1932

Abstract

Attosecond science requires a substantial rethinking of how to make measurements on very short timescales; how to acquire the necessary equipment, technology, and personnel; and how to build a set of laboratories for such experiments. This entails a rejuvenation of the author in many respects, in the laboratory itself, with regard to students and postdocs, and in generating funding for research. It also brings up questions of what it means to do attosecond science, and the discovery of the power of X-ray spectroscopy itself, which complements the short timescales addressed. The lessons learned, expressed in the meanderings of this autobiographical article, may be of benefit to others who try to reinvent themselves.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-083122-011610
2024-06-28
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-083122-011610.html?itemId=/content/journals/10.1146/annurev-physchem-083122-011610&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pulakos ED, Arad S, Donovan MA, Plamondon KE. 2000.. Adaptability in the workplace: development of a taxonomy of adaptive performance. . J. Appl. Psychol. 85::61224
    [Crossref] [Google Scholar]
  2. 2.
    Horwitz AB, Leone SR. 1978.. Laser-excited resonant isotopic V→V energy transfer: H35Cl-H37Cl, H79Br-H81Br, D35Cl-D37Cl, and D79Br-D81Br. . J. Chem. Phys. 69::531928
    [Crossref] [Google Scholar]
  3. 3.
    Leone SR, Moore CB. 1974.. Isotopically selective photochemistry of bromine. . Phys. Rev. Lett. 33::26972
    [Crossref] [Google Scholar]
  4. 4.
    Weisshaar JC, Zwier TS, Leone SR. 1981.. Nascent product vibrational state distributions of ion-molecule reactions: the proton transfer reactions F + HX → HF(v) + X, X = Cl, Br, and I. . J. Chem. Phys. 75::487384
    [Crossref] [Google Scholar]
  5. 5.
    Reid JP, Qian CXW, Leone SR. 2000.. Probing the cyclic transition state in the reaction O(3P) + alkyl iodides to form HOI: electronic, steric and thermodynamic factors influencing the reaction pathway. . Phys. Chem. Chem. Phys. 2::85360
    [Crossref] [Google Scholar]
  6. 6.
    Driessen JPJ, Smith CJ, Leone SR. 1991.. Alignment effects of ║J = 3> states prepared by three photon excitation: six-fold symmetry in collisional energy transfer, Ca(4s4f,1F3) + He → Ca(4p2,1S0) + He. . Phys. Rev. A 44::R143134
    [Crossref] [Google Scholar]
  7. 7.
    Levis RJ, Waltman CJ, Cousins LM, Copeland RG, Leone SR. 1990.. A hyperthermal (0.1–4 eV) F atom beam source suitable for surface etching investigations. . J. Vac. Sci. Technol. A 8::311822
    [Crossref] [Google Scholar]
  8. 8.
    Ott AK, Casey SM, Leone SR. 1997.. Laser ionization mass spectrometry measurements of arsenic sticking and incorporation during GaAs(100) homoepitaxy. . J. Cryst. Growth 181::32636
    [Crossref] [Google Scholar]
  9. 9.
    Dragnea B, Preusser J, Schade W, Leone SR, Hinsberg WD. 1999.. Transmission near-field scanning microscope for infrared chemical imaging. . J. Appl. Phys. 86::279599
    [Crossref] [Google Scholar]
  10. 10.
    Papanikolas JM, Williams RM, Kleiber PD, Hart JL, Brink C, et al. 1995.. Wave-packet dynamics in the Li2(1Σg+) shelf state: simultaneous observation of vibrational and rotational recurrences with single rovibronic control of an intermediate state. . J. Chem. Phys. 103::726976
    [Crossref] [Google Scholar]
  11. 11.
    Vala J, Amitay Z, Zhang B, Leone SR, Kosloff R. 2002.. Experimental implementation of the Deutsch-Jozsa algorithm for three-qubit functions using pure coherent molecular superpositions. . Phys. Rev. A 66::062316
    [Crossref] [Google Scholar]
  12. 12.
