1932

Abstract

The phase state of aerosol particles can impact numerous atmospheric processes, including new particle growth, heterogeneous chemistry, cloud condensation nucleus formation, and ice nucleation. In this article, the phase transitions of inorganic, organic, and organic/inorganic aerosol particles are discussed, with particular focus on liquid-liquid phase separation (LLPS). The physical chemistry that determines whether LLPS occurs, at what relative humidity it occurs, and the resultant particle morphology is explained using both theoretical and experimental methods. The known impacts of LLPS on aerosol processes in the atmosphere are discussed. Finally, potential evidence for LLPS from field and chamber studies is presented. By understanding the physical chemistry of the phase transitions of aerosol particles, we will acquire a better understanding of aerosol processes, which in turn impact human health and climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-083122-115909
2024-06-28
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-083122-115909.html?itemId=/content/journals/10.1146/annurev-physchem-083122-115909&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Finlayson-Pitts BJ, Pitts JN. 2000.. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. New York:: Academic
    [Google Scholar]
  2. 2.
    Seinfeld JH, Pandis SN. 2006.. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken, NJ:: Wiley. , 2nd ed..
    [Google Scholar]
  3. 3.
    Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, et al. 2021.. Airborne transmission of respiratory viruses. . Science 373:(6558):eabd9149
    [Crossref] [Google Scholar]
  4. 4.
    Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, et al. 2005.. Organic aerosol and global climate modelling: a review. . Atmos. Chem. Phys. 5::1053123
    [Crossref] [Google Scholar]
  5. 5.
    Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, et al. 2007.. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. . Geophys. Res. Lett. 34:(13):L13801
    [Crossref] [Google Scholar]
  6. 6.
    Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, et al. 2009.. Evolution of organic aerosols in the atmosphere. . Science 326:(5959):152529
    [Crossref] [Google Scholar]
  7. 7.
    Prather KA, Bertram TH, Grassian VH, Deane GB, Stokes MD, et al. 2013.. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. . PNAS 110:(19):755055
    [Crossref] [Google Scholar]
  8. 8.
    Davis RD, Lance S, Gordon JA, Ushijima SB, Tolbert MA. 2015.. Contact efflorescence as a pathway for crystallization of atmospherically relevant particles. . PNAS 112:(52):1581520
    [Crossref] [Google Scholar]
  9. 9.
    Ushijima SB, Davis RD, Tolbert MA. 2018.. Immersion and contact efflorescence induced by mineral dust particles. . J. Phys. Chem. A 122:(5):130311
    [Crossref] [Google Scholar]
  10. 10.
    Martin ST. 2000.. Phase transitions of aqueous atmospheric particles. . Chem. Rev. 100:(9):340353
    [Crossref] [Google Scholar]
  11. 11.
    Ma S, Pang S, Li J, Zhang Y. 2021.. A review of efflorescence kinetics studies on atmospherically relevant particles. . Chemosphere 277::130320
    [Crossref] [Google Scholar]
  12. 12.
    Peng C, Chen L, Tang M. 2022.. A database for deliquescence and efflorescence relative humidities of compounds with atmospheric relevance. . Fundam. Res. 2:(4):57887
    [Crossref] [Google Scholar]
  13. 13.
    Laskina O, Morris HS, Grandquist JR, Qin Z, Stone EA, et al. 2015.. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles. . J. Phys. Chem. A 119:(19):448997
    [Crossref] [Google Scholar]
  14. 14.
    Biskos G, Malinowski A, Russell LM, Buseck PR, Martin ST. 2006.. Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles. . Aerosol Sci. Technol. 40:(2):97106
    [Crossref] [Google Scholar]
  15. 15.
    Biskos G, Russell LM, Buseck PR, Martin ST. 2006.. Nanosize effect on the hygroscopic growth factor of aerosol particles. . Geophys. Res. Lett. 33:(7):L07801
    [Crossref] [Google Scholar]
  16. 16.
    Biskos G, Paulsen D, Russell LM, Buseck PR, Martin ST. 2006.. Prompt deliquescence and efflorescence of aerosol nanoparticles. . Atmos. Chem. Phys. 6:(12):463342
    [Crossref] [Google Scholar]
  17. 17.
