1932

Abstract

Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of NO in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, NO is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of NO as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO, chlorination to ClNO, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-083122-121620
2024-06-28
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-083122-121620.html?itemId=/content/journals/10.1146/annurev-physchem-083122-121620&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Blanchard DC. 1989.. The ejection of drops from the sea and their enrichment with bacteria and other materials: a review. . Estuaries 12::12737
    [Crossref] [Google Scholar]
  2. 2.
    Cunliffe M, Engel A, Frka S, Gašparović B, Guitart C, et al. 2013.. Sea surface microlayers: a unified physicochemical and biological perspective of the air–ocean interface. . Prog. Oceanogr. 109::10416
    [Crossref] [Google Scholar]
  3. 3.
    Prather KA, Bertram TH, Grassian VH, Deane GB, Stokes MD, et al. 2013.. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. . PNAS 110::755055
    [Crossref] [Google Scholar]
  4. 4.
    Burrows SM, Ogunro O, Frossard AA, Russell LM, Rasch PJ, Elliott SM. 2014.. A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria. . Atmos. Chem. Phys. 14::1360129
    [Crossref] [Google Scholar]
  5. 5.
    Quinn PK, Collins DB, Grassian VH, Prather KA, Bates TS. 2015.. Chemistry and related properties of freshly emitted sea spray aerosol. . Chem. Rev. 115::438399
    [Crossref] [Google Scholar]
  6. 6.
    Cochran RE, Laskina O, Trueblood JV, Estillore AD, Morris HS, et al. 2017.. Molecular diversity of sea spray aerosol particles: impact of ocean biology on particle composition and hygroscopicity. . Chemistry 2::65567
    [Crossref] [Google Scholar]
  7. 7.
    Bertram TH, Cochran RE, Grassian VH, Stone EA. 2018.. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. . Chem. Soc. Rev. 47::2374400
    [Crossref] [Google Scholar]
  8. 8.
    Jacob DJ. 2000.. Heterogeneous chemistry and tropospheric ozone. . Atmos. Environ. 34::213159
    [Crossref] [Google Scholar]
  9. 9.
    Abbatt JPD, Lee AKY, Thornton JA. 2012.. Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges. . Chem. Soc. Rev. 41::655581
    [Crossref] [Google Scholar]
  10. 10.
    Brown SS, Stutz J. 2012.. Nighttime radical observations and chemistry. . Chem. Soc. Rev. 41::640547
    [Crossref] [Google Scholar]
  11. 11.
    Ammann M, Cox RA, Crowley JN, Jenkin ME, Mellouki A, et al. 2013.. Evaluated kinetic and photochemical data for atmospheric chemistry: volume VI–heterogeneous reactions with liquid substrates. . Atmos. Chem. Phys. 13::8045228
    [Crossref] [Google Scholar]
  12. 12.
    Dentener FJ, Crutzen PJ. 1993.. Reaction of N2O5 on tropospheric aerosols: impact on the global distributions of NOx, O3, and OH. . J. Geophys. Res. Atmos. 98::714963
    [Crossref] [Google Scholar]
  13. 13.
    Tolbert MA, Rossi MJ, Golden DM. 1988.. Antarctic ozone depletion chemistry: reactions of N2O5 with H2O and HCl on ice surfaces. . Science 240::101821
    [Crossref] [Google Scholar]
  14. 14.
    Mozurkewich M, Calvert JG. 1988.. Reaction probability of N2O5 on aqueous aerosols. . J. Geophys. Res. Atmos. 93::1588996
    [Crossref] [Google Scholar]
  15. 15.
    Stewart DJ, Griffiths PT, Cox RA. 2004.. Reactive uptake coefficients for heterogeneous reaction of N2O5 with submicron aerosols of NaCl and natural sea salt. . Atmos. Chem. Phys. 4::138188
    [Crossref] [Google Scholar]
  16. 16.
    Bertram TH, Thornton JA. 2009.. Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate, and chloride. . Atmos. Chem. Phys. 9::835163
    [Crossref] [Google Scholar]
  17. 17.
    Macintyre HL, Evans MJ. 2010.. Sensitivity of a global model to the uptake of N2O5 by tropospheric aerosol. . Atmos. Chem. Phys. 10::740914
    [Crossref] [Google Scholar]
  18. 18.
    McDuffie EE, Fibiger DL, Dubé WP, Lopez-Hilfiker F, Lee BH, et al. 2018.. Heterogeneous N2O5 uptake during winter: aircraft measurements during the 2015 WINTER campaign and critical evaluation of current parameterizations. . J. Geophys. Res. Atmos. 123::434572
    [Crossref] [Google Scholar]
  19. 19.
    Holmes CD, Bertram TH, Confer KL, Grahams KA, Ronan AC, et al. 2019.. The role of clouds in the tropospheric NOx cycle: a new modeling approach for cloud chemistry and its global implications. . Geophys. Res. Lett. 46::498090
    [Crossref] [Google Scholar]
  20. 20.
