1932

Abstract

The atomic specificity of X-ray spectroscopies provides a distinct perspective on molecular electronic structure. For 3 metal coordination and organometallic complexes, the combination of metal- and ligand-specific X-ray spectroscopies directly interrogates metal–ligand covalency—the hybridization of metal and ligand electronic states. Resonant inelastic X-ray scattering (RIXS), the X-ray analog of resonance Raman scattering, provides access to all classes of valence excited states in transition-metal complexes, making it a particularly powerful means of characterizing the valence electronic structure of 3 metal complexes. Recent advances in X-ray free-electron laser sources have enabled RIXS to be extended to the ultrafast time domain. We review RIXS studies of two archetypical photochemical processes: charge-transfer excitation in ferricyanide and ligand photodissociation in iron pentacarbonyl. These studies demonstratefemtosecond-resolution RIXS can directly characterize the time-evolving electronic structure, including the evolution of the metal–ligand covalency.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082820-020236
2022-04-20
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082820-020236.html?itemId=/content/journals/10.1146/annurev-physchem-082820-020236&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    List B, Lerner RA, Barbas CF. 2000. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 122:2395–96
    [Google Scholar]
  2. 2. 
    Knowles WS. 2002. Asymmetric hydrogenations (Nobel lecture). Angew. Chem. Int. Ed. 41:1999–2007
    [Google Scholar]
  3. 3. 
    Noyori R. 2002. Asymmetric catalysis: science and opportunities (Nobel lecture). Angew. Chem. Int. Ed. 41:2008–22
    [Google Scholar]
  4. 4. 
    Sharpless KB. 2002. Searching for new reactivity (Nobel lecture). Angew. Chem. Int. Ed. 41:2024–32
    [Google Scholar]
  5. 5. 
    Chauvin Y. 2006. Olefin metathesis: the early days (Nobel lecture). Angew. Chem. Int. Ed. 45:3740–47
    [Google Scholar]
  6. 6. 
    Grubbs RH. 2006. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew. Chem. Int. Ed. 45:3760–65
    [Google Scholar]
  7. 7. 
    Schrock RR. 2006. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel lecture). Angew. Chem. Int. Ed. 45:3748–59
    [Google Scholar]
  8. 8. 
    MacMillan DWC. 2008. The advent and development of organocatalysis. Nature 455:304–8
    [Google Scholar]
  9. 9. 
    Negishi EI. 2011. Magical power of transition metals: past, present, and future (Nobel lecture). Angew. Chem. Int. Ed. 50:6738–64
    [Google Scholar]
  10. 10. 
    Suzuki A. 2011. Cross-coupling reactions of organoboranes: an easy way to construct C=C bonds (Nobel lecture). Angew. Chem. Int. Ed. 50:6722–37
    [Google Scholar]
  11. 11. 
    Arnold FH. 2019. Innovation by evolution: bringing new chemistry to life (Nobel lecture). Angew. Chem. Int. Ed. 58:14420–26
    [Google Scholar]
  12. 12. 
    Schultz DM, Yoon TP. 2014. Solar synthesis: prospects in visible light photocatalysis. Science 343:1239176
    [Google Scholar]
  13. 13. 
    Skubi KL, Blum TR, Yoon TP. 2016. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116:10035–74
    [Google Scholar]
  14. 14. 
    Prier CK, Rankic DA, MacMillan DWC. 2013. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113:5322–63
    [Google Scholar]
  15. 15. 
    Karkas MD, Porco JA, Stephenson CRJ. 2016. Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem. Rev. 116:9683–747
    [Google Scholar]
  16. 16. 
    Arias-Rotondo DM, McCusker JK. 2016. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45:5803–20
    [Google Scholar]
  17. 17. 
    McCusker JK. 2019. Electronic structure in the transition metal block and its implications for light harvesting. Science 363:484–88
    [Google Scholar]
  18. 18. 
    Miller NA, Deb A, Alonso-Mori R, Garabato BD, Glownia JM et al. 2017. Polarized XANES monitors femtosecond structural evolution of photoexcited vitamin B-12. J. Am. Chem. Soc. 139:1894–99
    [Google Scholar]
  19. 19. 