    Cheng Y, Su H, Koop T, Mikhailov E, Pöschl U. 2015.. Size dependence of phase transitions in aerosol nanoparticles. . Nat. Commun. 6::5923
    [Crossref] [Google Scholar]
  18. 18.
    Jing B, Tong S, Liu Q, Li K, Wang W, et al. 2016.. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate. . Atmos. Chem. Phys. 16:(6):410118
    [Crossref] [Google Scholar]
  19. 19.
    Robinson CB, Schill GP, Tolbert MA. 2014.. Optical growth of highly viscous organic/sulfate particles. . J. Atmos. Chem. 71:(2):14556
    [Crossref] [Google Scholar]
  20. 20.
    You Y, Smith ML, Song M, Martin ST, Bertram AK. 2014.. Liquid-liquid phase separation in atmospherically relevant particles consisting of organic species and inorganic salts. . Int. Rev. Phys. Chem. 33:(1):4377
    [Crossref] [Google Scholar]
  21. 21.
    Freedman MA. 2017.. Phase separation in organic aerosol. . Chem. Soc. Rev. 46:(24):7694705
    [Crossref] [Google Scholar]
  22. 22.
    Freedman MA. 2020.. Liquid-liquid phase separation in supermicrometer and submicrometer aerosol particles. . Acc. Chem. Res. 53:(6):110210
    [Crossref] [Google Scholar]
  23. 23.
    Sullivan RC, Boyer-Chelmo H, Gorkowski K, Beydoun H. 2020.. Aerosol optical tweezers elucidate the chemistry, acidity, phase separations, and morphology of atmospheric microdroplets. . Acc. Chem. Res. 53:(11):2498509
    [Crossref] [Google Scholar]
  24. 24.
    Koop T, Bookhold J, Shiraiwa M, Pöschl U. 2011.. Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. . Phys. Chem. Chem. Phys. 13:(43):1923855
    [Crossref] [Google Scholar]
  25. 25.
    Reid JP, Bertram AK, Topping DO, Laskin A, Martin ST, et al. 2018.. The viscosity of atmospherically relevant organic particles. . Nat. Commun. 9:(1):956
    [Crossref] [Google Scholar]
  26. 26.
    Rovelli G, Song YC, MacLean AM, Topping DO, Bertram AK, Reid JP. 2019.. Comparison of approaches for measuring and predicting the viscosity of ternary component aerosol particles. . Anal. Chem. 91:(8):507482
    [Crossref] [Google Scholar]
  27. 27.
    Lee HD, Tivanski AV. 2021.. Atomic force microscopy: an emerging tool in measuring the phase state and surface tension of individual aerosol particles. . Annu. Rev. Phys. Chem. 72::23552
    [Crossref] [Google Scholar]
  28. 28.
    Ray KK, Lee HD, Gutierrez MA, Chang FJ, Tivanski AV. 2019.. Correlating 3D morphology, phase state, and viscoelastic properties of individual substrate-deposited particles. . Anal. Chem. 91:(12):762130
    [Crossref] [Google Scholar]
  29. 29.
    Kidd C, Perraud V, Wingen LM, Finlayson-Pitts BJ. 2014.. Integrating phase and composition of secondary organic aerosol from the ozonolysis of α-pinene. . PNAS 111:(21):755257
    [Crossref] [Google Scholar]
  30. 30.
    Slade JH, Ault AP, Bui AT, Ditto JC, Lei Z, et al. 2019.. Bouncier particles at night: Biogenic secondary organic aerosol chemistry and sulfate drive diel variations in the aerosol phase in a mixed forest. . Environ. Sci. Technol. 53:(9):497787
    [Crossref] [Google Scholar]
  31. 31.
    Bateman AP, Gong Z, Liu P, Sato B, Cirino G, et al. 2016.. Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest. . Nat. Geosci. 9:(1):3437
    [Crossref] [Google Scholar]
  32. 32.
    Shiraiwa M, Li Y, Tsimpidi AP, Karydis VA, Berkemeier T, et al. 2017.. Global distribution of particle phase state in atmospheric secondary organic aerosols. . Nat. Commun. 8::15002
    [Crossref] [Google Scholar]
  33. 33.