    Ha PTM, Matsuda R, Kanaya Y, Taketani F, Sudo K. 2021.. Effects of heterogeneous reactions on tropospheric chemistry: a global simulation with the chemistry-climate model chaser V4.0.. Geosci. Model Dev. 14::381341
    [Crossref] [Google Scholar]
  21. 21.
    Schwartz SE, Whilte WH. 1981.. Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution. . Adv. Environ. Sci. Eng. 4::145
    [Google Scholar]
  22. 22.
    Fried A, Henry BE, Calvert JG, Mozurkewich M. 1994.. The reaction probability of N2O5 with sulfuric-acid aerosols at stratospheric temperatures and compositions. . J. Geophys. Res. Atmos. 99::351732
    [Crossref] [Google Scholar]
  23. 23.
    Cruzeiro VWD, Galib M, Limmer DT, Götz AW. 2022.. Uptake of N2O5 by aqueous aerosol unveiled using chemically accurate many-body potentials. . Nat. Commun. 13::1266
    [Crossref] [Google Scholar]
  24. 24.
    Bianco R, Hynes JT. 1999.. Theoretical studies of heterogeneous reaction mechanisms relevant for stratospheric ozone depletion. . Int. J. Quantum Chem. 75::68392
    [Crossref] [Google Scholar]
  25. 25.
    McNamara JP, Hillier IH. 2000.. Structure and reactivity of dinitrogen pentoxide in small water clusters studied by electronic structure calculations. . J. Phys. Chem. A 104::530719
    [Crossref] [Google Scholar]
  26. 26.
    Hirshberg B, Rossich Molina E, Götz AW, Hammerich AD, Nathanson GM, et al. 2018.. N2O5 at water surfaces: binding forces, charge separation, energy accommodation, and atmospheric implications. . Phys. Chem. Chem. Phys. 20::1796176
    [Crossref] [Google Scholar]
  27. 27.
    Molina ER, Gerber RB. 2020.. Microscopic mechanisms of N2O5 hydrolysis on the surface of water droplets. . J. Phys. Chem. A 124::22428
    [Crossref] [Google Scholar]
  28. 28.
    Wilson KR, Prophet AM. 2024.. Chemical kinetics in microdroplets. . Annu. Rev. Phys. Chem. 75::185208
    [Crossref] [Google Scholar]
  29. 29.
    Danckwerts PV. 1951.. Absorption by simultaneous diffusion and chemical reaction into particles of various shapes and into falling drops. . Trans. Faraday Soc. 47::101423
    [Crossref] [Google Scholar]
  30. 30.
    Sherwood TK, Pigford RL, White CR. 1975.. Mass Transfer. New York:: McGraw-Hill
    [Google Scholar]
  31. 31.
    Hanson DR, Ravishankara AR, Solomon S. 1994.. Heterogeneous reactions in sulfuric acid aerosols: a framework for model calculations. . J. Geophys. Res. Atmos. 99::361529
    [Crossref] [Google Scholar]
  32. 32.
    Davidovits P, Kolb CE, Williams LR, Jayne JT, Worsnop DR. 2011.. Update 1 of: mass accommodation and chemical reactions at gas-liquid interfaces. . Chem. Rev. 111::PR76109
    [Crossref] [Google Scholar]
  33. 33.
    Hanson DR. 1997.. Surface-specific reactions on liquids. . J. Phys. Chem. B 101::49985001
    [Crossref] [Google Scholar]
  34. 34.
    Worsnop DR, Morris JW, Shi Q, Davidovits P, Kolb CE. 2002.. A chemical kinetic model for reactive transformations of aerosol particles. . Geophys. Res. Lett. 29::57
    [Crossref] [Google Scholar]
  35. 35.
    Shiraiwa M, Pfrang C, Koop T, Pöschl U. 2012.. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water. . Atmos. Chem. Phys. 12::277794
    [Crossref] [Google Scholar]
  36. 36.
    Wilson KR, Prophet AM, Willis MD. 2022.. A kinetic model for predicting trace gas uptake and reaction. . J. Phys. Chem. A 126::7291308
    [Crossref] [Google Scholar]
  37. 37.
    Lakey PSJ, Eichler CMA, Wang CY, Little JC, Shiraiwa M. 2021.. Kinetic multi-layer model of film formation, growth, and chemistry (KM-FILM): boundary layer processes, multi-layer adsorption, bulk diffusion, and heterogeneous reactions. . Indoor Air 31::207083
    [Crossref] [Google Scholar]
  38. 38.
    Willis MD, Wilson KR. 2022.. Coupled interfacial and bulk kinetics govern the timescales of multiphase ozonolysis reactions. . J. Phys. Chem. A 126::49915010
    [Crossref] [Google Scholar]
  39. 39.
