1932

Abstract

Kohn-Sham density functional theory with the available exchange–correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-043839
2021-04-20
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-043839.html?itemId=/content/journals/10.1146/annurev-physchem-090419-043839&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kohn W, Sham LJ. 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:1133–38
    [Google Scholar]
  2. 2. 
    Levy M. 1979. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. PNAS 76:6062–65
    [Google Scholar]
  3. 3. 
    Stoddart JC, March NH. 1971. Density-functional theory of magnetic instabilities in metals. Ann. Phys. 64:174–210
    [Google Scholar]
  4. 4. 
    von Barth U, Hedin L. 1972. A local exchange-correlation potential for the spin polarized case: I. J. Phys. C Solid State Phys. 5:1629–42
    [Google Scholar]
  5. 5. 
    Rajagopal AK, Callaway J. 1973. Inhomogeneous electron gas. Phys. Rev. 87:1912–19
    [Google Scholar]
  6. 6. 
    Becke AD. 1993. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98:1372–77
    [Google Scholar]
  7. 7. 
    Seidl A, Görling A, Vogl P, Majewski JA, Levy M. 1996. Generalized Kohn-Sham schemes and the band-gap problem. Phys. Rev. B 53:3764–74
    [Google Scholar]
  8. 8. 
    Yu HS, Li SL, Truhlar DG. 2016. Perspective: Kohn-Sham density functional theory descending a staircase. J. Chem. Phys. 145:130901
    [Google Scholar]
  9. 9. 
    Löwdin P-O. 1963. Discussion on the Hartree-Fock approximation. Rev. Mod. Phys. 35:496–501
    [Google Scholar]
  10. 10. 
    Löwdin P-O. 1969. Some aspects of the correlation problem and possible extensions of the independent particle model. Adv. Chem. Phys. 14:283–340
    [Google Scholar]
  11. 11. 
    Paldus J, Veillard A. 1978. Doublet stability of ab initio SCF solutions for the allyl radical. Mol. Phys. 35:445–59
    [Google Scholar]
  12. 12. 
    Galván IF, Vacher M, Alavi A, Angeli C, Aquilante F et al. 2019. OpenMolcas: from source code to insight. J. Chem. Theory Comput. 15:5925–64
    [Google Scholar]
  13. 13. 
    Perdew JP, Burke K, Ernzerhof M. 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68
    [Google Scholar]
  14. 14. 
    Papajak E, Zheng J, Xu X, Leverentz HR, Truhlar DG. 2011. Perspectives on basis sets beautiful: seasonal plantings of diffuse basis functions. J. Chem. Theory Comput. 7:3027–34
    [Google Scholar]
  15. 15. 
    Coulson CA, Fischer I. 1949. Notes on the molecular orbital treatment of the hydrogen molecule. Philos. Mag. 40:386–93
    [Google Scholar]
  16. 16. 
    Bagus PS, Bennet BI. 1975. Singlet-triplet splittings as obtained from the Xα-scattered wave method: a theoretical analysis. Int. J. Quantum Chem. 9:143–48
    [Google Scholar]
  17. 17. 
    Ziegler T, Rauk A, Baerends EJ. 1977. On the calculation of multiplet energies by the Hartree-Fock-Slater method. Theor. Chim. Acta 43:261–71
    [Google Scholar]
  18. 18. 
    Noodleman L, Davidson ER. 1986. Ligand spin polarization and antiferromagnetic coupling in transition metal dimers. Chem. Phys. 109:131–43
    [Google Scholar]
  19. 19. 
    Yamuguchi K, Tsunekawa T, Toyoda Y, Fueno T. 1988. Ab initio molecular orbital calculations of effective exchange integrals between transition metal ions. Chem. Phys. Lett. 143:371–76
    [Google Scholar]
  20. 20. 
    Adamo C, Barone V, Bencini A, Broer R, Filatov M et al. 2006. Comment on “About the calculation of exchange coupling constants using density-functional theory: The role of the self-interaction error” [J. Chem. Phys. 123, 164110 (2005)]. J. Chem. Phys. 124:107101
    [Google Scholar]
  21. 21. 
    Cramer CJ, Truhlar DG. 2009. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 11:10757–816
    [Google Scholar]
  22. 22. 