    Smith JD, Kroll JH, Cappa CD, Che DL, Liu CL, et al. 2009.. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. . Atmos. Chem. Phys. 9::320922
    [Crossref] [Google Scholar]
  13. 13.
    Pedersen JOP, Opansky BJ, Leone SR. 1993.. Laboratory studies of low-temperature reactions of C2H with C2H2 and implications for atmospheric models of Titan. . J. Phys. Chem. 97::682229
    [Crossref] [Google Scholar]
  14. 14.
    Leone SR. 2008.. Autobiography of Stephen R. Leone. . J. Phys. Chem. A 112::916976
    [Crossref] [Google Scholar]
  15. 15.
    Kraus PM, Zürch M, Cushing SK, Neumark DM, Leone SR. 2018.. The ultrafast X-ray spectroscopic revolution in chemical dynamics. . Nat. Rev. Chem. 2::8294
    [Crossref] [Google Scholar]
  16. 16.
    Géneaux R, Marroux HJB, Guggenmos A, Neumark DM, Leone SR. 2019.. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. . Philos. Trans. R. Soc. A 377::20170463
    [Crossref] [Google Scholar]
  17. 17.
    Bhattacherjee A, Leone SR. 2018.. Ultrafast X-ray transient absorption spectroscopy of gas-phase photochemical reactions: a new universal probe of photoinduced molecular dynamics. . Acc. Chem. Res. 51::320311
    [Crossref] [Google Scholar]
  18. 18.
    Kobayashi Y, Leone SR. 2022.. Characterizing coherences in chemical dynamics with attosecond time-resolved x-ray absorption spectroscopy. . J. Chem. Phys. 157::180901
    [Crossref] [Google Scholar]
  19. 19.
    Uiberacker M, Uphues Th, Schultze M, Verhoef AJ, Yakovlev V, et al. 2007.. Attosecond real-time observation of electron tunnelling in atoms. . Nature 446::62732
    [Crossref] [Google Scholar]
  20. 20.
    Schultze M, Fiess M, Karpowicz N, Gagnon J, Korbman M, et al. 2010.. Delay in photoemission. . Science 328::165862
    [Crossref] [Google Scholar]
  21. 21.
    Feist J, Zatsarinny O, Nagele S, Pazourek R, Burgdörfer J, et al. 2014.. Time delays for attosecond streaking in photoionization of neon. . Phys. Rev. A 89::033417
    [Crossref] [Google Scholar]
  22. 22.
    Pfeiffer AN, Cirelli C, Smolarski M, Dimitrovski D, Abu-samha M, et al. 2012.. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. . Nat. Phys. 8::7680
    [Crossref] [Google Scholar]
  23. 23.
    Cavalieri AL, Müller N, Uphues Th, Yakovlev VS, Baltuska A, et al. 2007.. Attosecond spectroscopy in condensed matter. . Nature 449::102932
    [Crossref] [Google Scholar]
  24. 24.
    Sabbar M, Timmers H, Chen Y-J, Pymer AK, Loh Z-H, et al. 2017.. State-resolved attosecond reversible and irreversible dynamics in strong optical fields. . Nat. Phys. 13::47278
    [Crossref] [Google Scholar]
  25. 25.
    Panel Novel Coherent Light Sources. 1999.. Report of the Basic Energy Sciences Advisory Committee Panel on Novel Coherent Light Sources. Rep. , US Dep. Energy, Gaithersburg, MD:. https://science.osti.gov/-/media/bes/besac/pdf/Ncls_rep.pdf
    [Google Scholar]
  26. 26.
    McNeil B. 2009.. First light from a hard X-ray laser. . Nat. Photon. 3::37577
    [Crossref] [Google Scholar]
  27. 27.
    Leone SR, McCurdy CW, Burgdörfer J, Cederbaum LS, Chang Z, et al. 2014.. What will it take to observe processes in ‘real time. ’? Nat. Photon. 8::16266
    [Crossref] [Google Scholar]
  28. 28.
