1932

Abstract

Time-dependent density functional theory has emerged as a method of choice for calculations of spectra and response properties in physics, chemistry, and biology, with its system-size scaling enabling computations on systems much larger than otherwise possible. While increasingly complex and interesting systems have been successfully tackled with relatively simple functional approximations, there has also been increasing awareness that these functionals tend to fail for certain classes of approximations. Here I review the fundamental challenges the approximate functionals have in describing double excitations and charge-transfer excitations, which are two of the most common impediments for the theory to be applied in a black-box way. At the same time, I describe the progress made in recent decades in developing functional approximations that give useful predictions for these excitations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082720-124933
2022-04-20
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082720-124933.html?itemId=/content/journals/10.1146/annurev-physchem-082720-124933&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Runge E, Gross EKU 1984. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52:12997–1000
    [Google Scholar]
  2. 2. 
    Casida M. 1995. Time-dependent density functional response theory for molecules. Recent Advances in Density Functional Methods, Part I DP Chong155–92 Singapore: World Sci.
    [Google Scholar]
  3. 3. 
    Petersilka M, Gossmann UJ, Gross EKU. 1996. Excitation energies from time-dependent density-functional theory. Phys. Rev. Lett. 76:81212–15
    [Google Scholar]
  4. 4. 
    Loos PF, Boggio-Pasqua M, Scemama A, Caffarel M, Jacquemin D. 2019. Reference energies for double excitations. J. Chem. Theory Comput. 15:31939–56
    [Google Scholar]
  5. 5. 
    Véril M, Scemama A, Caffarel M, Lipparini F, Boggio-Pasqua M et al. 2021. QUESTDB: a database of highly accurate excitation energies for the electronic structure community. WIREs Comput. Mol. Sci. 11:5e1517
    [Google Scholar]
  6. 6. 
    Ullrich CA. 2011. Time-Dependent Density-Functional Theory: Concepts and Applications Oxford, UK: Oxford Univ. PressA pedagogical book on the theory, formalism, and performance of TDDFT for finite and extended systems.
  7. 7. 
    Marques MAL, Maitra NT, Nogueira FMS, Gross EKU, Rubio A 2012. Fundamentals of Time-Dependent Density Functional Theory Lect. Notes Phys . Vol. 837 Berlin/Heidelberg: Springer-Verlag
  8. 8. 
    Maitra NT. 2016. Fundamental aspects of time-dependent density functional theory. J. Chem. Phys. 144:22220901An overview of theory and challenges in both the linear response and nonperturbative regimes in TDDFT.
    [Google Scholar]
  9. 9. 
    Casida M, Huix-Rotllant M. 2012. Progress in time-dependent density-functional theory. Annu. Rev. Phys. Chem. 63:287–323A review on TDDFT for excitations.
    [Google Scholar]
  10. 10. 
    Hohenberg P, Kohn W. 1964. Inhomogeneous electron gas. Phys. Rev. 136:3BB864–71
    [Google Scholar]
  11. 11. 
    Casida ME 1996. Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals. Recent Developments and Applications of Modern Density Functional Theory JM Seminario 391–440 Theor. Comput. Chem . Vol. 4 Amsterdam: Elsevier
    [Google Scholar]
  12. 12. 
    Gross EK, Maitra NT 2012. Introduction to TDDFT. Fundamentals of Time-Dependent Density Functional Theory MAL Marques, NT Maitra, FMS Nogueira, EKU Gross, A Rubio 53–99 Lect. Notes Phys . Vol. 837 Berlin/Heidelberg: Springer-Verlag
    [Google Scholar]
  13. 13. 
    Grabo T, Petersilka M, Gross E. 2000. Molecular excitation energies from time-dependent density functional theory. J. Mol. Struct. 501–502:353–67
    [Google Scholar]
  14. 14. 
    Appel H, Gross EKU, Burke K. 2003. Excitations in time-dependent density-functional theory. Phys. Rev. Lett. 90:4043005
    [Google Scholar]
  15. 15. 