    Luo S, Averkiev B, Yang KR, Xu X, Truhlar DG. 2014. Density functional theory of open-shell systems. The 3D-series transition-metal atoms and their cations. J. Chem. Theory Comput. 10:102–21
    [Google Scholar]
  23. 23. 
    Yu HS, He X, Li SL, Truhlar DG. 2016. MN15: a Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 7:5032–51
    [Google Scholar]
  24. 24. 
    Lyakh DI, Musial M, Lotrich VF, Bartlett RJ. 2013. Multireference nature of chemistry: the coupled-cluster view. Chem. Rev. 112:182–243
    [Google Scholar]
  25. 25. 
    Laidig WD, Saxe P, Bartlett RJ 1987. The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory. J. Chem. Phys. 86:887–907
    [Google Scholar]
  26. 26. 
    Sun H, Freed KF. 1988. Molecular properties by ab initio quasidegenerate many-body perturbation theory effective Hamiltonian method: dipole and transition moments of CH and CH+. J. Chem. Phys. 88:2659–65
    [Google Scholar]
  27. 27. 
    Illas F, Rubio J, Ricart JM. 1988. Approximate natural orbitals and the convergence of a second order multireference many-body perturbation theory (CIPSI) algorithm. J. Chem. Phys. 89:6376–84
    [Google Scholar]
  28. 28. 
    Andersson K, Malmqvist , Roos BO, Sadlej AJ, Wolinski K. 1990. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94:5483–88
    [Google Scholar]
  29. 29. 
    Andersson K, Malmqvist P, Roos BO. 1992. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96:1218–26
    [Google Scholar]
  30. 30. 
    Hirao K. 1992. Multireference Møller-Plesset method. Chem. Phys. Lett. 190:374–80
    [Google Scholar]
  31. 31. 
    Nakano H. 1993. MCSCF reference quasidegenerate perturbation theory with Epstein-Nesbet partitioning. Chem. Phys. Lett. 207:372–78
    [Google Scholar]
  32. 32. 
    Piecuch P, Oliphant N, Adamowicz L. 1993. A state-selective multi-reference coupled-cluster theory employing the single-reference formalism. J. Chem. Phys. 99:1875–900
    [Google Scholar]
  33. 33. 
    Kozlowski PM, Davidson ER. 1994. Considerations in constructing a multireference second-order perturbation theory. J. Chem. Phys. 100:3672–82
    [Google Scholar]
  34. 34. 
    Li X, Paldus J. 1998. Dissociation of N2 triple bond: a reduced multireference CCSD study. Chem. Phys. Lett. 286:145–54
    [Google Scholar]
  35. 35. 
    Finley J, Malmqvist , Roos BO, Serrano-Andrés L. 1998. The multi-state CASPT2 method. Chem. Phys. Lett. 288:299–306
    [Google Scholar]
  36. 36. 
    Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP. 2001. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114:10252–64
    [Google Scholar]
  37. 37. 
    Angeli C, Borini S, Cestari M, Cimiraglia R. 2004. A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys. 121:4043–49
    [Google Scholar]
  38. 38. 
    Angeli C, Pastore M, Cimiraglia R. 2007. New perspectives in multireference perturbation theory: the n-electron valence state approach. Theor. Chem. Acc. 117:743–54
    [Google Scholar]
  39. 39. 
    Malmqvist , Pierloot K, Shahi ARM, Cramer CJ, Gagliardi L. 2008. The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J. Chem. Phys. 128:204109
    [Google Scholar]
  40. 40. 
    Mintz B, Williams TG, Howard L, Wilson AK 2009. Computation of potential energy surfaces with the multireference correlation consistent composite approach. J. Chem. Phys. 130:234104
    [Google Scholar]
  41. 41. 
    Shiozaki T, Győrffy W, Celani P, Werner HJ. 2011. Communication: Extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. J. Chem. Phys. 135:081106
    [Google Scholar]
  42. 42. 
    Granovsky AA. 2011. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J. Chem. Phys. 134:214113
    [Google Scholar]
  43. 43. 
    Yang KR, Jalan A, Green WH, Truhlar DG. 2013. Which ab initio wave function methods are adequate for quantitative calculations of the energies of biradicals? The performance of coupled-cluster and multi-reference methods along a single-bond dissociation coordinate. J. Chem. Theory Comput. 9:418–31
    [Google Scholar]
  44. 44. 