    Shelby ML, Lestrange PJ, Jackson NE, Haldrup K, Mara MW et al. 2016. Ultrafast excited state relaxation of a metalloporphyrin revealed by femtosecond X-ray absorption spectroscopy. J. Am. Chem. Soc. 138:8752–64
    [Google Scholar]
  20. 20. 
    Mara MW, Hadt RG, Reinhard ME, Kroll T, Lim H et al. 2017. Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy. Science 356:1276–80
    [Google Scholar]
  21. 21. 
    Lemke H, Kjær KS, Hartsock RW, van Driel TB, Chollet M et al. 2017. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching. Nat. Comm. 8:15342
    [Google Scholar]
  22. 22. 
    Cammarata M, Zerdane S, Balducci L, Azzolina G, Mazerat S et al. 2021. Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue. Nat. Chem. 13:10–14
    [Google Scholar]
  23. 23. 
    Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. 2021. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. Nat. Rev. Phys. 3:264–82
    [Google Scholar]
  24. 24. 
    Ledbetter K, Reinhard ME, Kunnus K, Gallo A, Britz A et al. 2020. Excited state charge distribution and bond expansion of ferrous complexes observed with femtosecond valence-to-core x-ray emission spectroscopy. J. Chem. Phys. 152:074203
    [Google Scholar]
  25. 25. 
    Gaffney KJ. 2021. Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering. Chem. Sci. 12:8010–25
    [Google Scholar]
  26. 26. 
    Kim KH, Kim JG, Nozawa S, Sato T, Oang KY et al. 2015. Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518:385–89
    [Google Scholar]
  27. 27. 
    van Driel TB, Kjær KS, Hartsock RW, Dohn AO, Harlang T et al. 2016. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst. Nat. Comm 7:13678
    [Google Scholar]
  28. 28. 
    Kim JG, Nozawa S, Kim H, Choi EH, Sato T et al. 2020. Mapping the emergence of molecular vibrations mediating bond formation. Nature 582:520–24
    [Google Scholar]
  29. 29. 
    Vankó G, Bordage A, Glatzel P, Gallo E, Rovezzi M et al. 2013. Spin-state studies with XES and RIXS: from static to ultrafast. J. Electron Spectrosc. Relat. Phenom. 188:166–71
    [Google Scholar]
  30. 30. 
    Huse N, Kim TK, Jamula L, McCusker JK, de Groot FMF, Schoenlein RW. 2010. Photo-induced spin-state conversion in solvated transition metal complexes probed via time-resolved soft X-ray spectroscopy. J. Am. Chem. Soc. 132:6809–16
    [Google Scholar]
  31. 31. 
    Huse N, Cho H, Hong K, Jamula L, de Groot FMF et al. 2011. Femtosecond soft X-ray spectroscopy of solvated transition-metal complexes: deciphering the interplay of electronic and structural dynamics. J. Phys. Chem. Lett. 2:880–84
    [Google Scholar]
  32. 32. 
    Wernet P, Kunnus K, Josefsson I, Rajkovic I, Quevedo W et al. 2015. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution. Nature 520:78–81
    [Google Scholar]
  33. 33. 
    Kunnus K, Josefsson I, Rajkovic I, Schreck S, Quevedo W et al. 2016. Anti-Stokes resonant X-ray Raman scattering for atom specific and excited state selective dynamics. New J. Phys. 18:103011
    [Google Scholar]
  34. 34. 
    Kunnus K, Josefsson I, Rajkovic I, Schreck S, Quevedo W et al. 2016. Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)5 to Fe(CO)4EtOH. Struct. Dyn. 3:043204
    [Google Scholar]
  35. 35. 
    Jay RM, Norell J, Eckert S, Hantschmann M, Beye M et al. 2018. Disentangling transient charge density and metal-ligand covalency in photoexcited ferricyanide with femtosecond resonant inelastic soft X-ray scattering. J. Phys. Chem. Lett. 9:3538–43
    [Google Scholar]
  36. 36. 
