1932

Abstract

We review the emerging method of super-resolved cryogenic correlative light and electron microscopy (srCryoCLEM). Super-resolution (SR) fluorescence microscopy and cryogenic electron tomography (CET) are both powerful techniques for observing subcellular organization, but each approach has unique limitations. The combination of the two brings the single-molecule sensitivity and specificity of SR to the detailed cellular context and molecular scale resolution of CET. The resulting correlative data is more informative than the sum of its parts. The correlative images can be used to pinpoint the positions of fluorescently labeled proteins in the high-resolution context of CET with nanometer-scale precision and/or to identify proteins in electron-dense structures. The execution of srCryoCLEM is challenging and the approach is best described as a method that is still in its infancy with numerous technical challenges. In this review, we describe state-of-the-art srCryoCLEM experiments, discuss the most pressing challenges, and give a brief outlook on future applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090319-051546
2021-04-20
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090319-051546.html?itemId=/content/journals/10.1146/annurev-physchem-090319-051546&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Feynman R. 1960. There's plenty of room at the bottom. Caltech Eng. Sci. 23:22–36
    [Google Scholar]
  2. 2. 
    Abbe E 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen Detektion [Contributions to the theory of the microscope and microscopic detection. ]. Arch. Mikroskop. Anat. 9:413–68
    [Google Scholar]
  3. 3. 
    Dickson RM, Cubitt AB, Tsien RY, Moerner WE. 1997. On/off blinking and switching behavior of single molecules of green fluorescent protein. Nature 388:355–58
    [Google Scholar]
  4. 4. 
    Klar TA, Hell SW. 1999. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24:954–56
    [Google Scholar]
  5. 5. 
    Rust MJ, Bates M, Zhuang X. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–96
    [Google Scholar]
  6. 6. 
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45
    [Google Scholar]
  7. 7. 
    Hess ST, Girirajan TPK, Mason MD. 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258–72
    [Google Scholar]
  8. 8. 
    Moerner WE. 2007. New directions in single-molecule imaging and analysis. PNAS 104:12596–602
    [Google Scholar]
  9. 9. 
    Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB et al. 2013. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10:584–90
    [Google Scholar]
  10. 10. 
    Danev R, Buijsse B, Khoshouei M, Plitzko JM, Baumeister W 2014. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. PNAS 111:15635–40
    [Google Scholar]
  11. 11. 
    Earl LA, Falconieri V, Milne JL, Subramaniam S. 2017. Cryo-EM: beyond the microscope. Curr. Opin. Struct. Biol. 46:71–78
    [Google Scholar]
  12. 12. 
    Lehmann M, Lichtner G, Klenz H, Schmoranzer J. 2016. Novel organic dyes for multicolor localization-based super-resolution microscopy. J. Biophoton. 9:161–70
    [Google Scholar]
  13. 13. 
    Schueder F, Lara-Gutiérrez J, Beliveau BJ, Saka SK, Sasaki HM et al. 2017. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nat. Commun. 8:2090
    [Google Scholar]
  14. 14. 
    Zheng Q, Lavis LD. 2017. Development of photostable fluorophores for molecular imaging. Curr. Opin. Chem. Biol. 39:32–38
    [Google Scholar]
  15. 15. 
    Schwartz CL, Sarbash VI, Ataullakhanov FI, McIntosh JR, Nicastro D. 2007. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J. Microsc. 227:98–109
    [Google Scholar]
  16. 16. 
    Chang YW, Chen S, Tocheva EI, Treuner-Lange A, Lobach S et al. 2014. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods 11:737–39
    [Google Scholar]
  17. 17. 
    Liu B, Xue Y, Zhao W, Chen Y, Fan C et al. 2015. Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci. Rep. 5:13017
    [Google Scholar]
  18. 18. 
    Tuijtel MW, Koster AJ, Jakobs S, Faas FGA, Sharp TH. 2019. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 9:1369
    [Google Scholar]
  19. 19. 
    Dahlberg PD, Saurabh S, Sartor AM, Wang J, Mitchell PG et al. 2020. Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in Caulobacter. PNAS 117:13937–44
    [Google Scholar]
  20. 20. 