    Riemer N, Vogel H, Vogel B, Anttila T, Kiendler-Scharr A, Mentel TF. 2009.. Relative importance of organic coatings for the heterogeneous hydrolysis of N2O5 during summer in Europe. . J. Geophys. Res. Atmos. 114::D17307
    [Google Scholar]
  40. 40.
    Galib M, Limmer DT. 2021.. Reactive uptake of N2O5 by atmospheric aerosol is dominated by interfacial processes. . Science 371::92125
    [Crossref] [Google Scholar]
  41. 41.
    Hansen J-P, McDonald IR. 2013.. Theory of Simple Liquids. San Diego, CA:: Academic
    [Google Scholar]
  42. 42.
    Weeks JD. 1977.. Structure and thermodynamics of the liquid–vapor interface. . J. Chem. Phys. 67::310621
    [Crossref] [Google Scholar]
  43. 43.
    Bedeaux D, Weeks JD. 1985.. Correlation functions in the capillary wave model of the liquid–vapor interface. . J. Chem. Phys. 82::97279
    [Crossref] [Google Scholar]
  44. 44.
    Willard AP, Chandler D. 2010.. Instantaneous liquid interfaces. . J. Phys. Chem. B 114::195458
    [Crossref] [Google Scholar]
  45. 45.
    Liu P, Harder E, Berne BJ. 2004.. On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid−vapor interface of water. . J. Phys. Chem. B 108::6595602
    [Crossref] [Google Scholar]
  46. 46.
    Liu P, Harder E, Berne BJ. 2005.. Hydrogen-bond dynamics in the air−water interface. . J. Phys. Chem. B 109::294955
    [Crossref] [Google Scholar]
  47. 47.
    Noah-Vanhoucke J, Geissler PL. 2009.. On the fluctuations that drive small ions toward, and away from, interfaces between polar liquids and their vapors. . PNAS 106::1512530
    [Crossref] [Google Scholar]
  48. 48.
    Geissler PL. 2013.. Water interfaces, solvation, and spectroscopy. . Annu. Rev. Phys. Chem. 64::31737
    [Crossref] [Google Scholar]
  49. 49.
    Jungwirth P, Tobias DJ. 2001.. Molecular structure of salt solutions: a new view of the interface with implications for heterogeneous atmospheric chemistry. . J. Phys. Chem. B 105::1046872
    [Crossref] [Google Scholar]
  50. 50.
    Vacha R, Slavicek P, Mucha M, Finlayson-Pitts BJ, Jungwirth P. 2004.. Adsorption of atmospherically relevant gases at the air/water interface: free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2, and H2O2. . J. Phys. Chem. A 108::1157379
    [Crossref] [Google Scholar]
  51. 51.
    Otten DE, Shaffer PR, Geissler PL, Saykally RJ. 2012.. Elucidating the mechanism of selective ion adsorption to the liquid water surface. . PNAS 109::7015
    [Crossref] [Google Scholar]
  52. 52.
    McCaffrey DL, Nguyen SC, Cox SJ, Weller H, Alivisatos AP, et al. 2017.. Mechanism of ion adsorption to aqueous interfaces: graphene/water versus air/water. . PNAS 114::1336973
    [Crossref] [Google Scholar]
  53. 53.
    Zwanzig RW. 2001.. Nonequilibrium Statistical Mechanics. New York:: Oxford Univ. Press
    [Google Scholar]
  54. 54.
    Lau AW, Lubensky TC. 2007.. State-dependent diffusion: thermodynamic consistency and its path integral formulation. . Phys. Rev. E 76::011123
    [Crossref] [Google Scholar]
  55. 55.
    Chandler D. 1987.. Introduction to Modern Statistical Mechanics. New York:: Oxford Univ. Press
    [Google Scholar]
  56. 56.
    Zwanzig R. 1990.. Rate processes with dynamical disorder. . Acc. Chem. Res. 23::14852
    [Crossref] [Google Scholar]
  57. 57.
    Tobias DJ, Stern AC, Baer MD, Levin Y, Mundy CJ. 2013.. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces. . Annu. Rev. Phys. Chem. 64::33959
    [Crossref] [Google Scholar]
  58. 58.
    Frenkel D, Smit B. 2002.. Understanding Molecular Simulation: From Algorithms to Applications. New York:: Academic
    [Google Scholar]
  59. 59.
    Garrett BC, Schenter GK, Morita A. 2006.. Molecular simulations of the transport of molecules across the liquid/vapor interface of water. . Chem. Rev. 106::135574
    [Crossref] [Google Scholar]
  60. 60.
    Cisneros GA, Wikfeldt KT, Ojamae L, Lu JB, Xu Y, et al. 2016.. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. . Chem. Rev. 116::750128
    [Crossref] [Google Scholar]
  61. 61.