    Jay RM, Eckert S, Vaz da Cruz V, Fondell M, Mitzner R, Föhlisch A. 2019. Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer. Angew. Chem. Int. Ed. 58:10742–46
    [Google Scholar]
  37. 37. 
    Jay RM, Eckert S, Mitzner R, Fondell M, Föhlisch A 2020. Quantitative evaluation of transient valence orbital occupations in a 3d transition metal complex as seen from the metal and ligand perspective. Chem. Phys. Lett. 754:137681
    [Google Scholar]
  38. 38. 
    Eckert S, Norell J, Miedema PS, Beye M, Fondell M et al. 2017. Ultrafast independent N-H and N-C bond deformation investigated with resonant inelastic X-ray scattering. Angew. Chem. Int. Ed. 56:6088–92
    [Google Scholar]
  39. 39. 
    Kjellsson L, Nanda KD, Rubensson JE, Doumy G, Southworth SH et al. 2020. Resonant inelastic X-ray scattering reveals hidden local transitions of the aqueous OH radical. Phys. Rev. Lett. 124:236001
    [Google Scholar]
  40. 40. 
    Loh ZH, Doumy G, Arnold C, Kjellsson L, Southworth SH et al. 2020. Observation of the fastest chemical processes in the radiolysis of water. Science 367:179–82
    [Google Scholar]
  41. 41. 
    Cordones AA, Pemmaraju CD, Lee JH, Zegkinoglou I, Ragoussi M-E et al. 2021. Excited-state charge distribution of a donor–π–acceptor Zn porphyrin probed by N K-edge transient absorption spectroscopy. J. Phys. Chem. Lett. 12:1182–88
    [Google Scholar]
  42. 42. 
    Van Kuiken BE, Cho H, Hong K, Khalil M, Schoenlein RW et al. 2016. Time-resolved X-ray spectroscopy in the water window: elucidating transient valence charge distributions in an aqueous Fe(II) complex. J. Phys. Chem. Lett. 7:465–70
    [Google Scholar]
  43. 43. 
    Eckert S, Norell J, Jay RM, Fondell M, Mitzner R et al. 2019. T-1 population as the driver of excited-state proton-transfer in 2-thiopyridone. Chem. Eur. J. 25:1733–39
    [Google Scholar]
  44. 44. 
    Jay RM, Eckert S, Van Kuiken BE, Ochmann M, Hantschmann M et al. 2021. Following metal-to-ligand charge-transfer dynamics with ligand and spin specificity using femtosecond resonant inelastic X-ray scattering at the nitrogen K-edge. J. Phys. Chem. Lett. 12:6676–83
    [Google Scholar]
  45. 45. 
    Glaser T, Hedman B, Hodgson KO, Solomon EI. 2000. Ligand K-edge X-ray absorption spectroscopy: a direct probe of ligand-metal covalency. Acc. Chem. Res. 33:859–68
    [Google Scholar]
  46. 46. 
    Hocking RK, Wasinger EC, Yan YL, deGroot FMF, Walker FA et al. 2007. Fe L-edge X-ray absorption spectroscopy of low-spin heme relative to non-heme Fe complexes: delocalization of Fe d-electrons into the porphyrin ligand. J. Am. Chem. Soc. 129:113–25
    [Google Scholar]
  47. 47. 
    de Groot F. 2005. Multiplet effects in X-ray spectroscopy. Coord. Chem. Rev. 249:31–63
    [Google Scholar]
  48. 48. 
    Josefsson I, Kunnus K, Schreck S, Föhlisch A, de Groot F et al. 2012. Ab initio calculations of X-ray spectra: atomic multiplet and molecular orbital effects in a multiconfigurational SCF approach to the L-edge spectra of transition metal complexes. J. Phys. Chem. Lett. 3:3565–70
    [Google Scholar]
  49. 49. 
    Kunnus K, Josefsson I, Schreck S, Quevedo W, Miedema PS et al. 2013. From ligand fields to molecular orbitals: probing the local valence electronic structure of Ni2+ in aqueous solution with resonant inelastic X-ray scattering. J. Phys. Chem. B 117:16512–21
    [Google Scholar]
  50. 50. 