    Wu G, Mitchell PG, Galaz-Montoya JG, Hecksel CW, Sontag EM et al. 2020. Multi-scale 3D cryo-correlative microscopy for vitrified cells. bioRxiv 107771. https://doi.org/10.1101/2020.05.21.107771
    [Crossref] [Google Scholar]
  21. 21. 
    Sochacki KA, Shtengel G, van Engelenburg SB, Hess HF, Taraska JW. 2014. Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat. Methods 11:305–8
    [Google Scholar]
  22. 22. 
    Hauser M, Wojcik M, Kim D, Mahmoudi M, Li W, Xu K. 2017. Correlative super-resolution microscopy: new dimensions and new opportunities. Chem. Rev. 117:7428–56
    [Google Scholar]
  23. 23. 
    Mateos JM, Barmettler G, Doehner J, Ojeda Naharros I, Guhl B et al. 2017. Correlative super-resolution and electron microscopy to resolve protein localization in zebrafish retina. J. Vis. Exp. 129:e56113
    [Google Scholar]
  24. 24. 
    Kopek BG, Paez-Segala M, Shtengel G, Sochacki KA, Sun MG et al. 2017. Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples. Nat. Protoc. 12:916–46
    [Google Scholar]
  25. 25. 
    Elmlund D, Elmlund H. 2015. Cryogenic electron microscopy and single-particle analysis. Annu. Rev. Biochem. 84:499–517
    [Google Scholar]
  26. 26. 
    Cheng Y, Grigorieff N, Penczek PA, Walz T. 2015. A primer to single-particle cryo-electron microscopy. Cell 161:438–49
    [Google Scholar]
  27. 27. 
    Ognjenović J, Grisshammer R, Subramaniam S. 2019. Frontiers in cryo electron microscopy of complex macromolecular assemblies. Annu. Rev. Biomed. Eng. 21:395–415
    [Google Scholar]
  28. 28. 
    Baumeister W, Grimm R, Walz J. 1999. Electron tomography of molecules and cells. Trends Cell Biol 9:81–85
    [Google Scholar]
  29. 29. 
    Asano S, Engel BD, Baumeister W. 2016. In situ cryo-electron tomography: a post-reductionist approach to structural biology. J. Mol. Biol. 428:332–43
    [Google Scholar]
  30. 30. 
    Wolff G, Hagen C, Grünewald K, Kaufmann R. 2016. Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol. Cell 108:245–58
    [Google Scholar]
  31. 31. 
    Dahlberg PD, Perez D, Su Z, Chiu W, Moerner WE. 2020. Cryogenic correlative single-particle photoluminescence spectroscopy and electron tomography for investigation of nanomaterials. Angew. Chem. Int. Ed. 59:15642–48
    [Google Scholar]
  32. 32. 
    Russo CJ, Passmore LA. 2014. Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–80
    [Google Scholar]
  33. 33. 
    Dubochet J, McDowall AW. 1981. Vitrification of pure water for electron microscopy. J. Microsc. 124:3–4
    [Google Scholar]
  34. 34. 
    Dubochet J, Adrian M, Chang J, Homo J, Lepault J et al. 1988. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228
    [Google Scholar]
  35. 35. 
    Dobro MJ, Melanson LA, Jensen GJ, McDowall AW 2010. Plunge freezing for electron cryomicroscopy. Methods in Enzymology, Vol. 481: GJ Jensen 63–82 Amsterdam: Elsevier
    [Google Scholar]
  36. 36. 
    Sartori N, Richter K, Dubochet J. 1993. Vitrification depth can be increased more than 10-fold by high-pressure freezing. J. Microsc. 172:55–61
    [Google Scholar]
  37. 37. 
    Studer D, Graber W, Al-Amoudi A, Eggli P 2001. A new approach for cryofixation by high-pressure freezing. J. Microsc. 203:285–94
    [Google Scholar]
  38. 38. 
    Al-Amoudi A, Chang J, Leforestier A, McDowall A, Salamin LM et al. 2004. Cryo-electron microscopy of vitreous sections. EMBO J 23:3583–88
    [Google Scholar]
  39. 39. 
    Rigort A, Bäuerlein FJB, Villa E, Eibauer M, Laugks T et al. 2012. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. PNAS 109:4449
    [Google Scholar]
  40. 40. 