    Roos BO, Taylor PR, Siegbahn PEM. 1980. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 48:157–73
    [Google Scholar]
  45. 45. 
    Roos BO. 1980. The complete active space SCF method in a Fock-matrix-based super-CI formulation. Int. J. Quantum Chem. 18:175–89
    [Google Scholar]
  46. 46. 
    Siegbahn P, Heiberg A, Roos B, Levy B. 1980. A comparison of the super-CI and the Newton-Raphson scheme in the complete active space SCF method. Phys. Scr. 21:323–27
    [Google Scholar]
  47. 47. 
    Siegbahn PEM, Almlöf J, Heiberg A, Roos BO. 1981. The complete active space SCF (CASSCF) method in a Newton−Raphson formulation with application to the HNO molecule. J. Chem. Phys. 74:2384–96
    [Google Scholar]
  48. 48. 
    Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST. 1982. Are atoms intrinsic to molecular wave functions? I. The FORS model. Chem. Phys. 71:41–49
    [Google Scholar]
  49. 49. 
    Malmqvist , Rendell A, Roos BO. 1990. The restricted active space self-consistent-field method, implemented with a split graph unitary group approach. J. Phys. Chem. 94:5477–82
    [Google Scholar]
  50. 50. 
    Ma D, Li Manni G, Gagliardi L 2011. The generalized active space concept in multiconfigurational self-consistent field methods. J. Chem. Phys. 135:044128
    [Google Scholar]
  51. 51. 
    Hunt WJ, Hay PJ, Goddard WA III 1972. Self-consistent procedures for generalized valence bond wavefunctions. Applications H3, BH, H2O, C2H6, and O2. J. Chem. Phys. 57:738–48
    [Google Scholar]
  52. 52. 
    Olsen J, Roos BO, Jørgensen P, Jensen HJA. 1988. Determinant-based configuration interaction algorithms for complete and restricted configuration interaction spaces. J. Chem. Phys. 89:2185–92
    [Google Scholar]
  53. 53. 
    Slavíček P, Martínez TJ. 2010. Ab initio floating occupation molecular orbital-complete active space configuration interaction: an efficient approximation to CASSCF. J. Chem. Phys. 132:234102
    [Google Scholar]
  54. 54. 
    Fales BS, Shu Y, Levine BG, Hohenstein EG. 2016. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: analytic first derivatives and derivative coupling vectors. J. Chem. Phys. 145:174110
    [Google Scholar]
  55. 55. 
    Stein T, Henderson TM, Scuseria GE. 2014. Seniority zero pair coupled cluster doubles theory. J. Chem. Phys. 140:214113
    [Google Scholar]
  56. 56. 
    Gräfenstein J, Cremer D. 2005. Development of a CAS-DFT method covering non-dynamical and dynamical electron correlation in a balanced way. Mol. Phys. 103:279–308
    [Google Scholar]
  57. 57. 
    Li Manni G, Carlson RK, Luo S, Ma D, Olsen J et al. 2014. Multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 10:3669–80
    [Google Scholar]
  58. 58. 
    Gagliardi L, Truhlar DG, Li Manni G, Carlson RK, Hoyer CE, Bao JL 2017. Multiconfiguration pair-density functional theory: a new way to treat strongly correlated systems. Acc. Chem. Res. 50:66–73
    [Google Scholar]
  59. 59. 
    Hohenberg P, Kohn W. 1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71
    [Google Scholar]
  60. 60. 
    Cook M, Karplus M. 1987. Electron correlation and density-functional methods. J. Phys. Chem. 91:31–37
    [Google Scholar]
  61. 61. 
    Tschinke V, Ziegler T. 1990. On the different representations of the hole-correlation functions in the Hartree-Fock and the Hartree-Fock-Slater methods and their influence on bond energy calculations. J. Chem. Phys. 93:8051–60
    [Google Scholar]
  62. 62. 
    Handy NC, Cohen AJ. 2001. Left-right correlation energy. Mol. Phys. 99:403–12
    [Google Scholar]
  63. 63. 
    Peverati R, Truhlar DG. 2014. The quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans. R. Soc. A 372:20120476
    [Google Scholar]
  64. 64. 