    Kunnus K, Zhang W, Delcey MG, Pinjari RV, Miedema PS et al. 2016. Viewing the valence electronic structure of ferric and ferrous hexacyanide in solution from the Fe and cyanide perspectives. J. Phys. Chem. B 120:7182–94
    [Google Scholar]
  51. 51. 
    Lundberg M, Wernet P 2019. Resonant inelastic X-ray scattering (RIXS) studies in chemistry: present and future. Synchrotron Light Sources and Free-Electron Lasers E Jaeschke, S Khan, JR Schneider, JB Hastings 1–52 Cham, Switz: Springer
    [Google Scholar]
  52. 52. 
    Siegbahn K. 1982. Electron spectroscopy for atoms, molecules, and condensed matter. Rev. Mod. Phys. 54:709–28
    [Google Scholar]
  53. 53. 
    Kotani A, Shin S. 2001. Resonant inelastic X-ray scattering spectra for electrons in solids. Rev. Mod. Phys. 73:203–46
    [Google Scholar]
  54. 54. 
    Sałek P, Baev A, Gel'mukhanov F, Ågren H. 2003. Dynamical properties of X-ray Raman scattering. Phys. Chem. Chem. Phys. 5:1–11
    [Google Scholar]
  55. 55. 
    Couto RC, Cruz VV, Ertan E, Eckert S, Fondell M et al. 2017. Selective gating to vibrational modes through resonant X-ray scattering. Nat. Comm. 8:14165
    [Google Scholar]
  56. 56. 
    Vaz da Cruz V, Gel'mukhanov F, Eckert S, Iannuzzi M, Ertan E et al. 2019. Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering. Nat. Comm. 10:1013
    [Google Scholar]
  57. 57. 
    Krause MO, Oliver JH. 1979. Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. J. Phys. Chem. Ref. Data 8:329–38
    [Google Scholar]
  58. 58. 
    Kunnus K, Rajkovic I, Schreck S, Quevedo W, Eckert S et al. 2012. A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources. Rev. Sci. Instrum. 83:123109
    [Google Scholar]
  59. 59. 
    Schreck S, Beye M, Sellberg JA, McQueen T, Laksmono H et al. 2014. Reabsorption of soft X-ray emission at high X-ray free-electron laser fluences. Phys. Rev. Lett. 113:153002
    [Google Scholar]
  60. 60. 
    Kubin M, Kern J, Gul S, Kroll T, Chatterjee R et al. 2017. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers. Struct. Dyn. 4:054307
    [Google Scholar]
  61. 61. 
    Gray HB, Beach NA. 1963. Electronic structures of octahedral metal complexes. I. Metal hexacarbonyls and hexacyanides. J. Am. Chem. Soc. 85:2922–27
    [Google Scholar]
  62. 62. 
    Alexander JJ, Gray HB 1968. Electronic structures of hexacyanometalate complexes. J. Am. Chem. Soc. 90:4260–71
    [Google Scholar]
  63. 63. 
    Jones LH. 1963. Nature of bonding in metal cyanide complexes as related to intensity and frequency of infrared absorption spectra. Inorg. Chem. 2:777–80
    [Google Scholar]
  64. 64. 
    Seidel R, Thurmer S, Moens J, Geerlings P, Blumberger J, Winter B. 2011. Valence photoemission spectra of aqueous Fe2+/3+ and Fe(CN)64−/3− and their interpretation by DFT calculations. J. Phys. Chem. B 115:11671–77
    [Google Scholar]
  65. 65. 
    Lundberg M, Kroll T, DeBeer S, Bergmann U, Wilson SA et al. 2013. Metal-ligand covalency of iron complexes from high-resolution resonant inelastic X-ray scattering. J. Am. Chem. Soc. 135:17121–34
    [Google Scholar]
  66. 66. 