    Villa E, Schaffer M, Plitzko JM, Baumeister W. 2013. Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr. Opin. Struct. Biol. 23:771–77
    [Google Scholar]
  41. 41. 
    Marko M, Hsieh C, Schalek R, Frank J, Mannella C. 2007. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods 4:215–17
    [Google Scholar]
  42. 42. 
    Wagner FR, Watanabe R, Schampers R, Singh D, Persoon H et al. 2020. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15:2041–70
    [Google Scholar]
  43. 43. 
    Bouchet-Marquis C, Hoenger A. 2011. Cryo-electron tomography on vitrified sections: a critical analysis of benefits and limitations for structural cell biology. Micron 42:152–62
    [Google Scholar]
  44. 44. 
    Xu CS, Hayworth KJ, Lu Z, Grob P, Hassan AM et al. 2017. Enhanced FIB-SEM systems for large-volume 3D imaging. eLife 6:e25916
    [Google Scholar]
  45. 45. 
    Plitzko J, Baumeister WP 2019. Cryo-electron tomography. Springer Handbook of Microscopy: Electron and Ion Microscopy PW Hawkes, JCH Spence 189–228 Cham, Switz: Springer
    [Google Scholar]
  46. 46. 
    Mercogliano CP, DeRosier DJ. 2006. Gold nanocluster formation using metallothionein: mass spectrometry and electron microscopy. J. Mol. Biol. 355:211–23
    [Google Scholar]
  47. 47. 
    Martell JD, Deerinck TJ, Lam SS, Ellisman MH, Ting AY. 2017. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nat. Protoc. 12:1792
    [Google Scholar]
  48. 48. 
    Oda T, Kikkawa M. 2013. Novel structural labeling method using cryo-electron tomography and biotin–streptavidin system. J. Struct. Biol. 183:305–11
    [Google Scholar]
  49. 49. 
    Chen M, Dai W, Sun SY, Jonasch D, He CY et al. 2017. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14:983–85
    [Google Scholar]
  50. 50. 
    Hecksel CW, Darrow MC, Dai W, Galaz-Montoya JG, Chin JA et al. 2016. Quantifying variability of manual annotation in cryo-electron tomograms. Microsc. Microanal. 22:487–96
    [Google Scholar]
  51. 51. 
    Wietrzynski W, Schaffer M, Tegunov D, Albert S, Kanazawa A et al. 2020. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife 9:e53740
    [Google Scholar]
  52. 52. 
    Frangakis AS, Bohm J, Forster F, Nickell S, Nicastro D et al. 2002. Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. PNAS 99:14153–58
    [Google Scholar]
  53. 53. 
    Hrabe T, Chen Y, Pfeffer S, Cuellar LK, Mangold A, Förster F. 2012. PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178:177–88
    [Google Scholar]
  54. 54. 
    Albert S, Wietrzynski W, Lee CW, Schaffer M, Beck F et al. 2020. Direct visualization of degradation microcompartments at the ER membrane. PNAS 117:1069–80
    [Google Scholar]
  55. 55. 
    Himes BA, Zhang P. 2018. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 15:955–61
    [Google Scholar]
  56. 56. 
    Jin J, Galaz-Montoya J, Sherman MB, Sun SY, Goldsmith CS et al. 2018. Neutralizing antibodies inhibit chikungunya virus budding at the plasma membrane. Cell Host Microbe 24:417–28.e5
    [Google Scholar]
  57. 57. 
    Bharat TA, Scheres SH. 2016. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat. Protoc. 11:2054–65
    [Google Scholar]
  58. 58. 
    Galaz-Montoya JG, Flanagan J, Schmid MF, Ludtke SJ. 2015. Single particle tomography in EMAN2. J. Struct. Biol. 190:279–90
    [Google Scholar]
  59. 59. 
    Kador L, Horne DE, Moerner WE. 1990. Optical detection and probing of single dopant molecules of pentacene in a p-terphenyl host crystal by means of absorption spectroscopy. J. Phys. Chem. 94:1237–48
    [Google Scholar]
  60. 60. 
    Orrit M, Bernard J. 1990. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65:2716–19
    [Google Scholar]
  61. 61. 
