Molecular dynamics (MD) enables the study of physical systems with excellent spatiotemporal resolution but suffers from severe timescale limitations. To address this, enhanced sampling methods have been developed to improve the exploration of configurational space. However, implementing these methods is challenging and requires domain expertise. In recent years, integration of machine learning (ML) techniques into different domains has shown promise, prompting their adoption in enhanced sampling as well. Although ML is often employed in various fields primarily due to its data-driven nature, its integration with enhanced sampling is more natural with many common underlying synergies. This review explores the merging of ML and enhanced MD by presenting different shared viewpoints. It offers a comprehensive overview of this rapidly evolving field, which can be difficult to stay updated on. We highlight successful strategies such as dimensionality reduction, reinforcement learning, and flow-based methods. Finally, we discuss open problems at the exciting ML-enhanced MD interface.

Expected final online publication date for the , Volume 75 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Article metrics loading...

Loading full text...

Full text loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error