    Ross M, Andersen A, Fox ZW, Zhang Y, Hong K et al. 2018. Comprehensive experimental and computational spectroscopic study of hexacyanoferrate complexes in water: from infrared to X-ray wavelengths. J. Phys. Chem. B 122:5075–86
    [Google Scholar]
  67. 67. 
    Hocking RK, Wasinger EC, de Groot FMF, Hodgson KO, Hedman B, Solomon EI. 2006. Fe L-edge XAS studies of K4Fe(CN)6 and K3Fe(CN)6: a direct probe of back-bonding. J. Am. Chem. Soc. 128:10442–51
    [Google Scholar]
  68. 68. 
    Pinjari RV, Delcey MG, Guo M, Odelius M, Lundberg M. 2014. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states. J. Chem. Phys. 141:124116
    [Google Scholar]
  69. 69. 
    Jay RM, Vaz da Cruz V, Eckert S, Fondell M, Mitzner R, Föhlisch A. 2020. Probing solute-solvent interactions of transition metal complexes using L-edge absorption spectroscopy. J. Phys. Chem. B 124:5636–45
    [Google Scholar]
  70. 70. 
    Jay RM, Eckert S, Fondell M, Miedema PS, Norell J et al. 2018. The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(II) complexes. Phys. Chem. Chem. Phys. 20:27745–51
    [Google Scholar]
  71. 71. 
    Norell J, Jay RM, Hantschmann M, Eckert S, Guo M et al. 2018. Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species. Phys. Chem. Chem. Phys. 20:7243–53
    [Google Scholar]
  72. 72. 
    Norman P, Dreuw A 2018. Simulating X-ray spectroscopies and calculating core-excited states of molecules. Chem. Rev. 118:7208–48
    [Google Scholar]
  73. 73. 
    Engel N, Bokarev SI, Moguilevski A, Raheem AA, Al-Obaidi R et al. 2017. Light-induced relaxation dynamics of the ferricyanide ion revisited by ultrafast XUV photoelectron spectroscopy. Phys. Chem. Chem. Phys. 19:14248–55
    [Google Scholar]
  74. 74. 
    Ojeda J, Arrell CA, Longetti L, Chergui M, Helbing J 2017. Charge-transfer and impulsive electronic-to-vibrational energy conversion in ferricyanide: ultrafast photoelectron and transient infrared studies. Phys. Chem. Chem. Phys. 19:17052–62
    [Google Scholar]
  75. 75. 
    Zhang W, Ji M, Sun Z, Gaffney KJ 2012. Dynamics of solvent-mediated electron localization in electronically excited hexacyanoferrate(III). J. Am. Chem. Soc. 134:2581–88
    [Google Scholar]
  76. 76. 
    Andersson K, Malmqvist PA, Roos BO. 1992. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96:1218–26
    [Google Scholar]
  77. 77. 
    Roos BO, Taylor PR, Siegbahn PEM. 1980. A complete active space SCF method (CASSCF) using a density-matrix formulated super-CI approach. Chem. Phys. 48:157–73
    [Google Scholar]
  78. 78. 
    Godehusen K, Richter T, Zimmermann P, Wernet P. 2017. Iron L-edge absorption spectroscopy of iron pentacarbonyl and ferrocene in the gas phase. J. Phys. Chem. A 121:66–72
    [Google Scholar]
  79. 79. 
    Besora M, Carreon-Macedo J-L, Cowan AJ, George MW, Harvey JN et al. 2009. A combined theoretical and experimental study on the role of spin states in the chemistry of Fe(CO)5 photoproducts. J. Am. Chem. Soc. 131:3583–92
    [Google Scholar]
  80. 80. 
    Portius P, Yang J, Sun X-Z, Grills DC, Matousek P et al. 2004. Unraveling the photochemistry of Fe(CO)5 in solution: observation of Fe(CO)3 and the conversion between 3Fe(CO)4 and 1Fe(CO)4(solvent). J. Am. Chem. Soc. 126:10713–20
    [Google Scholar]
  81. 81. 