    Burke K. 2012. Perspective on density functional theory. J. Chem. Phys. 136:15150901
    [Google Scholar]
  16. 16. 
    Becke AD. 2014. Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140:1818A301
    [Google Scholar]
  17. 17. 
    Yu HS, Li SL, Truhlar DG 2016. Kohn-Sham density functional theory descending a staircase. J. Chem. Phys. 145:13130901
    [Google Scholar]
  18. 18. 
    Goerigk L, Mehta N. 2019. A trip to the density functional theory zoo: warnings and recommendations for the user. Aust. J. Chem. 72:563–73
    [Google Scholar]
  19. 19. 
    Sternheimer RM. 1954. Electronic polarizabilities of ions from the Hartree-Fock wave functions. Phys. Rev. 96:4951–68
    [Google Scholar]
  20. 20. 
    Andrade X, Botti S, Marques MAL, Rubio A. 2007. Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities. J. Chem. Phys. 126:18184106
    [Google Scholar]
  21. 21. 
    Yabana K, Nakatsukasa T, Iwata JI, Bertsch G. 2006. Real-time, real-space implementation of the linear response time-dependent density-functional theory. Phys. Status Solidi B 243:51121–38
    [Google Scholar]
  22. 22. 
    Elliott P, Goldson S, Canahui C, Maitra NT 2011. Perspectives on double-excitations in TDDFT. Chem. Phys. 391:1110–19An earlier review of double excitations in TDDFT.
    [Google Scholar]
  23. 23. 
    Zhang F, Burke K. 2004. Adiabatic connection for near degenerate excited states. Phys. Rev. A 69:5052510
    [Google Scholar]
  24. 24. 
    Brandenburg JG, Burke K, Fromager E, Gatti M, Giarrusso S et al. 2020. New approaches to study excited states in density functional theory: general discussion. Faraday Discuss. 224:483–508
    [Google Scholar]
  25. 25. 
    Shu Y, Truhlar DG. 2017. Doubly excited character or static correlation of the reference state in the controversial 21Ag state of trans-butadiene?. J. Am. Chem. Soc. 139:3913770–78
    [Google Scholar]
  26. 26. 
    Barca GMJ, Gilbert ATB, Gill PMW. 2018. Excitation number: characterizing multiply excited states. J. Chem. Theory Comput. 14:19–13
    [Google Scholar]
  27. 27. 
    Jamorski C, Casida ME, Salahub DR. 1996. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study. J. Chem. Phys. 104:135134–47
    [Google Scholar]
  28. 28. 
    Tozer DJ, Handy NC. 2000. On the determination of excitation energies using density functional theory. Phys. Chem. Chem. Phys. 2:102117–21
    [Google Scholar]
  29. 29. 
    Maitra NT, Zhang F, Cave RJ, Burke K. 2004. Double excitations within time-dependent density functional theory linear response. J. Chem. Phys. 120:135932–37
    [Google Scholar]
  30. 30. 
    Authier J, Loos PF. 2020. Dynamical kernels for optical excitations. J. Chem. Phys. 153:18184105
    [Google Scholar]
  31. 31. 
    Thiele M, Kümmel S. 2009. Photoabsorption spectra from adiabatically exact time-dependent density-functional theory in real time. Phys. Chem. Chem. Phys. 11:224631–39
    [Google Scholar]
  32. 32. 
    Thiele M, Kümmel S. 2014. Frequency dependence of the exact exchange-correlation kernel of time-dependent density-functional theory. Phys. Rev. Lett. 112:8083001
    [Google Scholar]
  33. 33. 
    Entwistle MT, Godby RW. 2019. Exact exchange-correlation kernels for optical spectra of model systems. Phys. Rev. B 99:16161102
    [Google Scholar]
  34. 34. 
    Woods ND, Entwistle MT, Godby RW. 2021. Insights from exact exchange-correlation kernels. Phys. Rev. B 103:12125155
    [Google Scholar]
  35. 35. 
    Hellgren M, von Barth U 2008. Linear density response function within the time-dependent exact-exchange approximation. Phys. Rev. B 78:11115107
    [Google Scholar]
  36. 36. 