    Markland TE, Ceriotti M. 2018.. Nuclear quantum effects enter the mainstream. . Nat. Rev. Chem. 2::0109
    [Crossref] [Google Scholar]
  62. 62.
    Babin V, Leforestier C, Paesani F. 2013.. Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. . J. Chem. Theory Comput. 9::5395403
    [Crossref] [Google Scholar]
  63. 63.
    Babin V, Medders GR, Paesani F. 2014.. Development of a “first principles” water potential with flexible monomers. II: trimer potential energy surface, third virial coefficient, and small clusters. . J. Chem. Theory Comput. 10::1599607
    [Crossref] [Google Scholar]
  64. 64.
    Reddy SK, Straight SC, Bajaj P, Huy Pham C, Riera M, et al. 2016.. On the accuracy of the MB-pol many-body potential for water: interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice. . J. Chem. Phys. 145::194504
    [Crossref] [Google Scholar]
  65. 65.
    Bore SL, Paesani F. 2023.. Realistic phase diagram of water from “first principles” data-driven quantum simulations. . Nat. Commun. 14::3349
    [Crossref] [Google Scholar]
  66. 66.
    Muniz MC, Gartner TE 3rd, Riera M, Knight C, Yue S, et al. 2021.. Vapor-liquid equilibrium of water with the MB-pol many-body potential. . J. Chem. Phys. 154::211103
    [Crossref] [Google Scholar]
  67. 67.
    Zhu X, Riera M, Bull-Vulpe EF, Paesani F. 2023.. MB-pol2023: sub-chemical accuracy for water simulations from the gas to the liquid phase. . J. Chem. Theory Comput. 19::355156
    [Crossref] [Google Scholar]
  68. 68.
    Bajaj P, Götz AW, Paesani F. 2016.. Toward chemical accuracy in the description of ion-water interactions through many-body representations. I. Halide-water dimer potential energy surfaces. . J. Chem. Theory Comput. 12::2698705
    [Crossref] [Google Scholar]
  69. 69.
    Riera M, Mardirossian N, Bajaj P, Götz AW, Paesani F. 2017.. Toward chemical accuracy in the description of ion–water interactions through many-body representations. Alkali-water dimer potential energy surfaces. . J. Chem. Phys. 147::161715
    [Crossref] [Google Scholar]
  70. 70.
    Paesani F, Bajaj P, Riera M. 2019.. Chemical accuracy in modeling halide ion hydration from many-body representations. . Adv. Phys. X 4::1631212
    [Google Scholar]
  71. 71.
    Riera M, Yeh EP, Paesani F. 2020.. Data-driven many-body models for molecular fluids: CO2/H2O mixtures as a case study. . J. Chem. Theory Comput. 16::224657
    [Crossref] [Google Scholar]
  72. 72.
    Bull-Vulpe EF, Riera M, Götz AW, Paesani F. 2021.. MB-Fit: software infrastructure for data-driven many-body potential energy functions. . J. Chem. Phys. 155::124801
    [Crossref] [Google Scholar]
  73. 73.
    Cruzeiro VWD, Lambros E, Riera M, Roy R, Paesani F, Götz AW. 2021.. Highly accurate many-body potentials for simulations of N2O5 in water: benchmarks, development, and validation. . J. Chem. Theory Comput. 17::393145
    [Crossref] [Google Scholar]
  74. 74.
    Hsieh CS, Campen RK, Verde ACV, Bolhuis P, Nienhuys HK, Bonn M. 2011.. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy. . Phys. Rev. Lett. 107::116102
    [Crossref] [Google Scholar]
  75. 75.
    Strekowski RS, Remorov R, George C. 2003.. Direct kinetic study of the reaction of Cl2•−radical anions with ethanol at the air-water interface. . J. Phys. Chem. A 107::2497504
    [Crossref] [Google Scholar]
  76. 76.
    Hummer G. 2005.. Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations. . New J. Phys. 7::34
    [Crossref] [Google Scholar]
  77. 77.
    Car R, Parrinello M. 1985.. Unified approach for molecular dynamics and density-functional theory. . Phys. Rev. Lett. 55::247174
    [Crossref] [Google Scholar]
  78. 78.
    Kuo IF, Mundy CJ. 2004.. An ab initio molecular dynamics study of the aqueous liquid-vapor interface. . Science 303::65860
    [Crossref] [Google Scholar]
  79. 79.
    Niblett SP, Galib M, Limmer DT. 2021.. Learning intermolecular forces at liquid-vapor interfaces. . J. Chem. Phys. 155::164101
    [Crossref] [Google Scholar]
  80. 80.
    Behler J. 2017.. First principles neural network potentials for reactive simulations of large molecular and condensed systems. . Angew. Chem. Intl. Ed. 56::1282840
    [Crossref] [Google Scholar]
  81. 81.
    Yang M, Bonati L, Polino D, Parrinello M. 2022.. Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water. . Catal. Today 387::14349
    [Crossref] [Google Scholar]
  82. 82.