    You Y, Bertram AK. 2015.. Effects of molecular weight and temperature on liquid-liquid phase separation in particles containing organic species and inorganic salts. . Atmos. Chem. Phys. 15:(3):135165
    [Crossref] [Google Scholar]
  34. 34.
    Fard MM, Krieger UK, Peter T. 2017.. Kinetic limitation to inorganic ion diffusivity and to coalescence of inorganic inclusions in viscous liquid-liquid phase-separated particles. . J. Phys. Chem. A 121:(48):928496
    [Crossref] [Google Scholar]
  35. 35.
    Oswin HP, Haddrell AE, Otero-Fernandez M, Mann JFS, Cogan TA, et al. 2022.. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. . PNAS 119:(27):e2200109119
    [Crossref] [Google Scholar]
  36. 36.
    Morris DH, Yinda KC, Gamble A, Rossine FW, Huang Q, et al. 2021.. Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses. . eLife 10::e65902
    [Crossref] [Google Scholar]
  37. 37.
    Huynh E, Olinger A, Woolley D, Kohli RK, Choczynski JM, et al. 2022.. Evidence for a semisolid phase state of aerosols and droplets relevant to the airborne and surface survival of pathogens. . PNAS 119:(4):e2109750119
    [Crossref] [Google Scholar]
  38. 38.
    Clegg SL, Seinfeld JH, Brimblecombe P. 2001.. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. . J. Aerosol Sci. 32:(6):71338
    [Crossref] [Google Scholar]
  39. 39.
    Pankow JF. 2003.. Gas/particle partitioning of neutral and ionizing compounds to single and multi-phase aerosol particles. 1. Unified modeling framework. . Atmos. Environ. 37:(24):332333
    [Crossref] [Google Scholar]
  40. 40.
    Erdakos GB, Pankow JF. 2004.. Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds. . Atmos. Environ. 38:(7):100513
    [Crossref] [Google Scholar]
  41. 41.
    Marcolli C, Krieger UK. 2006.. Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols. . J. Phys. Chem. A 110:(5):188193
    [Crossref] [Google Scholar]
  42. 42.
    Ciobanu VG, Marcolli C, Krieger UK, Weers U, Peter T. 2009.. Liquid-liquid phase separation in mixed organic/inorganic aerosol particles. . J. Phys. Chem. A 113:(41):1096678
    [Crossref] [Google Scholar]
  43. 43.
    Altaf MB, Zuend A, Freedman MA. 2016.. Role of nucleation mechanism on the size dependent morphology of organic aerosol. . Chem. Commun. 52:(59):922023
    [Crossref] [Google Scholar]
  44. 44.
    Lambe AT, Chhabra PS, Onasch TB, Brune WH, Hunter JF, et al. 2015.. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield. . Atmos. Chem. Phys. 15:(6):306375
    [Crossref] [Google Scholar]
  45. 45.
    Bertram AK, Martin ST, Hanna SJ, Smith ML, Bodsworth A, et al. 2011.. Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. . Atmos. Chem. Phys. 11:(21):109951006
    [Crossref] [Google Scholar]
  46. 46.
    Song M, Marcolli C, Krieger UK, Zuend A, Peter T. 2012.. Liquid-liquid phase separation in aerosol particles: dependence on O:C, organic functionalities, and compositional complexity. . Geophys. Res. Lett. 39:(19):L19801
    [Crossref] [Google Scholar]
  47. 47.
    Ott EJE, Tackman EC, Freedman MA. 2020.. Effects of sucrose on phase transitions of organic/inorganic aerosols. . ACS Earth Space Chem. 4:(4):591601
    [Crossref] [Google Scholar]
  48. 48.
    Roy P, Mael LE, Makhnenko I, Martz R, Grassian VH, Dutcher CS. 2020.. Temperature-dependent phase transitions of aqueous aerosol droplet systems in microfluidic traps. . ACS Earth Space Chem. 4:(9):152739
    [Crossref] [Google Scholar]
  49. 49.