    Hellgren M, Gross EKU. 2012. Discontinuities of the exchange-correlation kernel and charge-transfer excitations in time-dependent density-functional theory. Phys. Rev. A 85:2022514
    [Google Scholar]
  37. 37. 
    Ruggenthaler M, Nielsen SE, Van Leeuwen R. 2013. Analytic density functionals with initial-state dependence and memory. Phys. Rev. A 88:2022512
    [Google Scholar]
  38. 38. 
    Fuks JI, Maitra NT. 2014. Challenging adiabatic time-dependent density functional theory with a Hubbard dimer: the case of time-resolved long-range charge transfer. Phys. Chem. Chem. Phys. 16:2814504–13
    [Google Scholar]
  39. 39. 
    Aryasetiawan F, Gunnarsson O. 2002. Exchange-correlation kernel in time-dependent density functional theory. Phys. Rev. B 66:16165119
    [Google Scholar]
  40. 40. 
    Turkowski V, Rahman TS. 2013. Nonadiabatic time-dependent spin-density functional theory for strongly correlated systems. J. Phys. Condens. Matter 26:2022201
    [Google Scholar]
  41. 41. 
    Carrascal DJ, Ferrer J, Maitra N, Burke K 2018. Linear response time-dependent density functional theory of the Hubbard dimer. Eur. Phys. J. B 91:142
    [Google Scholar]
  42. 42. 
    Cave RJ, Zhang F, Maitra NT, Burke K. 2004. A dressed TDDFT treatment of the 21Ag states of butadiene and hexatriene. Chem. Phys. Lett. 389:1–339–42
    [Google Scholar]
  43. 43. 
    Mazur G, Wlodarczyk R. 2009. Application of the dressed time-dependent density functional theory for the excited states of linear polyenes. J. Comput. Chem. 30:5811–17
    [Google Scholar]
  44. 44. 
    Mazur G, Makowski M, Wldarczyk R, Aoki Y 2011. Dressed TDDFT study of low-lying electronic excited states in selected linear polyenes and diphenylopolyenes. Int. J. Quant. Chem. 111:4819–25
    [Google Scholar]
  45. 45. 
    Gritsenko OV, Baerends EJ. 2009. Double excitation effect in non-adiabatic time-dependent density functional theory with an analytic construction of the exchange-correlation kernel in the common energy denominator approximation. Phys. Chem. Chem. Phys. 11:224640–46
    [Google Scholar]
  46. 46. 
    Casida ME. 2005. Propagator corrections to adiabatic time-dependent density-functional theory linear response theory. J. Chem. Phys. 122:5054111
    [Google Scholar]
  47. 47. 
    Romaniello P, Sangalli D, Berger JA, Sottile F, Molinari LG et al. 2009. Double excitations in finite systems. J. Chem. Phys. 130:4044108
    [Google Scholar]
  48. 48. 
    Bruneval F, Sottile F, Olevano V, Del Sole R, Reining L. 2005. Many-body perturbation theory using the density-functional concept: beyond the GW approximation. Phys. Rev. Lett. 94:18186402
    [Google Scholar]
  49. 49. 
    Gatti M, Olevano V, Reining L, Tokatly IV 2007. Transforming nonlocality into a frequency dependence: a shortcut to spectroscopy. Phys. Rev. Lett. 99:5057401
    [Google Scholar]
  50. 50. 
    Sangalli D, Romaniello P, Onida G, Marini A 2011. Double excitations in correlated systems: a many-body approach. J. Chem. Phys. 134:3034115
    [Google Scholar]
  51. 51. 
    Casida ME, Huix-Rotllant M 2016. Many-body perturbation theory (MBPT) and time-dependent density-functional theory (TD-DFT): MBPT insights about what is missing in, and corrections to, the TD-DFT adiabatic approximation. Density-Functional Methods for Excited States N Ferré, M Filatov, M Huix-Rotllant 1–60 Top. Curr. Chem . Vol. 368 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  52. 52. 