    Bolhuis PG, Chandler D, Dellago C, Geissler PL. 2002.. Transition path sampling: throwing ropes over rough mountain passes, in the dark. . Annu. Rev. Phys. Chem. 53::291318
    [Crossref] [Google Scholar]
  83. 83.
    Schile AJ, Limmer DT. 2019.. Rate constants in spatially inhomogeneous systems. . J. Chem. Phys. 150::191102
    [Crossref] [Google Scholar]
  84. 84.
    Niblett SP, Limmer DT. 2021.. Ion dissociation dynamics in an aqueous premelting layer. . J. Phys. Chem. B 125::217481
    [Crossref] [Google Scholar]
  85. 85.
    Singh AN, Limmer DT. 2022.. Peptide isomerization is suppressed at the air-water interface. . J. Phys. Chem. Lett. 13::57479
    [Crossref] [Google Scholar]
  86. 86.
    Kattirtzi JA, Limmer DT, Willard AP. 2017.. Microscopic dynamics of charge separation at the aqueous electrochemical interface. . PNAS 114::1337479
    [Crossref] [Google Scholar]
  87. 87.
    Venkateshwaran V, Vembanur S, Garde S. 2014.. Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface. . PNAS 111::872934
    [Crossref] [Google Scholar]
  88. 88.
    Baer MD, Tobias DJ, Mundy CJ. 2014.. Investigation of interfacial and bulk dissociation of HBr, HCl, and HNO3 using density functional theory-based molecular dynamics simulations. . J. Phys. Chem. C 118::2941220
    [Crossref] [Google Scholar]
  89. 89.
    Wang S, Bianco R, Hynes JT. 2009.. Depth-dependent dissociation of nitric acid at an aqueous surface: Car–Parrinello molecular dynamics. . J. Phys. Chem. A 113::1295307
    [Crossref] [Google Scholar]
  90. 90.
    Reichardt C, Welton T. 2010.. Solvents and Solvent Effects in Organic Chemistry. Weinheim, Ger:.: Wiley-VCH Verlag
    [Google Scholar]
  91. 91.
    Griffith EC, Vaida V. 2012.. In situ observation of peptide bond formation at the water-air interface. . PNAS 109::15697701
    [Crossref] [Google Scholar]
  92. 92.
    Roeselová M, Jungwirth P, Tobias DJ, Gerber RB. 2003.. Impact, trapping, and accommodation of hydroxyl radical and ozone at aqueous salt aerosol surfaces. A molecular dynamics study. . J. Phys. Chem. B 107::1269099
    [Crossref] [Google Scholar]
  93. 93.
    Vieceli J, Roeselová M, Tobias DJ. 2004.. Accommodation coefficients for water vapor at the air/water interface. . Chem. Phys. Lett. 393::24955
    [Crossref] [Google Scholar]
  94. 94.
    Morita A, Sugiyama M, Kameda H, Koda S, Hanson DR. 2004.. Mass accommodation coefficient of water: molecular dynamics simulation and revised analysis of droplet train/flow reactor experiment. . J. Phys. Chem. B 108::911120
    [Crossref] [Google Scholar]
  95. 95.
    Varilly P, Chandler D. 2013.. Water evaporation: a transition path sampling study. . J. Phys. Chem. B 117::141928
    [Crossref] [Google Scholar]
  96. 96.
    von Domaros M, Lakey PSJ, Shiraiwa M, Tobias DJ. 2020.. Multiscale modeling of human skin oil-induced indoor air chemistry: combining kinetic models and molecular dynamics. . J. Phys. Chem. B 124::383643
    [Crossref] [Google Scholar]
  97. 97.
    Rowlinson JS, Widom B. 2003.. Molecular Theory of Capillarity. Mineola, NY:: Dover
    [Google Scholar]
  98. 98.
    Cox SJ, Geissler PL. 2022.. Dielectric response of thin water films: a thermodynamic perspective. . Chem. Sci. 13::910211
    [Crossref] [Google Scholar]
  99. 99.
    Shin S, Willard AP. 2018.. Three-body hydrogen bond defects contribute significantly to the dielectric properties of the liquid water-vapor interface. . J. Phys. Chem. Lett. 9::164954
    [Crossref] [Google Scholar]
  100. 100.
    Liu Q, Margerum DW. 2001.. Equilibrium and kinetics of bromine chloride hydrolysis. . Environ. Sci. Technol. 35::112733
    [Crossref] [Google Scholar]
  101. 101.
    Angle KJ, Crocker DR, Simpson RMC, Mayer KJ, Garofalo LA, et al. 2021.. Acidity across the interface from the ocean surface to sea spray aerosol. . PNAS 118::e2018397118
    [Crossref] [Google Scholar]
  102. 102.