    You Y, Renbaum-Wolff L, Bertram AK. 2013.. Liquid-liquid phase separation in particles containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride. . Atmos. Chem. Phys. 13:(23):1172334
    [Crossref] [Google Scholar]
  50. 50.
    Losey DJ, Parker RG, Freedman MA. 2016.. pH dependence of liquid-liquid phase separation in organic aerosol. . J. Phys. Chem. Lett. 7:(19):386165
    [Crossref] [Google Scholar]
  51. 51.
    Losey DJ, Ott EJE, Freedman MA. 2018.. Effects of high acidity on phase transitions of an organic aerosol. . J. Phys. Chem. A 122:(15):381928
    [Crossref] [Google Scholar]
  52. 52.
    Tong Y-K, Meng X, Zhou B, Sun R, Wu Z, et al. 2022.. Detecting the pH-dependent liquid-liquid phase separation of single levitated aerosol microdroplets via laser tweezers-Raman spectroscopy. . Front. Phys. 10::969921
    [Crossref] [Google Scholar]
  53. 53.
    Reid JP, Dennis-Smither BJ, Kwamena NOA, Miles REH, Hanford KL, Homer CJ. 2011.. The morphology of aerosol particles consisting of hydrophobic and hydrophilic phases: hydrocarbons, alcohols and fatty acids as the hydrophobic component. . Phys. Chem. Chem. Phys. 13:(34):1555972
    [Crossref] [Google Scholar]
  54. 54.
    Kwamena NOA, Buajarern J, Reid JP. 2010.. Equilibrium morphology of mixed organic/inorganic/aqueous aerosol droplets: investigating the effect of relative humidity and surfactants. . J. Phys. Chem. A 114:(18):578795
    [Crossref] [Google Scholar]
  55. 55.
    Stewart DJ, Cai C, Nayler J, Preston TC, Reid JP, et al. 2015.. Liquid-liquid phase separation in mixed organic/inorganic single aqueous aerosol droplets. . J. Phys. Chem. A 119:(18):417790
    [Crossref] [Google Scholar]
  56. 56.
    Kucinski TM, Freedman MA. 2020.. Flash freeze flow tube to vitrify aerosol particles at fixed relative humidity values. . Anal. Chem. 92:(7):520713
    [Crossref] [Google Scholar]
  57. 57.
    Qiu Y, Molinero V. 2015.. Morphology of liquid-liquid phase separated aerosols. . J. Am. Chem. Soc. 137:(33):1064251
    [Crossref] [Google Scholar]
  58. 58.
    Gorkowski K, Donahue NM, Sullivan RC. 2020.. Aerosol optical tweezers constrain the morphology evolution of liquid-liquid phase-separated atmospheric particles. . Chemistry 6:(1):20420
    [Crossref] [Google Scholar]
  59. 59.
    Marcolli C, Krieger UK. 2020.. Relevance of particle morphology for atmospheric aerosol processing. . Trends Chem. 2:(1):13
    [Crossref] [Google Scholar]
  60. 60.
    Gorkowski K, Donahue NM, Sullivan RC. 2017.. Emulsified and liquid-liquid phase-separated states of α-pinene secondary organic aerosol determined using aerosol optical tweezers. . Environ. Sci. Technol. 51:(21):1215463
    [Crossref] [Google Scholar]
  61. 61.
    Zuend A, Marcolli C, Luo BP, Peter T. 2008.. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients. . Atmos. Chem. Phys. 8::455993
    [Crossref] [Google Scholar]
  62. 62.
    Zuend A, Marcolli C, Booth AM, Lienhard DM, Soonsin V, et al. 2011.. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. . Atmos. Chem. Phys. 11:(17):9155206
    [Crossref] [Google Scholar]
  63. 63.
    Zuend A, Seinfeld JH. 2013.. A practical method for the calculation of liquid-liquid equilibria in multicomponent organic-water-electrolyte systems using physicochemical constraints. . Fluid Phase Equilib. 337::20113
    [Crossref] [Google Scholar]
  64. 64.