    Huix-Rotllant M, Ipatov A, Rubio A, Casida ME. 2011. Assessment of dressed time-dependent density-functional theory for the low-lying valence states of 28 organic chromophores. Chem. Phys. 391:1120–29
    [Google Scholar]
  53. 53. 
    Köster AM, Calaminici P, Casida ME, Flores-Moreno R, Geudtner G et al. 2006. demon2k@grenoble. The International deMon Developers Community (Cinvestav-IPN, Mexico)
  54. 54. 
    Maitra NT, Tempel DG. 2006. Long-range excitations in time-dependent density functional theory. J. Chem. Phys. 125:18184111
    [Google Scholar]
  55. 55. 
    Maitra NT. 2005. Undoing static correlation: long-range charge transfer in time-dependent density-functional theory. J. Chem. Phys. 122:23234104
    [Google Scholar]
  56. 56. 
    Tapavicza E, Tavernelli I, Rothlisberger U, Filippi C, Casida ME. 2008. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry. J. Chem. Phys. 129:12124108
    [Google Scholar]
  57. 57. 
    Gritsenko OV, van Gisbergen SJA, Görling A, Baerends EJ. 2000. Excitation energies of dissociating H2: a problematic case for the adiabatic approximation of time-dependent density functional theory. J. Chem. Phys. 113:198478–89
    [Google Scholar]
  58. 58. 
    Sarkar R, Boggio-Pasqua M, Loos PF, Jacquemin D. 2021. Benchmarking TD-DFT and wave function methods for oscillator strengths and excited-state dipole moments. J. Chem. Theory Comput. 17:21117–32
    [Google Scholar]
  59. 59. 
    Tretiak S, Chernyak V. 2003. Resonant nonlinear polarizabilities in the time-dependent density functional theory. J. Chem. Phys. 119:178809–23
    [Google Scholar]
  60. 60. 
    Shao Y, Head-Gordon M, Krylov AI. 2003. The spin–flip approach within time-dependent density functional theory: theory and applications to diradicals. J. Chem. Phys. 118:114807–18
    [Google Scholar]
  61. 61. 
    Rinkevicius Z, Vahtras O, Ågren H. 2010. Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character. J. Chem. Phys. 133:11114104
    [Google Scholar]
  62. 62. 
    Wang F, Ziegler T 2005. The performance of time-dependent density functional theory based on a noncollinear exchange-correlation potential in the calculations of excitation energies. J. Chem. Phys. 122:7 074109
    [Google Scholar]
  63. 63. 
    Yang Y, van Aggelen H, Yang W 2013. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation. J. Chem. Phys. 139:22224105
    [Google Scholar]
  64. 64. 
    Yang Y, Peng D, Lu J, Yang W 2014. Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies. J. Chem. Phys. 141:12124104
    [Google Scholar]
  65. 65. 
    Hait D, Head-Gordon M. 2021. Orbital optimized density functional theory for electronic excited states. J. Phys. Chem. Lett. 12:194517–29
    [Google Scholar]
  66. 66. 
    Seidu I, Krykunov M, Ziegler T. 2014. The formulation of a constricted variational density functional theory for double excitations. Mol. Phys. 112:5–6661–68
    [Google Scholar]
  67. 67. 
    Ramos P, Pavanello M. 2018. Low-lying excited states by constrained DFT. J. Chem. Phys. 148:14144103
    [Google Scholar]
  68. 68. 
    Gross EKU, Oliveira LN, Kohn W. 1988. Density-functional theory for ensembles of fractionally occupied states. I. Basic formalism. Phys. Rev. A 37:82809–20
    [Google Scholar]
  69. 69. 
    Gross EKU, Oliveira LN, Kohn W. 1988. Rayleigh-Ritz variational principle for ensembles of fractionally occupied states. Phys. Rev. A 37:82805–8
    [Google Scholar]
  70. 70. 
    Oliveira LN, Gross EKU, Kohn W. 1988. Density-functional theory for ensembles of fractionally occupied states. II. Application to the He atom. Phys. Rev. A 37:82821–33
    [Google Scholar]
  71. 71. 
