation spectra of water dimer in a supersonic molecular beam. Chem. Phys. Lett. 106:5373–76
    [Google Scholar]
  38. 38. 
    Coker DF, Miller RE, Watts RO. 1985. The infrared predissociation spectra of water clusters. J. Chem. Phys. 82:83554–62
    [Google Scholar]
  39. 39. 
    Huang ZS, Miller RE. 1989. High-resolution near-infrared spectroscopy of water dimer. J. Chem. Phys. 91:116613–31
    [Google Scholar]
  40. 40. 
    Paul JB, Collier CP, Saykally RJ, Scherer JJ, O'Keefe A. 1997. Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy. J. Phys. Chem. A 101:295211–14
    [Google Scholar]
  41. 41. 
    Paul JB, Provencal RA, Chapo C, Roth K, Casaes R, Saykally RJ 1999. Infrared cavity ringdown spectroscopy of the water cluster bending vibrations. J. Phys. Chem. A 103:162972–74
    [Google Scholar]
  42. 42. 
    Huisken F, Kaloudis M, Kulcke A. 1996. Infrared spectroscopy of small size-selected water clusters. J. Chem. Phys. 104:17–25
    [Google Scholar]
  43. 43. 
    León I, Montero R, Castaño F, Longarte A, Fernández JA 2012. Mass-resolved infrared spectroscopy of complexes without chromophore by nonresonant femtosecond ionization detection. J. Phys. Chem. A 116:256798–803
    [Google Scholar]
  44. 44. 
    Suas-David N, Vanfleteren T, Földes T, Kassi S, Georges R, Herman M 2015. The water dimer investigated in the 2OH spectral range using cavity ring-down spectroscopy. J. Phys. Chem. A 119:3910022–34
    [Google Scholar]
  45. 45. 
    Gotch AJ, Zwier TS. 1992. Multiphoton ionization studies of clusters of immiscible liquids. I.C6H6–(H2O)n, n = 1,2. J. Chem. Phys. 96:53388–401
    [Google Scholar]
  46. 46. 
    Pribble RN, Zwier TS. 1994. Size-specific infrared spectra of benzene-(H2O)n clusters (n = 1 through 7): evidence for noncyclic (H2O)n structures. Science 265:516875–79
    [Google Scholar]
  47. 47. 
    Burch DE. 1981. Continuum absorption by atmospheric H2O. Proc. SPIE 277:28–39
    [Google Scholar]
  48. 48. 
    Low GR, Kjaergaard HG. 1999. Calculation of OH-stretching band intensities of the water dimer and trimer. J. Chem. Phys. 110:189104–15
    [Google Scholar]
  49. 49. 
    Vaida V, Daniel JS, Kjaergaard HG, Goss LM, Tuck AF. 2001. Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer. Q. J. R. Meteorol. Soc. 127:5751627–43
    [Google Scholar]
  50. 50. 
    Schofield DP, Kjaergaard HG. 2003. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer. Phys. Chem. Chem. Phys. 5:153100–5
    [Google Scholar]
  51. 51. 
    Ptashnik IV, Smith KM, Shine KP, Newnham DA. 2004. Laboratory measurements of water vapour continuum absorption in spectral region 5000–600 cm−1: evidence for water dimers. Q. J. R. Meteorol. Soc. 130:6022391–408
    [Google Scholar]
  52. 52. 
    Gordon I, Rothman L, Hill C, Kochanov R, Tan Y et al. 2017. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203:3–69
    [Google Scholar]
  53. 53. 
    Barber RJ, Tennyson J, Harris GJ, Tolchenov RN. 2006. A high-accuracy computed water line list. Mon. Not. R. Astron. Soc. 368:31087–94
    [Google Scholar]
  54. 54. 
    Lodi L, Tennyson J, Polyansky OL 2011. A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule. J. Chem. Phys. 135:3034113
    [Google Scholar]
  55. 55. 
    Polyansky OL, Kyuberis AA, Zobov NF, Tennyson J, Yurchenko SN, Lodi L. 2018. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480:22597–608
    [Google Scholar]
  56. 56. 
    Scribano Y, Goldman N, Saykally RJ, Leforestier C. 2006. Water dimers in the atmosphere III: equilibrium constant from a flexible potential. J. Phys. Chem. A 110:165411–19
    [Google Scholar]
  57. 57. 