    Krausz F, Ivanov M. 2009.. Attosecond physics. . Rev. Mod. Phys. 81::163234
    [Crossref] [Google Scholar]
  29. 29.
    Chini M, Zhao K, Chang Z. 2014.. The generation, characterization and applications of broadband isolated attosecond pulses. . Nat. Photon. 8::17886
    [Crossref] [Google Scholar]
  30. 30.
    Hamm P, Zanni M. 2011.. Concepts and Methods of 2D Infrared Spectroscopy. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  31. 31.
    Nugent-Glandorf L, Scheer M, Samuels DA, Mulhisen AM, Grant ER, et al. 2001.. Ultrafast time-resolved soft x-ray photoelectron spectroscopy of dissociating Br2. . Phys. Rev. Lett. 87::193002
    [Crossref] [Google Scholar]
  32. 32.
    Pfeifer T, Jullien A, Abel MJ, Nagel PM, Gallmann L, et al. 2007.. Generating coherent broadband continuum soft-X-ray radiation by attosecond ionization gating. . Opt. Express 15::1712028
    [Crossref] [Google Scholar]
  33. 33.
    Jullien A, Pfeifer T, Abel MJ, Nagel PM, Bell J, et al. 2008.. Ionization phase-match gating for wavelength-tunable isolated attosecond pulse generation. . Appl. Phys. B 93::43342
    [Crossref] [Google Scholar]
  34. 34.
    Loh Z-H, Leone SR. 2008.. Ultrafast strong-field dissociative ionization dynamics of CH2Br2 probed by femtosecond soft x-ray transient absorption spectroscopy. . J. Chem. Phys. 128::204302
    [Crossref] [Google Scholar]
  35. 35.
    Loh Z-H, Khalil M, Correa RE, Leone SR. 2008.. A tabletop femtosecond time-resolved soft x-ray transient absorption spectrometer. . Rev. Sci. Instrum. 79::073101
    [Crossref] [Google Scholar]
  36. 36.
    Goulielmakis E, Loh Z-H, Wirth A, Santra R, Rohringer N, et al. 2010.. Real-time observation of valence electron motion. . Nature 466::73943
    [Crossref] [Google Scholar]
  37. 37.
    Malzer W, Schlesiger C, Kanmgiesser B. 2021.. A century of laboratory X-ray absorption spectroscopy—a review and an optimistic outlook. . Spectrochim. Acta B 177::1061010
    [Crossref] [Google Scholar]
  38. 38.
    Greczynski G, Hultman L. 2020.. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. . Prog. Mater. Sci. 107::100591
    [Crossref] [Google Scholar]
  39. 39.
    Bergmann U, Glatzel P. 2009.. X-ray emission spectroscopy. . Photosynth. Res. 102::25566
    [Crossref] [Google Scholar]
  40. 40.
    Bagheer M, Zhavoronkov N, Woerner M, Elsaesser T. 2006.. Recent progress in ultrafast X-ray diffraction. . ChemPhysChem 7::78392
    [Crossref] [Google Scholar]
  41. 41.
    Loh Z-H, Leone SR. 2013.. Capturing ultrafast quantum dynamics with femtosecond and attosecond X-ray core-level absorption spectroscopy. . J. Phys. Chem. Lett. 4::292302
    [Crossref] [Google Scholar]
  42. 42.
    Jahnke T, Guillemin R, Inhester L, Son S-K, Kastirke G, et al. 2021.. Inner-shell-ionization-induced femtosecond structural dynamics of water molecules imaged at an X-ray free-electron laser. . Phys. Rev. X 11::041044
    [Google Scholar]
  43. 43.
    Bhattacherjee A, Pemmaraju CD, Schnorr K, Attar AR, Leone SR. 2017.. Ultrafast intersystem crossing in acetylacetone via femtosecond X-ray transient absorption at the carbon K-edge. . J. Am. Chem. Soc. 139::1657683
    [Crossref] [Google Scholar]
  44. 44.