    Gidopoulos NI, Papaconstantinou PG, Gross EKU. 2002. Spurious interactions, and their correction, in the ensemble-Kohn-Sham scheme for excited states. Phys. Rev. Lett. 88:3033003
    [Google Scholar]
  72. 72. 
    Tasnádi F, Nagy Á. 2003. An approximation to the ensemble Kohn–Sham exchange potential for excited states of atoms. J. Chem. Phys. 119:84141–47
    [Google Scholar]
  73. 73. 
    Sagredo F, Burke K. 2018. Accurate double excitations from ensemble density functional calculations. J. Chem. Phys. 149:13134103
    [Google Scholar]
  74. 74. 
    Loos PF, Fromager E. 2020. A weight-dependent local correlation density-functional approximation for ensembles. J. Chem. Phys. 152:21214101
    [Google Scholar]
  75. 75. 
    Marut C, Senjean B, Fromager E, Loos PF 2020. Weight dependence of local exchange–correlation functionals in ensemble density-functional theory: double excitations in two-electron systems. Faraday Discuss 224:0402–23
    [Google Scholar]
  76. 76. 
    Pribram-Jones A, Yang Z, Trail JR, Burke K, Needs RJ, Ullrich CA. 2014. Excitations and benchmark ensemble density functional theory for two electrons. J. Chem. Phys. 140:1818A541
    [Google Scholar]
  77. 77. 
    Kaduk B, Kowalczyk T, Van Voorhis T. 2012. Constrained density functional theory Chem. Rev. 112:1321–70
  78. 78. 
    Maitra NT. 2017. Charge transfer in time-dependent density functional theory. J. Phys. Condens. Matter 29:42423001A review of charge-transfer excitations as well as full charge-transfer dynamics in TDDFT.
    [Google Scholar]
  79. 79. 
    Tozer DJ. 2003. Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn-Sham theory. J. Chem. Phys. 119:2412697–99
    [Google Scholar]
  80. 80. 
    Dreuw A, Head-Gordon M. 2004. Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. J. Am. Chem. Soc. 126:124007–16
    [Google Scholar]
  81. 81. 
    Rappoport D, Furche F. 2004. Photoinduced intramolecular charge transfer in 4-(dimethyl)aminobenzonitrile – a theoretical perspective. J. Am. Chem. Soc. 126:41277–84
    [Google Scholar]
  82. 82. 
    Kümmel S. 2017. Charge-transfer excitations: a challenge for time-dependent density functional theory that has been met. Adv. Energy Mater. 7:161700440An overview of the use of optimally tuned RSH for charge-transfer excitations.
    [Google Scholar]
  83. 83. 
    Peach MJG, Benfield P, Helgaker T, Tozer DJ. 2008. Excitation energies in density functional theory: an evaluation and a diagnostic test. J. Chem. Phys. 128:4044118
    [Google Scholar]
  84. 84. 
    Guido CA, Cortona P, Mennucci B, Adamo C 2013. On the metric of charge transfer molecular excitations: a simple chemical descriptor. J. Chem. Theory Comput. 9:73118–26
    [Google Scholar]
  85. 85. 
    Li Y, Ullrich CA. 2016. The particle-hole map: formal derivation and numerical implementation. J. Chem. Phys. 145:16164107
    [Google Scholar]
  86. 86. 
    Garrick R, Natan A, Gould T, Kronik L. 2020. Exact generalized Kohn-Sham theory for hybrid functionals. Phys. Rev. X 10:2021040
    [Google Scholar]
  87. 87. 
    Seidl A, Görling A, Vogl P, Majewski JA, Levy M. 1996. Generalized Kohn-Sham schemes and the band-gap problem. Phys. Rev. B 53:73764–74
    [Google Scholar]
  88. 88. 
    Görling A, Levy M. 1997. Hybrid schemes combining the Hartree–Fock method and density-functional theory: underlying formalism and properties of correlation functionals. J. Chem. Phys. 106:72675–80
    [Google Scholar]
  89. 89. 