    Worsnop DR, Zahniser MS, Kolb CE, Gardner JA, Watson LR, et al. 1989.. The temperature dependence of mass accommodation of sulfur dioxide and hydrogen peroxide on aqueous surfaces. . J. Phys. Chem. 93::115972
    [Crossref] [Google Scholar]
  103. 103.
    Gaston CJ, Thornton JA. 2016.. Reacto-diffusive length of N2O5 in aqueous sulfate- and chloride-containing aerosol particles. . J. Phys. Chem. A 120::103945
    [Crossref] [Google Scholar]
  104. 104.
    Vandoren JM, Watson LR, Davidovits P, Worsnop DR, Zahniser MS, Kolb CE. 1990.. Temperature-dependence of the uptake coefficients of HNO3, HCl, and N2O5 by water droplets. . J. Phys. Chem. 94::326569
    [Crossref] [Google Scholar]
  105. 105.
    Chang WL, Bhave PV, Brown SS, Riemer N, Stutz J, Dabdub D. 2011.. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: a review. . Aerosol Sci. Technol. 45::66595
    [Crossref] [Google Scholar]
  106. 106.
    Behnke W, George C, Scheer V, Zetzsch C. 1997.. Production and decay of ClNO2, from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments. . J. Geophys. Res. Atmos. 102::3795804
    [Crossref] [Google Scholar]
  107. 107.
    Mitroo D, Gill TE, Haas S, Pratt KA, Gaston CJ. 2019.. ClNO2 production from N2O5 uptake on saline playa dusts: new insights into potential inland sources of ClNO2. . Environ. Sci. Technol. 53::744252
    [Crossref] [Google Scholar]
  108. 108.
    McNamara SM, Chen QJ, Edebeli J, Kulju KD, Mumpfield J, et al. 2021.. Observation of N2O5 deposition and ClNO2 production on the saline snowpack. . ACS Earth Space Chem. 5::102031
    [Crossref] [Google Scholar]
  109. 109.
    Jahl LG, Bowers BB, Jahn LG, Thornton JA, Sullivan RC. 2021.. Response of the reaction probability of N2O5 with authentic biomass-burning aerosol to high relative humidity. . ACS Earth Space Chem. 5::258798
    [Crossref] [Google Scholar]
  110. 110.
    Schweitzer F, Mirabel P, George C. 1998.. Multiphase chemistry of N2O5, ClNO2, and BrNO2. . J. Phys. Chem. A 102::394252
    [Crossref] [Google Scholar]
  111. 111.
    Finlayson-Pitts BJ. 2009.. Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols. . Phys. Chem. Chem. Phys. 11::776079
    [Crossref] [Google Scholar]
  112. 112.
    Lopez-Hilfiker FD, Constantin K, Kercher JP, Thornton JA. 2012.. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces. . Atmos. Chem. Phys. 12::523747
    [Crossref] [Google Scholar]
  113. 113.
    Heal MR, Harrison MAJ, Cape JN. 2007.. Aqueous-phase nitration of phenol by N2O5 and ClNO2. . Atmos. Environ. 41::351520
    [Crossref] [Google Scholar]
  114. 114.
    Gross S, Iannone R, Xiao S, Bertram AK. 2009.. Reactive uptake studies of NO3 and N2O5 on alkenoic acid, alkanoate, and polyalcohol substrates to probe nighttime aerosol chemistry. . Phys. Chem. Chem. Phys. 11::7792803
    [Crossref] [Google Scholar]
  115. 115.
    Gill PS, Graedel TE, Weschler CJ. 1983.. Organic films on atmospheric aerosol-particles, fog droplets, cloud droplets, raindrops, and snowflakes. . Rev. Geophys. 21::90320
    [Crossref] [Google Scholar]
  116. 116.
    Donaldson DJ, Vaida V. 2006.. The influence of organic films at the air-aqueous boundary on atmospheric processes. . Chem. Rev. 106::144561
    [Crossref] [Google Scholar]
  117. 117.
    McNeill VF, Sareen N, Schwier AN. 2014.. Surface-active organics in atmospheric aerosols. . In Atmospheric and Aerosol Chemistry, ed. VF McNeill, PA Ariya , pp. 20159. Berlin:: Springer
    [Google Scholar]
  118. 118.
    Ryder OS, Campbell NR, Morris H, Forestieri S, Ruppel MJ, et al. 2015a.. Role of organic coatings in regulating N2O5 reactive uptake to sea spray aerosol. . J. Phys. Chem. A 119::1168392
    [Crossref] [Google Scholar]
  119. 119.
    Kregel SJ, Derrah TF, Moon S, Limmer DT, Nathanson GM, Bertram TH. 2023.. Weak temperature dependence of the relative rates of chlorination and hydrolysis of N2O5 in NaCl-water solutions. . J. Phys. Chem. A 127::167585
    [Crossref] [Google Scholar]
  120. 120.