    Yin H, Dou J, Klein L, Krieger UK, Bain A, et al. 2022.. Extension of the AIOMFAC model by iodine and carbonate species: applications for aerosol acidity and cloud droplet activation. . Atmos. Chem. Phys. 22:(2):9731013
    [Crossref] [Google Scholar]
  65. 65.
    Karadima KS, Mavrantzas VG, Pandis SN. 2017.. Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions. . Phys. Chem. Chem. Phys. 19:(25):1668192
    [Crossref] [Google Scholar]
  66. 66.
    Karadima KS, Mavrantzas VG, Pandis SN. 2019.. Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations. . Atmos. Chem. Phys. 19:(8):557187
    [Crossref] [Google Scholar]
  67. 67.
    Veghte DP, Altaf MB, Freedman MA. 2013.. Size dependence of the structure of organic aerosol. . J. Am. Chem. Soc. 135:(43):1604649
    [Crossref] [Google Scholar]
  68. 68.
    Veghte DP, Bittner DR, Freedman MA. 2014.. Cryo-transmission electron microscopy imaging of the morphology of submicrometer aerosol containing organic acids and ammonium sulfate. . Anal. Chem. 86:(5):243642
    [Crossref] [Google Scholar]
  69. 69.
    Ott EJE, Kucinski TM, Dawson JN, Freedman MA. 2021.. Use of transmission electron microscopy for analysis of aerosol particles and strategies for imaging fragile particles. . Anal. Chem. 93:(33):1134756
    [Crossref] [Google Scholar]
  70. 70.
    Altaf MB, Freedman MA. 2017.. Effect of drying rate on aerosol particle morphology. . J. Phys. Chem. Lett. 8:(15):361318
    [Crossref] [Google Scholar]
  71. 71.
    Pathak H, Obeidat A, Wilemski G, Wyslouzil B. 2014.. The structure of D2O-nonane nanodroplets. . J. Chem. Phys. 140:(22):224318
    [Crossref] [Google Scholar]
  72. 72.
    Altaf MB, Zuend A, Freedman MA. 2016.. Role of nucleation mechanism on the size dependent morphology of organic aerosol. . Chem. Commun. 52:(59):922023
    [Crossref] [Google Scholar]
  73. 73.
    Ott EJE, Freedman MA. 2021.. Influence of ions on the size dependent morphology of aerosol particles. . ACS Earth Space Chem. 5::232028
    [Crossref] [Google Scholar]
  74. 74.
    Song M, Marcolli C, Krieger UK, Zuend A, Peter T. 2012.. Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles. . Atmos. Chem. Phys. 12:(5):2691712
    [Crossref] [Google Scholar]
  75. 75.
    Song M, Marcolli C, Krieger UK, Lienhard DM, Peter T. 2013.. Morphologies of mixed organic/inorganic/aqueous aerosol droplets. . Faraday Discuss. 165::289316
    [Crossref] [Google Scholar]
  76. 76.
    Kucinski TM, Dawson JN, Freedman MA. 2019.. Size-dependent liquid-liquid phase separation in atmospherically relevant complex systems. . J. Phys. Chem. Lett. 10:(21):691520
    [Crossref] [Google Scholar]
  77. 77.
    O'Brien RE, Wang B, Kelly ST, Lundt N, You Y, et al. 2015.. Liquid-liquid phase separation in aerosol particles: imaging at the nanometer scale. . Environ. Sci. Technol. 49:(8):49955002
    [Crossref] [Google Scholar]
  78. 78.
    Kucinski TM, Ott EJE, Freedman MA. 2021.. Dynamics of liquid-liquid phase separation in submicrometer aerosol. . J. Phys. Chem. A 125:(20):444653
    [Crossref] [Google Scholar]
  79. 79.
    Ohno PE, Qin Y, Ye J, Wang J, Bertram AK, Martin ST. 2021.. Fluorescence aerosol flow tube spectroscopy to detect liquid-liquid phase separation. . ACS Earth Space Chem. 5:(5):122332
    [Crossref] [Google Scholar]
  80. 80.
    Renbaum-Wolff L, Song M, Marcolli C, Zhang Y, Liu PF, et al. 2016.. Observations and implications of liquid-liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts. . Atmos. Chem. Phys. 16::796979
    [Crossref] [Google Scholar]
  81. 81.