    Moerner WE, Basché T. 1993. Optical spectroscopy of single impurity molecules in solids. Angew. Chem. Int. Ed. 32:457–76
    [Google Scholar]
  62. 62. 
    Basché T, Moerner WE, Orrit M, Wild UP 1997. Single-Molecule Optical Detection, Imaging, and Spectroscopy Basel, Switz: Verlag-Chemie
    [Google Scholar]
  63. 63. 
    Betzig E, Chichester RJ. 1993. Single molecules observed by near-field scanning optical microscopy. Science 262:1422–25
    [Google Scholar]
  64. 64. 
    Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA. 1990. Detection of single fluorescent molecules. Chem. Phys. Lett. 174:553–57
    [Google Scholar]
  65. 65. 
    Rigler R, Orrit M, Basché T 2001. Single Molecule Spectroscopy: Nobel Conference Lectures Springer Ser. Chem. Phys Berlin: Springer-Verlag
    [Google Scholar]
  66. 66. 
    Moerner WE, Plakhotnik T, Irngartinger T, Croci M, Palm V, Wild UP. 1994. Optical probing of single molecules of terrylene in a Shpol'kii matrix: a two-state single-molecule switch. J. Phys. Chem. 98:7382–89
    [Google Scholar]
  67. 67. 
    Hell SW. 2009. Microscopy and its focal switch. Nat. Methods 6:24–32
    [Google Scholar]
  68. 68. 
    Sahl SJ, Moerner WE. 2013. Super-resolution fluorescence imaging with single molecules. Curr. Opin. Struct. Biol. 23:778–87
    [Google Scholar]
  69. 69. 
    Schermelleh L, Heintzmann R, Leonhardt H. 2010. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190:165–75
    [Google Scholar]
  70. 70. 
    Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M et al. 2019. Super-resolution microscopy demystified. Nat. Cell Biol. 21:72–84
    [Google Scholar]
  71. 71. 
    von Diezmann A, Shechtman Y, Moerner WE. 2017. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev. 117:7244–75
    [Google Scholar]
  72. 72. 
    Huang B, Bates M, Zhuang X. 2009. Super resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993–1016
    [Google Scholar]
  73. 73. 
    Müller CB, Loman A, Pacheco V, Koberling F, Willbold D et al. 2008. Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. Eur. Phys. Lett. 83:46001
    [Google Scholar]
  74. 74. 
    Mueller CB, Enderlein J. 2010. Image scanning microscopy. Phys. Rev. Lett. 104:198101
    [Google Scholar]
  75. 75. 
    Gustafsson MGL. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198:82–87
    [Google Scholar]
  76. 76. 
    Hell SW. 2005. Fluorescence nanoscopy: breaking the diffraction barrier by the RESOLFT concept. NanoBiotechnology 1:296
    [Google Scholar]
  77. 77. 
    Shaner NC, Steinbach PA, Tsien RY. 2005. A guide to choosing fluorescent proteins. Nat. Methods 2:905–9
    [Google Scholar]
  78. 78. 
    Fernández-Suárez M, Ting AY. 2008. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9:929–43
    [Google Scholar]
  79. 79. 
    Endesfelder U, Malkusch S, Flottmann B, Mondry J, Liguzinski P et al. 2011. Chemically induced photoswitching of fluorescent probes—a general concept for super-resolution microscopy. Molecules 16:3106–18
    [Google Scholar]
  80. 80. 
    O'Hare HM, Johnsson K, Gautier A 2007. Chemical probes shed light on protein function. Curr. Opin. Struct. Biol. 17:488–94
    [Google Scholar]
  81. 81. 
    van de Linde S, Heilemann M, Sauer M. 2012. Live-cell super-resolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 63:519–40
    [Google Scholar]
  82. 82. 
    Saurabh S, Perez AM, Comerci CJ, Shapiro L, Moerner WE. 2016. Super-resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule. J. Am. Chem. Soc. 138:10398–401
    [Google Scholar]
  83. 83. 
    Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP et al. 2016. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13:985–88
    [Google Scholar]
  84. 84. 
    Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H. 2012. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9:582–84
    [Google Scholar]
  85. 85. 
    Muyldermans S. 2013. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82:775–97
    [Google Scholar]
  86. 86. 