    Grabo T, Kreibich T, Kurth S, Gross E 2000. Orbital functionals in density functional theory: the optimized effective potential method. Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation VI Anisimov 203–96 Adv. Condens. Matter Sci. Vol. 1 Amsterdam: Gordon and Breach
    [Google Scholar]
  90. 90. 
    Perdew JP, Levy M. 1983. Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett. 51:201884–87
    [Google Scholar]
  91. 91. 
    Sham LJ, Schlüter M. 1983. Density-functional theory of the energy gap. Phys. Rev. Lett. 51:201888–91
    [Google Scholar]
  92. 92. 
    Perdew JP. 1985. What do the Kohn-Sham orbital energies mean? How do atoms dissociate?. Density-Functional Methods in Physics RM Dreizler, J da Providência 265–308 New York: Plenum
    [Google Scholar]
  93. 93. 
    Almbladh CO, von Barth U. 1985. Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys. Rev. B 31:63231–44
    [Google Scholar]
  94. 94. 
    Perdew JP, Parr RG, Levy M, Balduz JL 1982. Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49:231691–94
    [Google Scholar]
  95. 95. 
    Dreuw A, Weisman JL, Head-Gordon M. 2003. Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J. Chem. Phys. 119:62943–46
    [Google Scholar]
  96. 96. 
    Gritsenko O, Baerends EJ. 2004. Asymptotic correction of the exchange–correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. J. Chem. Phys. 121:2655–60
    [Google Scholar]
  97. 97. 
    Görling A, Levy M. 1993. Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. Phys. Rev. B 47:2013105–13
    [Google Scholar]
  98. 98. 
    Gonze X, Scheffler M. 1999. Exchange and correlation kernels at the resonance frequency: implications for excitation energies in density-functional theory. Phys. Rev. Lett. 82:224416–19
    [Google Scholar]
  99. 99. 
    Heßelmann A, Ipatov A, Görling A. 2009. Charge-transfer excitation energies with a time-dependent density-functional method suitable for orbital-dependent exchange-correlation kernels. Phys. Rev. A 80:1012507
    [Google Scholar]
  100. 100. 
    Gimon T, Ipatov A, Heßelmann A, Görling A. 2009. Qualitatively correct charge-transfer excitation energies in HeH+ by time-dependent density-functional theory due to exact exchange Kohn-Sham eigenvalue differences. J. Chem. Theory Comput. 5:4781–85
    [Google Scholar]
  101. 101. 
    Hellgren M, Gross EKU. 2013. Discontinuous functional for linear-response time-dependent density-functional theory: the exact-exchange kernel and approximate forms. Phys. Rev. A 88:5052507
    [Google Scholar]
  102. 102. 
    Mundt M, Kümmel S. 2005. Derivative discontinuities in time-dependent density-functional theory. Phys. Rev. Lett. 95:20203004
    [Google Scholar]
  103. 103. 
    Leininger T, Stoll H, Werner HJ, Savin A 1997. Combining long-range configuration interaction with short-range density functionals. Chem. Phys. Lett. 275:3–4151–60
    [Google Scholar]
  104. 104. 
    Stoll H, Savin A 1985. Density functionals for correlation energies of atoms and molecules. Density Functional Methods in Physics R Dreizler, J da Providência 177–208 New York: Plenum
    [Google Scholar]
  105. 105. 
    Iikura H, Tsuneda T, Yanai T, Hirao K 2001. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 115:83540–44
    [Google Scholar]
  106. 106. 
    Yanai T, Tew DP, Handy NC. 2004. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393:1–351–57
    [Google Scholar]
  107. 107. 
    Henderson TM, Janesko BG, Scuseria GE. 2008. Range separation and local hybridization in density functional theory. J. Phys. Chem. A 112:4912530–42
    [Google Scholar]
  108. 108. 
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K. 2004. A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 120:188425–33
    [Google Scholar]
  109. 109. 
    Baer R, Neuhauser D. 2005. Density functional theory with correct long-range asymptotic behavior. Phys. Rev. Lett. 94:4043002
    [Google Scholar]
  110. 110. 