    Roberts JM, Osthoff HD, Brown SS, Ravishankara AR, Coffman D, et al. 2009.. Laboratory studies of products of N2O5 uptake on Cl containing substrates. . Geophys. Res. Lett. 36::L20808
    [Crossref] [Google Scholar]
  121. 121.
    Ryder OS, Campbell NR, Shaloski M, Al-Mashat H, Nathanson GM, Bertram TH. 2015b.. Role of organics in regulating ClNO2 production at the air-sea interface. . J. Phys. Chem. A 119::851926
    [Crossref] [Google Scholar]
  122. 122.
    McNamara JP, Hillier IH. 2000.. Exploration of the atmospheric reactivity of N2O5 and HCl in small water clusters using electronic structure methods. . Phys. Chem. Chem. Phys. 2::25039
    [Crossref] [Google Scholar]
  123. 123.
    Kelleher PJ, Menges FS, DePalma JW, Denton JK, Johnson MA, et al. 2017.. Trapping and structural characterization of the XNO2·NO3 (X = Cl, Br, I) exit channel complexes in the water-mediated X + N2O5 reactions with cryogenic vibrational spectroscopy. . J. Phys. Chem. Lett. 8::471015
    [Crossref] [Google Scholar]
  124. 124.
    McCaslin LM, Johnson MA, Gerber RB. 2019.. Mechanisms and competition of halide substitution and hydrolysis in reactions of N2O5 and seawater. . Sci. Adv. 5::eaav6503
    [Crossref] [Google Scholar]
  125. 125.
    McCaslin LM, Götz AW, Johnson MA, Gerber RB. 2022.. Effects of microhydration on the mechanisms of hydrolysis and Cl substitution in reactions of N2O5 and seawater. . ChemPhysChem 24::e202200819
    [Crossref] [Google Scholar]
  126. 126.
    Gerber RB, Varner ME, Hammerich AD, Riikonen S, Murdachaew G, et al. 2015.. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces. . Acc. Chem. Res. 48::399406
    [Crossref] [Google Scholar]
  127. 127.
    Wang Z, Wang WH, Tham YJ, Li QY, Wang H, et al. 2017.. Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the north China plain. . Atmos. Chem. Phys. 17::1236178
    [Crossref] [Google Scholar]
  128. 128.
    McDuffie EE, Fibiger DL, Dubé WP, Hilfiker FL, Lee BH, et al. 2018.. ClNO2 yields from aircraft measurements during the 2015 WINTER campaign and critical evaluation of the current parameterization. . J. Geophys. Res. Atmos. 123::129943015
    [Google Scholar]
  129. 129.
    Staudt S, Gord JR, Karimova NV, McDuffie EE, Brown SS, et al. 2019.. Sulfate and carboxylate suppress the formation of ClNO2 at atmospheric interfaces. . ACS Earth Space Chem. 3::198797
    [Crossref] [Google Scholar]
  130. 130.
    Pegram LM, Record MT. 2007.. Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface. . J. Phys. Chem. B 111::541117
    [Crossref] [Google Scholar]
  131. 131.
    Shaloski MA, Gord JR, Staudt S, Quinn SL, Bertram TH, Nathanson GM. 2017.. Reactions of N2O5 with salty and surfactant-coated glycerol: interfacial conversion of Br to Br2 mediated by alkylammonium cations. . J. Phys. Chem. A 121::370819
    [Crossref] [Google Scholar]
  132. 132.
    Karimova NV, Chen J, Gord JR, Staudt S, Bertram TH, et al. 2020.. SN2 reactions of N2O5 with ions in water: microscopic mechanisms, intermediates, and products. . J. Phys. Chem. A 124::71120
    [Crossref] [Google Scholar]
  133. 133.
    Minofar B, Jungwirth P, Das MR, Kunz W, Mahiuddin S. 2007.. Propensity of formate, acetate, benzoate, and phenolate for the aqueous solution/vapor interface: surface tension measurements and molecular dynamics simulations. . J. Phys. Chem. C 111::824247
    [Crossref] [Google Scholar]
  134. 134.
    Gopalakrishnan S, Jungwirth P, Tobias DJ, Allen HC. 2005.. Air-liquid interfaces of aqueous solutions containing ammonium and sulfate: spectroscopic and molecular dynamics studies. . J. Phys. Chem. B 109::886172
    [Crossref] [Google Scholar]
  135. 135.
    Faust JA, Nathanson GM. 2016.. Microjets and coated wheels: versatile tools for exploring collisions and reactions at gas-liquid interfaces. . Chem. Soc. Rev. 45::360920
    [Crossref] [Google Scholar]
  136. 136.
    Dempsey LP, Faust JA, Nathanson GM. 2012.. Near-interfacial halogen atom exchange in collisions of Cl2 with 2.7 M NaBr-glycerol. . J. Phys. Chem. B 116::1230618
    [Crossref] [Google Scholar]
  137. 137.