    Mikhaylova M, Cloin BMC, Finan K, van den Berg R, Teeuw J et al. 2015. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 6:7933
    [Google Scholar]
  87. 87. 
    Banterle N, Bui KH, Lemke EA, Beck M. 2013. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J. Struct. Biol. 183:363–67
    [Google Scholar]
  88. 88. 
    Huff J. 2015. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods 12:i–ii
    [Google Scholar]
  89. 89. 
    Wu Y, Shroff H. 2018. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods 15:1011–19
    [Google Scholar]
  90. 90. 
    Heintzmann R, Huser T. 2017. Super-resolution structured illumination microscopy. Chem. Rev. 117:13890–908
    [Google Scholar]
  91. 91. 
    Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN et al. 2008. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94:4957–70
    [Google Scholar]
  92. 92. 
    Lal A, Shan C, Xi P. 2016. Structured illumination microscopy image reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron. 22:50–63
    [Google Scholar]
  93. 93. 
    Hell SW. 2007. Far-field optical nanoscopy. Science 316:1153–58
    [Google Scholar]
  94. 94. 
    Westphal V, Hell SW. 2005. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94:143903
    [Google Scholar]
  95. 95. 
    Harke B, Keller J, Ullal CK, Westphal V, Schönle A, Hell SW. 2008. Resolution scaling in STED microscopy. Opt. Express 16:4154–62
    [Google Scholar]
  96. 96. 
    Giske A. 2007. CryoSTED microscopy - a new spectroscopic approach for improving the resolution of STED microscopy using low temperature PhD Thesis, Heidelberg Univ. Heidelberg, Ger:.
    [Google Scholar]
  97. 97. 
    Moerner WE. 2012. Microscopy beyond the diffraction limit using actively controlled single molecules. J. Microsc. 246:213–20
    [Google Scholar]
  98. 98. 
    Thompson RE, Larson DR, Webb WW. 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775–83
    [Google Scholar]
  99. 99. 
    Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H. 2010. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7:377–81
    [Google Scholar]
  100. 100. 
    Huang B, Wang W, Bates M, Zhuang X. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–13
    [Google Scholar]
  101. 101. 
    Sage D, Pham T-A, Babcock H, Lukes T, Pengo T et al. 2019. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat. Methods 16:387–95
    [Google Scholar]
  102. 102. 
    Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM. 2014. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–90
    [Google Scholar]
  103. 103. 
    Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM. 2007. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160:135–45
    [Google Scholar]
  104. 104. 
    van Driel LF, Valentijn JA, Valentijn KM, Koning RI, Koster AJ. 2009. Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. Eur. J. Cell Biol. 88:669–84
    [Google Scholar]
  105. 105. 
    Schorb M, Gaechter L, Avinoam O, Sieckmann F, Clarke M et al. 2017. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography. J. Struct. Biol. 197:83–93
    [Google Scholar]
  106. 106. 
    Dahlberg PD, Sartor AM, Wang J, Saurabh S, Shapiro L, Moerner WE. 2018. Identification of PAmKate as a red photoactivatable fluorescent protein for cryogenic super-resolution imaging. J. Am. Chem. Soc. 140:12310–13
    [Google Scholar]
  107. 107. 
    Weisenburger S, Jing B, Hänni D, Reymond L, Schuler B et al. 2014. Cryogenic colocalization microscopy for nanometer-distance measurements. Chem. Phys. Chem. 15:763–70
    [Google Scholar]
  108. 108. 
    Weisenburger S, Boening D, Schomburg B, Giller K, Becker S et al. 2017. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution. Nat. Methods 14:141–44
    [Google Scholar]
  109. 109. 
    Moerner WE, Kador L. 1989. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62:2535–38
    [Google Scholar]
  110. 110. 
    Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M et al. 2020. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367:eaaz5357
    [Google Scholar]
  111. 111. 
    Li S, Ji G, Shi Y, Klausen LH, Niu T et al. 2018. High-vacuum optical platform for cryo-CLEM (HOPE): a new solution for non-integrated multiscale correlative light and electron microscopy. J. Struct. Biol. 201:63–75
    [Google Scholar]
  112. 112. 
    Le Gros M, McDermott G, Uchida M, Knoechel C, Larabell C 2009. High-aperture cryogenic light microscopy. J. Microsc. 235:1–8
    [Google Scholar]
  113. 113. 