    Baer R, Livshits E, Salzner U. 2010. Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 61:85–109A review on the theory and applications of tuned RSH.
    [Google Scholar]
  111. 111. 
    Rohrdanz MA, Martins KM, Herbert JM. 2009. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states. J. Chem. Phys. 130:5054112
    [Google Scholar]
  112. 112. 
    Henderson TM, Janesko BG, Scuseria GE. 2008. Generalized gradient approximation model exchange holes for range-separated hybrids. J. Chem. Phys. 128:19194105
    [Google Scholar]
  113. 113. 
    Kronik L, Stein T, Refaely-Abramson S, Baer R. 2012. Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J. Chem. Theory Comput. 8:51515–31
    [Google Scholar]
  114. 114. 
    Stein T, Kronik L, Baer R. 2009. Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. J. Am. Chem. Soc. 131:82818–20
    [Google Scholar]
  115. 115. 
    Körzdörfer T, Brédas JL. 2014. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. Acc. Chem. Res. 47:113284–91
    [Google Scholar]
  116. 116. 
    Egger DA, Weissman S, Refaely-Abramson S, Sharifzadeh S, Dauth M et al. 2014. Outer-valence electron spectra of prototypical aromatic heterocycles from an optimally tuned range-separated hybrid functional. J. Chem. Theory Comput. 10:51934–52
    [Google Scholar]
  117. 117. 
    Karolewski A, Kronik L, Kümmel S. 2013. Using optimally tuned range separated hybrid functionals in ground-state calculations: consequences and caveats. J. Chem. Phys. 138:20204115
    [Google Scholar]
  118. 118. 
    Schmidt T, Kraisler E, Makmal A, Kronik L, Kümmel S. 2014. A self-interaction-free local hybrid functional: accurate binding energies vis-à-vis accurate ionization potentials from Kohn-Sham eigenvalues. J. Chem. Phys. 140:1818A510
    [Google Scholar]
  119. 119. 
    Hofmann D, Körzdörfer T, Kümmel S. 2012. Kohn-Sham self-interaction correction in real time. Phys. Rev. Lett. 108:14146401
    [Google Scholar]
  120. 120. 
    Hofmann D, Kümmel S. 2012. Self-interaction correction in a real-time Kohn-Sham scheme: access to difficult excitations in time-dependent density functional theory. J. Chem. Phys. 137:6064117
    [Google Scholar]
  121. 121. 
    Körzdörfer T, Kümmel S, Mundt M 2008. Self-interaction correction and the optimized effective potential. J. Chem. Phys. 129:1014110
    [Google Scholar]
  122. 122. 
    Perdew JP 1990. Size-consistency, self-interaction correction, and derivative discontinuity in density functional theory. Density Functional Theory of Many-Fermion Systems P-O Löwdin 113–34 Adv. Quantum Chem . Vol. 21 Amsterdam: Elsevier
    [Google Scholar]
  123. 123. 
    Aschebrock T, Kümmel S. 2019. Ultranonlocality and accurate band gaps from a meta-generalized gradient approximation. Phys. Rev. Res. 1:3033082
    [Google Scholar]
  124. 124. 
    Hofmann F, Kümmel S. 2020. Molecular excitations from meta-generalized gradient approximations in the Kohn–Sham scheme. J. Chem. Phys. 153:11114106
    [Google Scholar]
  125. 125. 
    Grimme S, Neese F 2007. Double-hybrid density functional theory for excited electronic states of molecules. J. Chem. Phys. 127:15154116
    [Google Scholar]
  126. 126. 
    Zhao Y, Truhlar DG. 2006. Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A 110:4913126–30
    [Google Scholar]
  127. 127. 
    Yu HS, He X, Li SL, Truhlar DG 2016. Mn15: a Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 7:85032–51
    [Google Scholar]
  128. 128. 
    Tempel DG, Martínez TJ, Maitra NT. 2009. Revisiting molecular dissociation in density functional theory: a simple model. J. Chem. Theory Comput. 5:4770–80
    [Google Scholar]
  129. 129. 