    Haugen E, Hait D, Scutelnic V, Xue T, Head-Gordon M, Leone SR. 2023.. Ultrafast X-ray spectroscopy of intersystem crossing in hexafluoroacetylacetone: chromophore photophysics and spectral changes in the face of electron-withdrawing groups. . J. Phys. Chem. A 127::63444
    [Crossref] [Google Scholar]
  45. 45.
    Yang Z, Schnorr K, Bhattacherjee A, Lefebvre P-L, Ephstein M, et al. 2018.. Electron-withdrawing effects in the photodissociation of CH2ICl to form CH2Cl radical, simultaneously viewed through the carbon K and chlorine L2,3 X-ray edges. . J. Am. Chem. Soc. 140::1336066
    [Crossref] [Google Scholar]
  46. 46.
    Attar AR, Bhattacherjee A, Pemmaraju CD, Schnorr K, Closser KD, et al. 2017.. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. . Science 356::5459
    [Crossref] [Google Scholar]
  47. 47.
    Bhattacherjee A, Schnorr K, Oesterling S, Yang Z, Xue T, et al. 2018.. Photoinduced heterocyclic ring opening of furfural: distinct open-chain product identification by ultrafast X-ray transient absorption spectroscopy. . J. Am. Chem. Soc. 140::1253844
    [Crossref] [Google Scholar]
  48. 48.
    Scutelnic V, Tsuru S, Pápai MI, Yang Z, Epshtein M, et al. 2021.. X-ray transient absorption reveals the 1Au (nπ*) state of pyrazine in electronic relaxation. . Nat. Commun. 12::5003
    [Crossref] [Google Scholar]
  49. 49.
    Zürch M, Chang H-T, Borja LJ, Kraus PM, Cushing SK, et al. 2017.. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. . Nat. Commun. 8::15734
    [Crossref] [Google Scholar]
  50. 50.
    Attar AR, Chang H-T, Britz A, Zhang X, Lin M-F, et al. 2020.. Simultaneous observation of carrier-specific redistribution and coherent lattice dynamics in 2H-MoTe2 with femtosecond core-level spectroscopy. . ACS Nano 14::1582940
    [Crossref] [Google Scholar]
  51. 51.
    Cushing SK, Lee A, Porter IJ, Carneiro LM, Chang H-T, et al. 2019.. Differentiating photoexcited carrier and phonon dynamics in the Δ, L, and Γ valleys of Si(100) with transient extreme ultraviolet spectroscopy. . J. Phys. Chem. C 123::334352
    [Crossref] [Google Scholar]
  52. 52.
    Géneaux R, Kaplan CJ, Yue L, Ross AD, Baekhoj JE, et al. 2020.. Attosecond time-domain measurements of core-level-excitonic decay in magnesium oxide. . Phys. Rev. Lett. 124::207401
    [Crossref] [Google Scholar]
  53. 53.
    Gaynor JD, Fidler AP, Lin Y-C, Chang H-T, Zuerch M, et al. 2021.. Solid state core-exciton dynamics in NaCl observed by tabletop attosecond four-wave mixing spectroscopy. . Phys. Rev. B 103::245140
    [Crossref] [Google Scholar]
  54. 54.
    Kobayashi Y, Neumark DM, Leone SR. 2022.. Theoretical analysis of the role of complex transition dipole phase in XUV transient-absorption probing of charge migration. . Opt. Express 30::567382
    [Crossref] [Google Scholar]
  55. 55.
    Epshtein M, Scutelnic V, Yang Z, Xue T, Vidal ML, et al. 2020.. Table-top X-ray spectroscopy of benzene radical cation. . J. Phys. Chem. A 124::952431
    [Crossref] [Google Scholar]
  56. 56.
    Vidal ML, Epshtein M, Scutelnic V, Yang Z, Xue T, et al. 2020.. Interplay of open-shell spin-coupling and Jahn-Teller distortion in benzene radical cation probed by X-ray spectroscopy. . J. Phys. Chem. A 124::953241
    [Crossref] [Google Scholar]
  57. 57.