    Wang L, Bateman B, Zanetti-Domingues LC, Moores AN, Astbury S et al. 2019. Solid immersion microscopy images cells under cryogenic conditions with 12 nm resolution. Commun. Biol. 2:74
    [Google Scholar]
  114. 114. 
    Inagawa H, Toratani Y, Motohashi K, Nakamura I, Matsushita M, Fujiyoshi S. 2015. Reflecting microscope system with a 0.99 numerical aperture designed for three-dimensional fluorescence imaging of individual molecules at cryogenic temperatures. Sci. Rep. 5:12833
    [Google Scholar]
  115. 115. 
    Nahmani M, Lanahan C, DeRosier D, Turrigiano GG. 2017. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions. PNAS 114:3832
    [Google Scholar]
  116. 116. 
    Gustavsson A-K, Petrov PN, Lee MY, Shechtman Y, Moerner WE. 2018. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat. Commun. 9:123
    [Google Scholar]
  117. 117. 
    Vicidomini G, Bianchini P, Diaspro A. 2018. STED super-resolved microscopy. Nat. Methods 15:173–82
    [Google Scholar]
  118. 118. 
    van Oijen AM, Köhler J, Schmidt J, Müller M, Brakenhoff GJ. 1998. 3-Dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett. 292:183–87
    [Google Scholar]
  119. 119. 
    Naumov AV, Gorshelev AA, Vainer YG, Kador L, Köhler J. 2009. Far-field nanodiagnostics of solids with visible light by spectrally selective imaging. Angew. Chem. Int. Ed. 48:9747–50
    [Google Scholar]
  120. 120. 
    Kozankiewicz B, Orrit M. 2014. Single-molecule photophysics, from cryogenic to ambient conditions. Chem. Soc. Rev. 43:1029–43
    [Google Scholar]
  121. 121. 
    Zheng Q, Jockusch S, Zhou Z, Blanchard SC. 2014. The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem. Photobiol. 90:448–54
    [Google Scholar]
  122. 122. 
    Zondervan R, Kulzer F, Kol'chenk MA, Orrit M 2004. Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels. J. Phys. Chem. A 108:1657–65
    [Google Scholar]
  123. 123. 
    Banasiewicz M, Wiącek D, Kozankiewicz B. 2006. Structural dynamics of 2,3-dimethylnaphthalene crystals revealed by fluorescence of single terrylene molecules. Chem. Phys. Lett. 425:94–98
    [Google Scholar]
  124. 124. 
    Werley CA, Moerner WE. 2006. Single-molecule nanoprobes explore defects in spin-grown crystals. J. Phys. Chem. B 110:18939–44
    [Google Scholar]
  125. 125. 
    Hulleman CN, Li W, Gregor I, Rieger B, Enderlein J. 2018. Photon yield enhancement of red fluorophores at cryogenic temperatures. Chem. Phys. Chem. 19:1774–80
    [Google Scholar]
  126. 126. 
    Weisenburger S, Jing B, Renn A, Sandoghdar V. 2013. Cryogenic localization of single molecules with angstrom precision. Proceedings SPIE, Nanoimaging and Nanospectroscopy, Vol. 8815 San Diego, CA: Int. Soc. Opt. Photonics
    [Google Scholar]
  127. 127. 
    Kaufmann R, Schellenberger P, Seiradake E, Dobbie IM, Jones EY et al. 2014. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett 14:4171–75
    [Google Scholar]
  128. 128. 
    Ha T, Tinnefeld P. 2012. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 63:595–617
    [Google Scholar]
  129. 129. 
    Dickson RM, Norris DJ, Moerner WE. 1998. Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis. Phys. Rev. Lett. 81:5322–25
    [Google Scholar]
  130. 130. 
    Enderlein J, Toprak E, Selvin PR. 2006. Polarization effect on position accuracy of fluorophore localization. Opt. Express 14:8111–20
    [Google Scholar]
  131. 131. 
    Engelhardt J, Keller J, Hoyer P, Reuss M, Staudt T, Hell SW. 2011. Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. Nano Lett 11:209–13
    [Google Scholar]
  132. 132. 