    Leforestier C. 2014. Water dimer equilibrium constant calculation: a quantum formulation including metastable states. J. Chem. Phys. 140:7074106
    [Google Scholar]
  58. 58. 
    Curtiss LA, Frurip DJ, Blander M. 1979. Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity. J. Chem. Phys. 71:62703–11
    [Google Scholar]
  59. 59. 
    Paynter DJ, Ptashnik IV, Shine KP, Smith KM. 2007. Pure water vapor continuum measurements between 3100 and 4400 cm−1: evidence for water dimer absorption in near atmospheric conditions. Geophys. Res. Lett. 34:12L12808
    [Google Scholar]
  60. 60. 
    Ruscic B. 2013. Active thermochemical tables: water and water dimer. J. Phys. Chem. A 117:4611940–53
    [Google Scholar]
  61. 61. 
    Hansen AS, Vogt E, Kjaergaard HG. 2019. Gibbs energy of complex formation – combining infrared spectroscopy and vibrational theory. Int. Rev. Phys. Chem. 38:1115–48
    [Google Scholar]
  62. 62. 
    Kjaersgaard A, Vogt E, Hansen AS, Kjaergaard HG. 2020. Room temperature gas-phase detection and Gibbs energies of water amine bimolecular complex formation. J. Phys. Chem. A 124:357113–22
    [Google Scholar]
  63. 63. 
    Larsen RW, Zielke P, Suhm MA 2007. Hydrogen-bonded OH stretching modes of methanol clusters: a combined IR and Raman isotopomer study. J. Chem. Phys. 126:19194307
    [Google Scholar]
  64. 64. 
    Häber T, Schmitt U, Suhm MA. 1999. FTIR-spectroscopy of molecular clusters in pulsed supersonic slit-jet expansions. Phys. Chem. Chem. Phys. 1:245573–82
    [Google Scholar]
  65. 65. 
    Hippler M. 2007. Quantum chemical study and infrared spectroscopy of hydrogen-bonded CHCl3–NH3 in the gas phase. J. Chem. Phys. 127:8084306
    [Google Scholar]
  66. 66. 
    Hippler M, Hesse S, Suhm MA. 2010. Quantum-chemical study and FTIR jet spectroscopy of CHCl3–NH3 association in the gas phase. Phys. Chem. Chem. Phys. 12:4113555–65
    [Google Scholar]
  67. 67. 
    Bulychev V, Gromova E, Tokhadze K 2004. Experimental and theoretical study of the ν(HF) absorption band structure in the H2O…HF complex. Opt. Spectrosc. 96:5774–88
    [Google Scholar]
  68. 68. 
    Bulychev VP, Grigoriev IM, Gromova EI, Tokhadze KG. 2005. Study of the ν1 band shape of the H2O…HF, H2O…DF, and H2O…HCl complexes in the gas phase. Phys. Chem. Chem. Phys. 7:112266–78
    [Google Scholar]
  69. 69. 
    Thomas RK, Thompson HW. 1971. Hydrogen bonding in the gas phase: the infrared spectra of complexes of hydrogen fluoride with hydrogen cyanide and methyl cyanide. Proc. Math. Phys. Eng. Sci. 325: 1560.133–49
    [Google Scholar]
  70. 70. 
    Matthews J, Martínez-Avilés M, Francisco JS, Sinha A 2008. Probing OH stretching overtones of CH3OOH through action spectroscopy: influence of dipole moment dependence on HOOC torsion. J. Chem. Phys. 129:7074316
    [Google Scholar]
  71. 71. 
    Hansen AS, Huchmala RM, Vogt E, Boyer MA, Bhagde T et al. 2021. Coupling of torsion and OH-stretching in tert-butyl hydroperoxide. I. The cold and warm first OH-stretching overtone spectrum. J. Chem. Phys. 154:16164306
    [Google Scholar]
  72. 72. 
    Vogt E, Huchmala RM, Jensen CV, Boyer MA, Wallberg J et al. 2021. Coupling of torsion and OH-stretching in tert-butyl hydroperoxide. II. The OH-stretching fundamental and overtone spectra. J. Chem. Phys. 154:16164307
    [Google Scholar]
  73. 73. 