    Ross A, Hait D, Scutelnic V, Haugen E, Ridente E, et al. 2022.. Jahn-Teller distortion and dissociation of CCl4+ by transient X-ray spectroscopy simultaneously at the carbon K- and chlorine L-edge. . Chem. Sci. 13::931020
    [Crossref] [Google Scholar]
  58. 58.
    Ridente E, Hait D, Haugen EA, Ross AD, Neumark DM, et al. 2023.. Femtosecond symmetry breaking and coherent relaxation of methane cations at the carbon K-edge. . Science 380::71317
    [Crossref] [Google Scholar]
  59. 59.
    Barreau L, Ross AD, Kimberg V, Krasnov P, Blinov S, et al. 2023.. Core-excited states of SF6 probed with soft-x-ray femtosecond transient absorption of vibrational wave packets. . Phys. Rev. A 108::012805
    [Crossref] [Google Scholar]
  60. 60.
    Timmers H, Sabbar M, Hellwagner J, Kobayashi Y, Neumark DM, Leone SR. 2016.. Polarization assisted amplitude gating as a route to tunable, high-contrast attosecond pulses. . Optica 3::70710
    [Crossref] [Google Scholar]
  61. 61.
    Timmers H, Kobayashi Y, Chang KF, Reduzzi M, Neumark DM, Leone SR. 2017.. Generating high-contrast, near single-cycle waveforms with third-order dispersion compensation. . Opt. Lett. 42::81114
    [Crossref] [Google Scholar]
  62. 62.
    Beck AR, Neumark DM, Leone SR. 2015.. Probing ultrafast dynamics with attosecond transient absorption. . Chem. Phys. Lett. 624::11930
    [Crossref] [Google Scholar]
  63. 63.
    Pfeiffer AN, Leone SR. 2012.. Transmission of an isolated attosecond pulse in a strong-field dressed atom. . Phys. Rev. A 85::053422
    [Crossref] [Google Scholar]
  64. 64.
    Bernhardt B, Beck AR, Li X, Warrick ER, Bell MJ, et al. 2014.. High-spectral-resolution attosecond absorption spectroscopy of autoionization in xenon. . Phys. Rev. A 89::023408
    [Crossref] [Google Scholar]
  65. 65.
    Cao W, Warrick ER, Fidler A, Leone SR, Neumark DM. 2016.. Near-resonant four-wave mixing of attosecond extreme-ultraviolet pulses with near-infrared pulses in neon: detection of electronic coherences. . Phys. Rev. A 94::021802(R)
    [Crossref] [Google Scholar]
  66. 66.
    Cao W, Warrick ER, Fidler A, Neumark DM, Leone SR. 2016.. Noncollinear wave mixing of attosecond XUV and few-cycle optical laser pulses in gas-phase atoms: toward multidimensional spectroscopy involving XUV excitations. . Phys. Rev. A 94::053846
    [Crossref] [Google Scholar]
  67. 67.
    Marroux HJB, Fidler AP, Neumark DM, Leone SR. 2018.. Multidimensional spectroscopy with attosecond extreme ultraviolet and shaped near-infrared pulses. . Sci. Adv. 4::eaau3783
    [Crossref] [Google Scholar]
  68. 68.
    Kobayashi Y, Chang KF, Zeng T, Neumark DM, Leone SR. 2019.. Direct mapping of curve-crossing dynamics in IBr by attosecond transient absorption spectroscopy. . Science 365::7983
    [Crossref] [Google Scholar]
  69. 69.
    Chang KF, Reduzzi M, Wang H, Poullain SM, Kobayashi Y, et al. 2020.. Revealing electronic state-switching at conical intersections in alkyl iodides by ultrafast XUV transient absorption spectroscopy. . Nat. Commun. 11::4042
    [Crossref] [Google Scholar]
  70. 70.