    Backlund MP, Lew MD, Backer AS, Sahl SJ, Grover G et al. 2012. Simultaneous, accurate measurement of the 3D position and orientation of single molecules. PNAS 109:19087–92
    [Google Scholar]
  133. 133. 
    Backer AS, Lee MY, Moerner WE. 2016. Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements. Optica 3:659–66
    [Google Scholar]
  134. 134. 
    Lew MD, Backlund MP, Moerner WE. 2013. Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy. Nano Lett 13:3967–72
    [Google Scholar]
  135. 135. 
    Hulleman CN, Huisman M, Moerland RJ, Grünwald D, Stallinga S, Rieger B. 2018. Fluorescence polarization control for on-off switching of single molecules at cryogenic temperatures. Small Methods 2:1700323
    [Google Scholar]
  136. 136. 
    Lew MD, Moerner WE. 2014. Azimuthal polarization filtering for accurate, precise, and robust single-molecule localization microscopy. Nano Lett 14:6407–13
    [Google Scholar]
  137. 137. 
    Backlund MP, Arabi A, Petrov PN, Arabi E, Saurabh S et al. 2016. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat. Photon. 10:459–62
    [Google Scholar]
  138. 138. 
    Schwentker MA, Bock H, Hofmann M, Jakobs S, Bewersdorf J et al. 2007. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc. Res. Tech. 70:269–80
    [Google Scholar]
  139. 139. 
    Subach FV, Malashkevich VN, Zencheck WD, Xiao H, Filonov GS et al. 2009. Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states. PNAS 106:21097–102
    [Google Scholar]
  140. 140. 
    Regis Faro A, Carpentier P, Jonasson G, Pompidor G, Arcizet D et al. 2011. Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron. J. Am. Chem. Soc. 133:16362–65
    [Google Scholar]
  141. 141. 
    Regis Faro A, Adam V, Carpentier P, Darnault C, Bourgeois D, de Rosny E 2010. Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins. Photochem. Photobiol. Sci. 9:254–62
    [Google Scholar]
  142. 142. 
    Ambrose WP, Basché T, Moerner WE. 1991. Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation. J. Chem. Phys. 95:7150–63
    [Google Scholar]
  143. 143. 
    Moerner WE 1988. Persistent Spectral Hole-Burning: Science and Applications. Top. Curr. Phys. Vol. 44 Berlin: Springer
    [Google Scholar]
  144. 144. 
    van Oijen AM, Köhler J, Schmidt J, Müller M, Brakenhoff GJ. 1999. Far-field fluorescence microscopy beyond the diffraction limit. J. Opt. Soc. Am. A 16:909–15
    [Google Scholar]
  145. 145. 
    Völker S. 1987. Optical linewidths and dephasing of organic amorphous and semi-crystalline solids studied by hole burning. J. Lumin. 36:251–62
    [Google Scholar]
  146. 146. 
    Creemers TMH, Lock AJ, Subramaniam V, Jovin TM, Voelker S 2000. Photophysics and optical switching in green fluorescent protein mutants. PNAS 97:2974–78
    [Google Scholar]
  147. 147. 
    Arnold J, Mahamid J, Lucic V, de Marco A, Fernandez J et al. 2016. Site-specific cryo-focused ion beam sample preparation guided by 3D correlative microscopy. Biophys. J. 110:860–69
    [Google Scholar]
  148. 148. 
    Tuijtel MW, Koster AJ, Faas FG, Sharp TH. 2019. Correlated cryo super-resolution light and cryo-electron microscopy on mammalian cells expressing the fluorescent protein rsEGFP2. Small Methods 3:1900425
    [Google Scholar]
  149. 149. 
    Paul-Gilloteaux P, Heiligenstein X, Belle M, Domart M, Larijani B et al. 2017. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat. Methods 14:102–3
    [Google Scholar]
  150. 150. 
    Gahlmann A, Ptacin JL, Grover G, Quirin S, von Diezmann ARS et al. 2013. Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in 3D. Nano Lett 13:987–93
    [Google Scholar]
  151. 151. 
    Dai W, Fu C, Khant HA, Ludtke SJ, Schmid MF, Chiu W. 2014. Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages. Nat. Protoc. 9:2630–42
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090319-051546
Loading
/content/journals/10.1146/annurev-physchem-090319-051546
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error