    Huisken F, Kulcke A, Laush C, Lisy JM. 1991. Dissociation of small methanol clusters after excitation of the O-H stretch vibration at 2.7 μ. J. Chem. Phys. 95:63924–29
    [Google Scholar]
  74. 74. 
    Lane JR. 2013. CCSDTQ optimized geometry of water dimer. J. Chem. Theory Comput. 9:1316–23
    [Google Scholar]
  75. 75. 
    Smith BJ, Swanton DJ, Pople JA, Schaefer HF, Radom L. 1990. Transition structures for the interchange of hydrogen atoms within the water dimer. J. Chem. Phys. 92:21240–47
    [Google Scholar]
  76. 76. 
    Tschumper GS, Leininger ML, Hoffman BC, Valeev EF, Schaefer HF, Quack M. 2002. Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses. J. Chem. Phys. 116:2690–701
    [Google Scholar]
  77. 77. 
    Huang X, Braams BJ, Bowman JM. 2006. Ab initio potential energy and dipole moment surfaces of (H2O)2. J. Phys. Chem. A 110:2445–51
    [Google Scholar]
  78. 78. 
    Anderson JB. 1975. A random-walk simulation of the Schrödinger equation: H+3. J. Chem. Phys. 63:41499–503
    [Google Scholar]
  79. 79. 
    Suhm MA, Watts RO. 1991. Quantum Monte Carlo studies of vibrational states in molecules and clusters. Phys. Rep. 204:4293–329
    [Google Scholar]
  80. 80. 
    Lee VGM, McCoy AB. 2019. An efficient approach for studies of water clusters using diffusion Monte Carlo. J. Phys. Chem. A 123:378063–70
    [Google Scholar]
  81. 81. 
    Shank A, Wang Y, Kaledin A, Braams BJ, Bowman JM. 2009. Accurate ab initio and “hybrid” potential energy surfaces, intramolecular vibrational energies, and classical ir spectrum of the water dimer. J. Chem. Phys. 130:14144314
    [Google Scholar]
  82. 82. 
    Rocher-Casterline BE, Ch'ng LC, Mollner AK, Reisler H 2011. Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging. J. Chem. Phys. 134:21211101
    [Google Scholar]
  83. 83. 
    Wang XG, Carrington T. 2003. A contracted basis-Lanczos calculation of vibrational levels of methane: solving the Schrödinger equation in nine dimensions. J. Chem. Phys. 119:1101–17
    [Google Scholar]
  84. 84. 
    Avila G, Carrington T. 2011. Using a pruned basis, a non-product quadrature grid, and the exact Watson normal-coordinate kinetic energy operator to solve the vibrational Schrödinger equation for C2H4. J. Chem. Phys. 135:6064101
    [Google Scholar]
  85. 85. 
    Yurchenko SN, Thiel W, Jensen P. 2007. Theoretical ROVibrational Energies (TROVE): a robust numerical approach to the calculation of rovibrational energies for polyatomic molecules. J. Mol. Spectrosc. 245:2126–40
    [Google Scholar]
  86. 86. 
    Mátyus E, Czaó G, Császár AG. 2009. Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations. J. Chem. Phys. 130:13134112
    [Google Scholar]
  87. 87. 
    Fábri C, Mátyus E, Császár AG 2011. Rotating full- and reduced-dimensional quantum chemical models of molecules. J. Chem. Phys. 134:7074105
    [Google Scholar]
  88. 88. 
    Brocks G, van der Avoird A, Sutcliffe B, Tennyson J. 1983. Quantum dynamics of non-rigid systems comprising two polyatomic fragments. Mol. Phys. 50:51025–43
    [Google Scholar]
  89. 89. 
    Scribano Y, Leforestier C. 2007. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum. J. Chem. Phys. 126:23234301
    [Google Scholar]
  90. 90. 
    Leforestier C, Gatti F, Fellers RS, Saykally RJ. 2002. Determination of a flexible (12D) water dimer potential via direct inversion of spectroscopic data. J. Chem. Phys. 117:198710–22
    [Google Scholar]
  91. 91. 
    Leforestier C. 2012. Infrared shifts of the water dimer from the fully flexible ab initio HBB2 potential. Philos. Trans. R. Soc. A 370:19682675–90
    [Google Scholar]
  92. 92. 