    Snee PT, Payne CK, Mebane SD, Kotz KT, Harris CB. 2001. Dynamics of photosubstitution reactions of Fe(CO)5: an ultrafast infrared study of high spin reactivity. J. Am. Chem. Soc. 123:6909–15
    [Google Scholar]
  82. 82. 
    Lim M, Jackson TA, Anfinrud PA 1995. Binding of Co to myoglobin from a heme pocket docking site to form nearly linear Fe-C-O. Science 269:962–66
    [Google Scholar]
  83. 83. 
    Lim M, Jackson TA, Anfinrud PA 1997. Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nat. Struct. Biol. 4:209–14
    [Google Scholar]
  84. 84. 
    Moore JN, Hansen PA, Hochstrasser RM. 1989. Picosecond infrared probing of metal-carbonyl photodissociation products. J. Am. Chem. Soc. 111:4563–66
    [Google Scholar]
  85. 85. 
    Sun X-Z, Grills DC, Nikiforov SM, Poliakoff M, George MW 1997. Remarkable stability of (η5-C5H5)Re(CO)2L (L = n-heptane, Xe, and Kr): a time-resolved infrared spectroscopic study of (η5-C5H5)Re(CO)3 in conventional and supercritical fluid solution. J. Am. Chem. Soc. 119:7521–25
    [Google Scholar]
  86. 86. 
    Lomont JP, Nguyen SC, Harris CB. 2014. Ultrafast infrared studies of the role of spin states in organometallic reaction dynamics. Acc. Chem. Res. 47:1634–42
    [Google Scholar]
  87. 87. 
    Yang H, Kotz KT, Asplund MC, Wilkens MJ, Harris CB. 1999. Ultrafast infrared studies of bond activation in organometallic completes. Acc. Chem. Res. 32:551–60
    [Google Scholar]
  88. 88. 
    Joly AG, Nelson KA. 1991. Metal-carbonyl photochemistry in organic solvents: femtosecond transient absorption and preliminary resonance Raman spectroscopy. Chem. Phys. 152:69–82
    [Google Scholar]
  89. 89. 
    Wrighton M. 1974. Photochemistry of metal carbonyls. Chem. Rev. 74:401–30
    [Google Scholar]
  90. 90. 
    Kotzian M, Rosch N, Schroder H, Zerner MC. 1989. Optical spectra of transition-metal carbonyls: Cr(CO)6, Fe(CO)5, and Ni(CO)4. J. Am. Chem. Soc. 111:7687–96
    [Google Scholar]
  91. 91. 
    Rubner O, Engel V, Hachey MR, Daniel C. 1999. A CASSCF/MR-CCI study of the excited states of Fe(CO)5. Chem. Phys. Lett. 302:489–94
    [Google Scholar]
  92. 92. 
    Altarelli M. 2011. The European X-ray free-electron laser facility in Hamburg. Nucl. Instrum. Methods Phys. Res. B 269:2845–49
    [Google Scholar]
  93. 93. 
    Galayda JN. 2018. The LCLS-II: a high power upgrade to the LCLS. In Proceedings of the 9th International Particle Accelerator Conference, Vancouver, BC, Canada18–23 Vancouver, Can.: JaCoW Publ.
    [Google Scholar]
  94. 94. 
    Domcke W, Yarkony DR. 2012. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63:325–52
    [Google Scholar]
  95. 95. 
    Levine BG, Martínez TJ. 2007. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 58:613–34
    [Google Scholar]
  96. 96. 
    Yarkony DR. 1996. Diabolical conical intersections. Rev. Mod. Phys. 68:985–1013
    [Google Scholar]
  97. 97. 
    List NH, Dempwolff AL, Dreuw A, Norman P, Martínez TJ 2020. Probing competing relaxation pathways in malonaldehyde with transient X-ray absorption spectroscopy. Chem. Sci. 11:4180–93
    [Google Scholar]
  98. 98. 
    Neville SP, Chergui M, Stolow A, Schuurman MS. 2018. Ultrafast X-ray spectroscopy of conical intersections. Phys. Rev. Lett. 120:243001
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-082820-020236
Loading
/content/journals/10.1146/annurev-physchem-082820-020236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error