    Rastak N, Pajunoja A, Acosta Navarro JC, Ma J, Song M, et al. 2017.. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate. . Geophys. Res. Lett. 44:(10):516777
    [Crossref] [Google Scholar]
  82. 82.
    Song M, Liu P, Martin ST, Bertram AK. 2017.. Liquid-liquid phase separation in particles containing secondary organic material free of inorganic salts. . Atmos. Chem. Phys. 17::1126171
    [Crossref] [Google Scholar]
  83. 83.
    Song M, Ham S, Andrews RJ, You Y, Bertram AK. 2018.. Liquid-liquid phase separation in organic particles containing one and two organic species: importance of the average O:C. . Atmos. Chem. Phys. 18::1207584
    [Crossref] [Google Scholar]
  84. 84.
    Song YC, AG, Martin ST, Geiger FM, Bertram AK, et al. 2020.. Liquid-liquid phase separation and morphologies in organic particles consisting of α-pinene and β-caryophyllene ozonolysis products and mixtures with commercially available organic compounds. . Atmos. Chem. Phys. 20:(19):1126373
    [Crossref] [Google Scholar]
  85. 85.
    Mahrt F, Peng L, Zaks J, Huang Y, Ohno PE, et al. 2022.. Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types. . Atmos. Chem. Phys. 22:(20):1378396
    [Crossref] [Google Scholar]
  86. 86.
    Mahrt F, Newman E, Huang Y, Ammann M, Bertram AK. 2021.. Phase behavior of hydrocarbon-like primary organic aerosol and secondary organic aerosol proxies based on their elemental oxygen-to-carbon ratio. . Environ. Sci. Technol. 55:(18):1220214
    [Crossref] [Google Scholar]
  87. 87.
    Mahrt F, Huang Y, Zaks J, Devi A, Peng L, et al. 2022.. Phase behavior of internal mixtures of hydrocarbon-like primary organic aerosol and secondary aerosol based on their differences in oxygen-to-carbon ratios. . Environ. Sci. Technol. 56:(7):396073
    [Crossref] [Google Scholar]
  88. 88.
    Ott EJE, Freedman MA. 2020.. Inhibition of phase separation in aerosolized water-soluble polymer-polymer nanoparticles at small sizes and the effects of molecular weight. . J. Phys. Chem. B 124:(34):751823
    [Crossref] [Google Scholar]
  89. 89.
    Huang Y, Mahrt F, Xu S, Shiraiwa M, Zuend A, Bertram AK. 2021.. Coexistence of three liquid phases in individual atmospheric aerosol particles. . PNAS 118:(16):e2102512118
    [Crossref] [Google Scholar]
  90. 90.
    Brunamonti S, Krieger UK, Marcolli C, Peter T. 2015.. Redistribution of black carbon in aerosol particles undergoing liquid-liquid phase separation. . Geophys. Res. Lett. 42:(7):253239
    [Crossref] [Google Scholar]
  91. 91.
    Price CL, Preston TC, Davies JF. 2022.. Hygroscopic growth, phase morphology, and optical properties of model aqueous brown carbon aerosol. . Environ. Sci. Technol. 56:(7):394151
    [Crossref] [Google Scholar]
  92. 92.
    Song M, MacLean AM, Huang Y, Smith NR, Blair SL, et al. 2019.. Liquid-liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors. . Atmos. Chem. Phys. 19:(19):1251529
    [Crossref] [Google Scholar]
  93. 93.
    Smith NR, Crescenzo GV, Huang Y, Hettiyadura APS, Siemens K, et al. 2021.. Viscosity and liquid-liquid phase separation in healthy and stressed plant SOA. . Environ. Sci. Atmos. 1:(3):14053
    [Crossref] [Google Scholar]
  94. 94.
    Zuend A, Seinfeld JH. 2012.. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation. . Atmos. Chem. Phys. 12:(9):385782
    [Crossref] [Google Scholar]
  95. 95.