    Wang XG, Carrington T. 2018. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer. J. Chem. Phys. 148:7074108
    [Google Scholar]
  93. 93. 
    Leforestier C, Szalewicz K, van der Avoird A. 2012. Spectra of water dimer from a new ab initio potential with flexible monomers. J. Chem. Phys. 137:1014305
    [Google Scholar]
  94. 94. 
    Cencek W, Szalewicz K, Leforestier C, van Harrevelt R, van der Avoird A. 2008. An accurate analytic representation of the water pair potential. Phys. Chem. Chem. Phys. 10:324716–31
    [Google Scholar]
  95. 95. 
    Partridge H, Schwenke DW. 1997. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data. J. Chem. Phys. 106:114618–39
    [Google Scholar]
  96. 96. 
    Babin V, Leforestier C, Paesani F. 2013. Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J. Chem. Theory Comput. 9:125395–403
    [Google Scholar]
  97. 97. 
    Babin V, Medders GR, Paesani F. 2014. Development of a “first principles” water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters. J. Chem. Theory Comput. 10:41599–607
    [Google Scholar]
  98. 98. 
    Medders GR, Babin V, Paesani F. 2014. Development of a “first-principles” water potential with flexible monomers. III. Liquid phase properties. J. Chem. Theory Comput. 10:82906–10
    [Google Scholar]
  99. 99. 
    Mackeprang K, Kjaergaard HG, Salmi T, Hänninen V, Halonen L. 2014. The effect of large amplitude motions on the transition frequency redshift in hydrogen bonded complexes: a physical picture. J. Chem. Phys. 140:18184309
    [Google Scholar]
  100. 100. 
    Mackeprang K, Hänninen V, Halonen L, Kjaergaard HG. 2015. The effect of large amplitude motions on the vibrational intensities in hydrogen bonded complexes. J. Chem. Phys. 142:9094304
    [Google Scholar]
  101. 101. 
    Nelander B. 1988. The intramolecular fundamentals of the water dimer. J. Chem. Phys. 88:85254–56
    [Google Scholar]
  102. 102. 
    Zhang B, Yu Y, Zhang Y-Y, Jiang S, Li Q et al. 2020. Infrared spectroscopy of neutral water clusters at finite temperature: evidence for a noncyclic pentamer. PNAS 117:2715423–28
    [Google Scholar]
  103. 103. 
    Huisken F, Kaloudis M, Vigasin A. 1997. Vibrational frequency shifts caused by weak intermolecular interactions. Chem. Phys. Lett. 269:3235–43
    [Google Scholar]
  104. 104. 
    Buck U, Huisken F. 2000. Infrared spectroscopy of size-selected water and methanol clusters. Chem. Rev. 100:113863–90
    [Google Scholar]
  105. 105. 
    Otto KE, Xue Z, Zielke P, Suhm MA 2014. The Raman spectrum of isolated water clusters. Phys. Chem. Chem. Phys. 16:219849–58
    [Google Scholar]
  106. 106. 
    Mortensen OS, Henry BR, Mohammadi MA. 1981. The effects of symmetry within the local mode picture: a reanalysis of the overtone spectra of the dihalomethanes. J. Chem. Phys. 75:104800–8
    [Google Scholar]
  107. 107. 
    Henry BR. 1987. The local mode model and overtone spectra: a probe of molecular structure and conformation. Acc. Chem. Res. 20:12429–35
    [Google Scholar]
  108. 108. 
    Howard DL, Jørgensen P, Kjaergaard HG 2005. Weak intramolecular interactions in ethylene glycol identified by vapor phase OH-stretching overtone spectroscopy. J. Am. Chem. Soc. 127:4817096–103
    [Google Scholar]
  109. 109. 
    Kjaergaard HG, Henry BR, Wei H, Lefebvre S, Carrington T et al. 1994. Calculation of vibrational fundamental and overtone band intensities of H2O. J. Chem. Phys. 100:96228–39
    [Google Scholar]
  110. 110. 
    Kjaergaard HG, Garden AL, Chaban GM, Gerber RB, Matthews DA, Stanton JF. 2008. Calculation of vibrational transition frequencies and intensities in water dimer: comparison of different vibrational approaches. J. Phys. Chem. A 112:184324–35
    [Google Scholar]
  111. 111. 