    Faust JA, Dempsey LP, Nathanson GM. 2013.. Surfactant-promoted reactions of Cl2 and Br2 with Br in glycerol. . J. Phys. Chem. B 117::1260212
    [Crossref] [Google Scholar]
  138. 138.
    Gord JR, Zhao X, Liu E, Bertram TH, Nathanson GM. 2018.. Control of interfacial Cl2 and N2O5 reactivity by a zwitterionic phospholipid in comparison with ionic and uncharged surfactants. . J. Phys. Chem. A 122::6593604
    [Crossref] [Google Scholar]
  139. 139.
    Vacha R, Siu SWI, Petrov M, Bockmann RA, Barucha-Kraszewska J, et al. 2009.. Effects of alkali cations and halide anions on the DOPC lipid membrane. . J. Phys. Chem. A 113::723543
    [Crossref] [Google Scholar]
  140. 140.
    Thornton JA, Abbatt JPD. 2005.. N2O5 reaction on submicron sea salt aerosol: kinetics, products, and the effect of surface active organics. . J. Phys. Chem. A 109::1000412
    [Crossref] [Google Scholar]
  141. 141.
    McNeill VF, Patterson J, Wolfe GM, Thornton JA. 2006.. The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol. . Atmos. Chem. Phys. 6::163544
    [Crossref] [Google Scholar]
  142. 142.
    Badger CL, Griffiths PT, George I, Abbatt JPD, Cox RA. 2006.. Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate. . J. Phys. Chem. A 110::698694
    [Crossref] [Google Scholar]
  143. 143.
    Clifford D, Donaldson DJ. 2007.. Direct experimental evidence for a heterogeneous reaction of ozone with bromide at the air-aqueous interface. . J. Phys. Chem. A 111::980914
    [Crossref] [Google Scholar]
  144. 144.
    Burden DK, Johnson AM, Krier JM, Nathanson GM. 2014.. The entry of HCl through soluble surfactants on sulfuric acid: effects of chain branching. . J. Phys. Chem. B 118::79938001
    [Crossref] [Google Scholar]
  145. 145.
    Wang TX, Kelley MD, Cooper JN, Beckwith RC, Margerum DW. 1994.. Equilibrium, kinetic, and UV-spectral characteristics of aqueous bromine chloride, bromine, and chlorine species. . Inorg. Chem. 33::587278
    [Crossref] [Google Scholar]
  146. 146.
    Andersson G, Ridings C. 2014.. Ion scattering studies of molecular structure at liquid surfaces with applications in industrial and biological systems. . Chem. Rev. 114::836187
    [Crossref] [Google Scholar]
  147. 147.
    Zhao XY, Nathanson GM, Andersson GG. 2020.. Experimental depth profiles of surfactants, ions, and solvent at the angstrom scale: studies of cationic and anionic surfactants and their salting out. . J. Phys. Chem. B 124::221829
    [Crossref] [Google Scholar]
  148. 148.
    Kumar A, Craig VSJ, Page AJ, Webber GB, Wanless EJ, Andersson G. 2022.. Ion specificity in the measured concentration depth profile of ions at the vapor-glycerol interface. . J. Colloid Interface Sci. 626::68799
    [Crossref] [Google Scholar]
  149. 149.
    Zhao XY, Nathanson GM, Andersson GG. 2020.. Competing segregation of Br and Cl to a surface coated with a cationic surfactant: direct measurements of ion and solvent depth profiles. . J. Phys. Chem. A 124::1110210
    [Crossref] [Google Scholar]
  150. 150.
    Faubel M, Schlemmer S, Toennies JP. 1988.. A molecular beam study of the evaporation of water from a liquid jet. . Z. Phys. D Atoms Mol. Clust. 10::26977
    [Crossref] [Google Scholar]
  151. 151.
    Gao XF, Nathanson GM. 2022.. Exploring gas-liquid reactions with microjets: lessons we are learning. . Acc. Chem. Res. 55::3294302
    [Crossref] [Google Scholar]
  152. 152.
    Sobyra TB, Pliszka H, Bertram TH, Nathanson GM. 2019.. Production of Br2 from N2O5 and Br in salty and surfactant-coated water microjets. . J. Phys. Chem. A 123::894253
    [Crossref] [Google Scholar]
  153. 153.
    Chen SZ, Artiglia L, Orlando F, Edebeli J, Kong XR, et al. 2021.. Impact of tetrabutylammonium on the oxidation of bromide by ozone. . ACS Earth Space Chem. 5::300821
    [Crossref] [Google Scholar]
  154. 154.
    Dommer AC, Wauer NA, Angle KJ, Davasam A, Rubio P, et al. 2023.. Revealing the impacts of chemical complexity on submicrometer sea spray aerosol morphology. . ACS Cent. Sci. 9::1088103
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-083122-121620
Loading
/content/journals/10.1146/annurev-physchem-083122-121620
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error