    Fard MM, Krieger UK, Peter T. 2018.. Shortwave radiative impact of liquid-liquid phase separation in brown carbon aerosols. . Atmos. Chem. Phys. 18::1351130
    [Crossref] [Google Scholar]
  96. 96.
    DeRieux WSW, Lakey PSJ, Chu Y, Chan CK, Glicker HS, et al. 2019.. Effects of phase state and phase separation on dimethylamine uptake of ammonium sulfate and ammonium sulfate-sucrose mixed particles. . ACS Earth Space Chem. 3:(7):126878
    [Crossref] [Google Scholar]
  97. 97.
    Ott EJE, Tackman EC, Freedman MA. 2020.. Effects of sucrose on phase transitions of organic/inorganic aerosols. . ACS Earth Space Chem. 4:(4):591601
    [Crossref] [Google Scholar]
  98. 98.
    McNeill VF, Patterson J, Wolfe GM, Thornton JA. 2006.. The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol. . Atmos. Chem. Phys. 6:(6):163544
    [Crossref] [Google Scholar]
  99. 99.
    Cosman LM, Bertram AK. 2008.. Reactive uptake of N2O5 on aqueous H2SO4 solutions coated with 1-component and 2-component monolayers. . J. Phys. Chem. A 112:(20):462535
    [Crossref] [Google Scholar]
  100. 100.
    Shaloski MA, Gord JR, Staudt S, Quinn SL, Bertram TH, Nathanson GM. 2017.. Reactions of N2O5 with salty and surfactant-coated glycerol: interfacial conversion of Br to Br2 mediated by alkylammonium cations. . J. Phys. Chem. A 121:(19):370819
    [Crossref] [Google Scholar]
  101. 101.
    Sobyra TB, Pliszka H, Bertram TH, Nathanson GM. 2019.. Production of Br2 from N2O5 and Br in salty and surfactant-coated water microjets. . J. Phys. Chem. A 123:(41):894253
    [Crossref] [Google Scholar]
  102. 102.
    Zhou S, Hwang BCH, Lakey PSJ, Zuend A, Abbatt JPD, Shiraiwa M. 2019.. Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations. . PNAS 116:(24):1165863
    [Crossref] [Google Scholar]
  103. 103.
    Dennis-Smither BJ, Miles REH, Reid JP. 2012.. Oxidative aging of mixed oleic acid/sodium chloride aerosol particles. . J. Geophys. Res. Atmos. 117:(20):D20204
    [Google Scholar]
  104. 104.
    Dennis-Smither BJ, Hanford KL, Kwamena NOA, Miles REH, Reid JP. 2012.. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis. . J. Phys. Chem. A 116:(24):615968
    [Crossref] [Google Scholar]
  105. 105.
    Lam HK, Xu R, Choczynski J, Davies JF, Ham D, et al. 2021.. Effects of liquid-liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic-organic aerosols: insights from methylglutaric acid and ammonium sulfate particles. . Atmos. Chem. Phys. 21:(3):205366
    [Crossref] [Google Scholar]
  106. 106.
    Shen C, Zhang W, Choczynski J, Davies JF, Zhang H. 2022.. Phase state and relative humidity regulate the heterogeneous oxidation kinetics and pathways of organic-inorganic mixed aerosols. . Environ. Sci. Technol. 56:(22):15398407
    [Crossref] [Google Scholar]
  107. 107.
    Ryder OS, Campbell NR, Morris H, Forestieri S, Ruppel MJ, et al. 2015.. Role of organic coatings in regulating N2O5 reactive uptake to sea spray aerosol. . J. Phys. Chem. A 119:(48):1168392
    [Crossref] [Google Scholar]
  108. 108.
    Altaf MB, Dutcher DD, Raymond TM, Freedman MA. 2018.. Effect of particle morphology on cloud condensation nuclei activity. . ACS Earth Space Chem. 2:(6):63439
    [Crossref] [Google Scholar]
  109. 109.
    Li W, Teng X, Chen X, Liu L, Xu L, et al. 2021.. Organic coating reduces hygroscopic growth of phase-separated aerosol particles. . Environ. Sci. Technol. 55:(24):1633946
    [Crossref] [Google Scholar]
  110. 110.