    Salmi T, Hänninen V, Garden AL, Kjaergaard HG, Tennyson J, Halonen L 2008. Calculation of the O-H stretching vibrational overtone spectrum of the water dimer. J. Phys. Chem. A 112:286305–12
    [Google Scholar]
  112. 112. 
    Garden AL, Halonen L, Kjaergaard HG. 2008. Calculated band profiles of the OH-stretching transitions in water dimer. J. Phys. Chem. A 112:327439–47
    [Google Scholar]
  113. 113. 
    Mackeprang K, Kjaergaard HG. 2017. Vibrational transitions in hydrogen bonded bimolecular complexes – a local mode perturbation theory approach to transition frequencies and intensities. J. Mol. Spectrosc. 334:1–9
    [Google Scholar]
  114. 114. 
    Eckart C. 1935. Some studies concerning rotating axes and polyatomic molecules. Phys. Rev. 47:7552–58
    [Google Scholar]
  115. 115. 
    Krasnoshchekov SV, Isayeva EV, Stepanov NF. 2014. Determination of the Eckart molecule-fixed frame by use of the apparatus of quaternion algebra. J. Chem. Phys. 140:15154104
    [Google Scholar]
  116. 116. 
    Ceponkus J, Uvdal P, Nelander B. 2008. Far-infrared band strengths in the water dimer: experiments and calculations. J. Phys. Chem. A 112:173921–26
    [Google Scholar]
  117. 117. 
    Xantheas SS, Dunning TH. 1993. Ab initio studies of cyclic water clusters (H2O)n, n = 1-6. I. Optimal structures and vibrational spectra. J. Chem. Phys. 99:118774–92
    [Google Scholar]
  118. 118. 
    Kjaergaard HG, Low GR, Robinson TW, Howard DL 2002. Calculated OH-stretching vibrational transitions in the water-nitrogen and water-oxygen complexes. J. Phys. Chem. A 106:388955–62
    [Google Scholar]
  119. 119. 
    Tretyakov MY, Serov EA, Koshelev MA, Parshin VV, Krupnov AF. 2013. Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature. Phys. Rev. Lett. 110:9093001
    [Google Scholar]
  120. 120. 
    Pfeilsticker K, Lotter A, Peters C, Bösch H. 2003. Atmospheric detection of water dimers via near-infrared absorption. Science 300:56282078–80
    [Google Scholar]
  121. 121. 
    Suhm MA. 2004. How broad are water dimer bands?. Science 304:5672823–24
    [Google Scholar]
  122. 122. 
    Lotter A. 2006. Field measurements of water continuum and water dimer absorption by active long path differential optical absorption spectroscopy (DOAS) PhD Thesis Heidelberg Univ. Ger:.
    [Google Scholar]
  123. 123. 
    Schofield DP, Lane JR, Kjaergaard HG. 2007. Hydrogen bonded OH-stretching vibration in the water dimer. J. Phys. Chem. A 111:4567–72
    [Google Scholar]
  124. 124. 
    Shillings AJL, Ball SM, Barber MJ, Tennyson J, Jones RL 2011. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list. Atmos. Chem. Phys. 11:94273–87
    [Google Scholar]
  125. 125. 
    Elsasser WM. 1938. Far infrared absorption of atmospheric water vapor. Astrophys. J. 87:497–507
    [Google Scholar]
  126. 126. 
    Elsasser WM. 1938. Note on atmospheric absorption caused by the rotational water band. Phys. Rev. 53:9768
    [Google Scholar]
  127. 127. 
    Elsasser W. 1938. New values for the infrared absorption coefficient of atmospheric water vapor. Mon. Weather Rev. 66:175–78
    [Google Scholar]
  128. 128. 
    Clough S, Kneizys F, Davies R. 1989. Line shape and the water vapor continuum. Atmos. Res. 23:3229–41
    [Google Scholar]
  129. 129. 
    Delamere JS, Clough SA, Payne VH, Mlawer EJ, Turner DD, Gamache RR 2010. A far-infrared radiative closure study in the Arctic: application to water vapor. J. Geophys. Res. Atmos. 115:D17106
    [Google Scholar]
  130. 130. 
    Mlawer EJ, Payne VH, Moncet JL, Delamere JS, Alvarado MJ, Tobin DC. 2012. Development and recent evaluation of the MT_CKD model of continuum absorption. Philos. Trans. R. Soc. A 370:19682520–56
    [Google Scholar]
  131. 131. 