    Chang KF, Wang H, Poullain SM, González-Vázquez J, Bañares L, et al. 2022.. Conical intersection and coherent vibrational dynamics in alkyl iodides captured by attosecond transient absorption spectroscopy. . J. Chem. Phys. 156::114304
    [Crossref] [Google Scholar]
  71. 71.
    Kobayashi Y, Chang KF, Poullain SM, Scutelnic V, Zeng T, et al. 2020.. Coherent electronic-vibrational dynamics in deuterium bromide probed via attosecond transient-absorption spectroscopy. . Phys. Rev. A 101::063414
    [Crossref] [Google Scholar]
  72. 72.
    Kobayashi Y, Zeng T, Neumark DM, Leone SR. 2019.. NaI revisited: theoretical investigation of predissociation via ultrafast XUV absorption spectroscopy. . J. Chem. Phys. 151::204103
    [Crossref] [Google Scholar]
  73. 73.
    Vura-Weis J, Jiang C-M, Liu C, Gao H, Lucas JM, et al. 2013.. Femtosecond M2,3-edge spectroscopy of transition-metal oxides: photoinduced oxidation state change in α-Fe2O3. . J. Phys. Chem. Lett. 4::366771
    [Crossref] [Google Scholar]
  74. 74.
    Schultze M, Ramasesha K, Pemmaraju CD, Sato SA, Whitmore D, et al. 2014.. Attosecond band gap dynamics in silicon. . Science 346::134852
    [Crossref] [Google Scholar]
  75. 75.
    Cushing SK, Zürch M, Kraus PM, Carneiro LM, Lee A, et al. 2018.. Hot phonon carrier relaxation in Si(100) determined by transient extreme ultraviolet spectroscopy. . Struct. Dyn. 5::054302
    [Crossref] [Google Scholar]
  76. 76.
    Cushing SK, Porter IJ, de Roulet BR, Lee A, Marsh BM, et al. 2020.. Layer-resolved ultrafast extreme ultraviolet measurements of hole transport in a Ni-TiO2-Si photoanode. . Sci. Adv. 6::eaay6650
    [Crossref] [Google Scholar]
  77. 77.
    Kaplan CJ, Kraus PM, Ross AD, Zürch M, Cushing SK, et al. 2018.. Femtosecond tracking of carrier relaxation in germanium with extreme ultraviolet transient reflectivity. . Phys. Rev. B 97::205202
    [Crossref] [Google Scholar]
  78. 78.
    Jager MF, Ott C, Kraus PM, Kaplan CJ, Pouse W, et al. 2017.. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy. . PNAS 114::955863
    [Crossref] [Google Scholar]
  79. 79.
    Chang H-T, Guggenmos A, Chen CT, Oh J, Géneaux R, et al. 2021.. Coupled valence carrier and core-exciton dynamics in WS2 probed by attosecond transient absorption spectroscopy. . Phys. Rev. B 104::064309
    [Crossref] [Google Scholar]
  80. 80.
    Géneaux R, Timrov I, Kaplan CJ, Ross AD, Kraus PM, Leone SR. 2021.. Coherent energy exchange between carriers and phonons in Peierls-distorted bismuth unveiled by broadband XUV pulses. . Phys. Rev. Res. 3::033210
    [Crossref] [Google Scholar]
  81. 81.
    Porter IJ, Lee A, Cushing SK, Chang H-T, Ondry JC, et al. 2021.. Characterization of carrier cooling bottleneck in silicon nanoparticles by extreme ultraviolet (XUV) transient absorption spectroscopy. . J. Phys. Chem. C 125::931929
    [Crossref] [Google Scholar]
  82. 82.
    Barreau L, Ross AD, Garg S, Kraus PM, Neumark DM, Leone SR. 2020.. Efficient table-top dual-wavelength beamline for ultrafast transient absorption spectroscopy in the soft X-ray region. . Sci. Rep. 10::5773
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-083122-011610
Loading
/content/journals/10.1146/annurev-physchem-083122-011610
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error