    Gritsenko OV, Baerends EJ. 1996. Effect of molecular dissociation on the exchange-correlation Kohn-Sham potential. Phys. Rev. A 54:31957–72
    [Google Scholar]
  130. 130. 
    Helbig N, Tokatly IV, Rubio A. 2009. Exact Kohn–Sham potential of strongly correlated finite systems. J. Chem. Phys. 131:22224105
    [Google Scholar]
  131. 131. 
    Buijse MA, Baerends EJ. 2002. An approximate exchange-correlation hole density as a functional of the natural orbitals. Mol. Phys. 100:4401–21
    [Google Scholar]
  132. 132. 
    Gritsenko O, Baerends EJ. 2006. Correct dissociation limit for the exchange-correlation energy and potential. Int. J. Quantum Chem. 106:153167–77
    [Google Scholar]
  133. 133. 
    Giarrusso S, Vuckovic S, Gori-Giorgi P. 2018. Response potential in the strong-interaction limit of density functional theory: analysis and comparison with the coupling-constant average. J. Chem. Theory Comput. 14:84151–67
    [Google Scholar]
  134. 134. 
    Grossi J, Seidl M, Gori-Giorgi P, Giesbertz KJH 2019. Functional derivative of the zero-point-energy functional from the strong-interaction limit of density-functional theory. Phys. Rev. A 99:5052504
    [Google Scholar]
  135. 135. 
    Giarrusso S, Gori-Giorgi P. 2020. Exchange-correlation energy densities and response potentials: connection between two definitions and analytical model for the strong-coupling limit of a stretched bond. J. Phys. Chem. A 124:122473–82
    [Google Scholar]
  136. 136. 
    Levine BG, Ko C, Quenneville J, Martínez TJ. 2006. Conical intersections and double excitations in time-dependent density functional theory. Mol. Phys. 104:5–71039–51
    [Google Scholar]
  137. 137. 
    Lacombe L, Maitra NT. 2020. Developing new and understanding old approximations in TDDFT. Faraday Discuss 224:382–401
    [Google Scholar]
  138. 138. 
    Gould T, Kronik L, Pittalis S. 2018. Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory. J. Chem. Phys. 148:17174101
    [Google Scholar]
  139. 139. 
    Franck O, Fromager E. 2014. Generalised adiabatic connection in ensemble density-functional theory for excited states: example of the H2 molecule. Mol. Phys. 112:121684–701
    [Google Scholar]
  140. 140. 
    Jacquemin D, Duchemin I, Blase X 2017. Is the Bethe–Salpeter formalism accurate for excitation energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD. J. Phys. Chem. Lett. 8:71524–29
    [Google Scholar]
  141. 141. 
    Liu C, Kloppenburg J, Yao Y, Ren X, Appel H et al. 2020. All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals. J. Chem. Phys. 152:4044105
    [Google Scholar]
  142. 142. 
    Sharifzadeh S. 2018. Many-body perturbation theory for understanding optical excitations in organic molecules and solids. J. Phys. Condens. Matter 30:15153002
    [Google Scholar]
  143. 143. 
    Loos PF, Blase X. 2020. Dynamical correction to the Bethe–Salpeter equation beyond the plasmon-pole approximation. J. Chem. Phys. 153:11114120
    [Google Scholar]
  144. 144. 
    Giesbertz KJH, Baerends EJ, Gritsenko OV. 2008. Charge transfer, double and bond-breaking excitations with time-dependent density matrix functional theory. Phys. Rev. Lett. 101:3033004
    [Google Scholar]
  145. 145. 
    Giesbertz KJH, Pernal K, Gritsenko OV, Baerends EJ. 2009. Excitation energies with time-dependent density matrix functional theory: singlet two-electron systems. J. Chem. Phys. 130:11114104
    [Google Scholar]
  146. 146. 
    Giesbertz KJH, Gritsenko OV, Baerends EJ. 2010. Response calculations with an independent particle system with an exact one-particle density matrix. Phys. Rev. Lett. 105:1013002
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-082720-124933
Loading
/content/journals/10.1146/annurev-physchem-082720-124933
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error