    Paynter DJ, Ramaswamy V. 2011. An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer. J. Geophys. Res. Atmos. 116:D20302
    [Google Scholar]
  132. 132. 
    Paynter DJ, Ptashnik IV, Shine KP, Smith KM, McPheat R, Williams RG 2009. Laboratory measurements of the water vapor continuum in the 1200–8000 cm−1 region between 293 K and 351 K. J. Geophys. Res. Atmos. 114:D21301
    [Google Scholar]
  133. 133. 
    Ptashnik IV, McPheat RA, Shine KP, Smith KM, Williams RG. 2012. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements. Philos. Trans. R. Soc. A 370:19682557–77
    [Google Scholar]
  134. 134. 
    Ptashnik IV, Petrova TM, Ponomarev YN, Shine KP, Solodov AA, Solodov AM. 2013. Near-infrared water vapour self-continuum at close to room temperature. J. Quant. Spectrosc. Radiat. Transf. 120:23–35
    [Google Scholar]
  135. 135. 
    Ptashnik IV, Petrova TM, Ponomarev YN, Solodov AA, Solodov AM. 2015. Water vapor continuum absorption in near-IR atmospheric windows. Atmos. Ocean. Opt. 28:2115–20
    [Google Scholar]
  136. 136. 
    Ptashnik IV, Klimeshina TE, Petrova TM, Solodov AA, Solodov AM. 2016. Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures. Atmos. Ocean. Opt. 29:3211–15
    [Google Scholar]
  137. 137. 
    Campargue A, Kassi S, Mondelain D, Vasilchenko S, Romanini D. 2016. Accurate laboratory determination of the near-infrared water vapor self-continuum: a test of the MT_CKD model. J. Geophys. Res. Atmos. 121:2113180–203
    [Google Scholar]
  138. 138. 
    Birk M, Wagner G, Loos J, Shine K. 2020. 3 μm Water vapor self- and foreign-continuum: new method for determination and new insights into the self-continuum. J. Quant. Spectrosc. Radiat. Transf. 253:107134
    [Google Scholar]
  139. 139. 
    Shine KP, Campargue A, Mondelain D, McPheat RA, Ptashnik IV, Weidmann D. 2016. The water vapour continuum in near-infrared windows – current understanding and prospects for its inclusion in spectroscopic databases. J. Mol. Spectrosc. 327:193–208
    [Google Scholar]
  140. 140. 
    Baranov Y, Lafferty W, Ma Q, Tipping R 2008. Water-vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363K. J. Quant. Spectrosc. Radiat. Transf. 109:122291–302
    [Google Scholar]
  141. 141. 
    Vaida V, Kjaergaard HG, Feierabend KJ. 2003. Hydrated complexes: relevance to atmospheric chemistry and climate. Int. Rev. Phys. Chem. 22:1203–19
    [Google Scholar]
  142. 142. 
    Kjaergaard HG, Robinson TW, Howard DL, Daniel JS, Headrick JE, Vaida V. 2003. Complexes of importance to the absorption of solar radiation. J. Phys. Chem. A 107:4910680–86
    [Google Scholar]
  143. 143. 
    Vigasin A. 1985. On the spectroscopic manifestations of weakly bound complexes in rarefied gases. Chem. Phys. Lett. 117:185–88
    [Google Scholar]
  144. 144. 
    Vigasin A. 1991. Bound, metastable and free states of bimolecular complexes. Infrared Phys 32:461–70
    [Google Scholar]
  145. 145. 
    Epifanov SY, Vigasin AA. 1997. Subdivision of phase space for anisotropically interacting water molecules. Mol. Phys. 90:1101–6
    [Google Scholar]
  146. 146. 
    Schenter GK, Kathmann SM, Garrett BC. 2002. Equilibrium constant for water dimerization: analysis of the partition function for a weakly bound system. J. Phys. Chem. A 106:81557–66
    [Google Scholar]
  147. 147. 
    Ptashnik IV, Klimeshina TE, Solodov AA, Vigasin AA. 2019. Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands. J. Quant. Spectrosc. Radiat. Transf. 228:97–105
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-082720-104659
Loading
/content/journals/10.1146/annurev-physchem-082720-104659
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error