    Bouzidi H, Zuend A, Ondráček J, Schwarz J, Ždímal V. 2020.. Hygroscopic behavior of inorganic-organic aerosol systems including ammonium sulfate, dicarboxylic acids, and oligomer. . Atmos. Environ. 229::117481
    [Crossref] [Google Scholar]
  111. 111.
    Wang W, Lei T, Zuend A, Su H, Cheng Y, et al. 2021.. Effect of mixing structure on the water uptake of mixtures of ammonium sulfate and phthalic acid particles. . Atmos. Chem. Phys. 21:(3):217990
    [Crossref] [Google Scholar]
  112. 112.
    Robinson CB, Schill GP, Zarzana KJ, Tolbert MA. 2013.. Impact of organic coating on optical growth of ammonium sulfate particles. . Environ. Sci. Technol. 47:(23):1333946
    [Crossref] [Google Scholar]
  113. 113.
    Gorkowski K, Beydoun H, Aboff M, Walker JS, Reid JP, Sullivan RC. 2016.. Advanced aerosol optical tweezers chamber design to facilitate phase-separation and equilibration timescale experiments on complex droplets. . Aerosol Sci. Technol. 50:(12):132741
    [Crossref] [Google Scholar]
  114. 114.
    Ushijima SB, Huynh E, Davis RD, Tolbert MA. 2021.. Seeded crystal growth of internally mixed organic-inorganic aerosols: impact of organic phase state. . J. Phys. Chem. A 125:(39):866879
    [Crossref] [Google Scholar]
  115. 115.
    Yao Y, Alpert PA, Zuend A, Wang B. 2023.. Does liquid-liquid phase separation impact ice nucleation in mixed polyethylene glycol and ammonium sulfate droplets?. Phys. Chem. Chem. Phys. 25:(1):8095
    [Crossref] [Google Scholar]
  116. 116.
    Estillore AD, Morris HS, Or VW, Lee HD, Alves MR, et al. 2017.. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles. . Phys. Chem. Chem. Phys. 19:(31):2110111
    [Crossref] [Google Scholar]
  117. 117.
    Ovadnevaite J, Zuend A, Laaksonen A, Sanchez KJ, Roberts G, et al. 2017.. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. . Nature 546:(7660):63741
    [Crossref] [Google Scholar]
  118. 118.
    Zhang J, Wang Y, Teng X, Liu L, Xu Y, et al. 2022.. Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols. . Commun. Earth Environ. 3:(1):128
    [Crossref] [Google Scholar]
  119. 119.
    Yuan Q, Wang Y, Chen Y, Yue S, Zhang J, et al. 2023.. Measurement report: new insights into the mixing structures of black carbon on the eastern Tibetan Plateau: soot redistribution and fractal dimension enhancement by liquid–liquid phase separation. . Atmos. Chem. Phys. 23::938599
    [Crossref] [Google Scholar]
  120. 120.
    Yuan Q, Xu J, Wang Y, Zhang X, Pang Y, et al. 2019.. Mixing state and fractal dimension of soot particles at a remote site in the southeastern Tibetan Plateau. . Environ. Sci. Technol. 53:(14):822734
    [Crossref] [Google Scholar]
  121. 121.
    Yuan Q, Xu J, Liu L, Zhang A, Liu Y, et al. 2021.. Evidence for large amounts of brown carbonaceous tarballs in the Himalayan atmosphere. . Environ. Sci. Technol. Lett. 8:(1):1623
    [Crossref] [Google Scholar]
  122. 122.
    Kirpes RM, Bonanno D, May NW, Fraund M, Barget AJ, et al. 2019.. Wintertime Arctic sea spray aerosol composition controlled by sea ice lead microbiology. . ACS Cent. Sci. 5:(11):176067
    [Crossref] [Google Scholar]
  123. 123.
    Yu H, Li W, Zhang Y, Tunved P, Dall'Osto M, et al. 2019.. Organic coating on sulfate and soot particles during late summer in the Svalbard Archipelago. . Atmos. Chem. Phys. 19:(15):1043346
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-083122-115909
Loading
/content/journals/10.1146/annurev-physchem-083122-115909
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error