    Dale SG, Johnson ER, Becke AD. 2017. Interrogating the Becke '05 density functional for non-locality information. J. Chem. Phys. 147:154103
    [Google Scholar]
  65. 65. 
    Wang M, John D, Yu J, Proynov E, Liu F et al. 2019. Performance of new density functionals of nondynamic correlation on chemical properties. J. Chem. Phys. 150:204101
    [Google Scholar]
  66. 66. 
    Verma P, Janesko BG, Wang Y, He X, Scalmani G et al. 2019. M11plus: a range-separated hybrid meta functional with both local and rung-3.5 correlation terms and high across-the-board accuracy for chemical applications. J. Chem. Theory Comput. 15:4804–15
    [Google Scholar]
  67. 67. 
    Verma P, Truhlar DG. 2020. Status and challenges of density functional theory. Trends Chem 2:302–18
    [Google Scholar]
  68. 68. 
    Moscardó F, San-Fabián E. 1991. Density-functional formalism and the two-body problem. Phys. Rev. A 22:1549–53
    [Google Scholar]
  69. 69. 
    Becke AD, Savin A, Stoll H. 1995. Extension of the local-spin-density exchange-correlation approximation to multiplet states. Theor. Chim. Acta 91:147–56
    [Google Scholar]
  70. 70. 
    Colle R, Salvetti O. 1979. Approximate calculation of the correlation energy for the closed and open shells. Theor. Chim. Acta 53:55–63
    [Google Scholar]
  71. 71. 
    Perdew JP, Savin A, Burke K. 1995. Escaping the symmetry dilemma through a pair-density interpretation of spin-density functional theory. Phys. Rev. A 51:4531–41
    [Google Scholar]
  72. 72. 
    Lee C, Yang W, Parr RG 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:785–89
    [Google Scholar]
  73. 73. 
    Miehlich B, Stoll H, Savin A. 1997. A correlation-energy density functional for multideterminantal wavefunctions. Mol. Phys. 93:527–36
    [Google Scholar]
  74. 74. 
    Moscardó F, Muñoz-Fraile F, Pérez-Jiménez AJ, Pérez-Jordá JM, San-Fabián F 1998. Improvement of multiconfigurational wave functions and energies by correlation energy functionals. J. Phys. Chem. A 102:10900–2
    [Google Scholar]
  75. 75. 
    Malcolm NOJ, McDouall JJW. 1998. A simple scaling for combining multiconfigurational wavefunctions with density functionals. Chem. Phys. Lett. 282:121–27
    [Google Scholar]
  76. 76. 
    Gräfenstein J, Cremer D. 2000. The combination of density functional theory with multi-configuration methods–CAS-DFT. Chem. Phys. Lett. 316:569–77
    [Google Scholar]
  77. 77. 
    Gusarov S, Malmqvist , Lindh R. 2004. Using on-top pair density for construction of correlation functionals for multideterminant wave functions. Mol. Phys. 102:2207–16
    [Google Scholar]
  78. 78. 
    Yamanaka S, Nakata K, Ukai T, Takada T, Yamaguchi K. 2006. Multireference density functional theory with orbital-dependent correlation corrections. Int. J. Quantum Chem. 106:3312–24
    [Google Scholar]
  79. 79. 
    Sancho-García JC, Pérez-Jiménez AJ, San-Fabián F. 2000. A comparison between DFT and other ab initio schemes on the activation energy in the automerization of cyclobutadiene. Chem. Phys. Lett. 317:245–51
    [Google Scholar]
  80. 80. 
    Sancho-García JC, San-Fabián F. 2003. Usefulness of the Colle-Salvetti model for the treatment of the nondynamic correlation. J. Chem. Phys. 118:1054–58
    [Google Scholar]
  81. 81. 
    Pastor-Abia L, Pérez-Jiménez A, Pérez-Jordá JM, Sancho-García JC, San-Fabián E, Moscardó F. 2003. Correlation factor approach to the correlation energy functional. Theor. Chem. Acc. 111:1–17
    [Google Scholar]
  82. 82. 
    Malcolm NOJ, McDouall JJW. 1997. Combining multiconfigurational wave functions with density functional estimates of dynamic electron correlation. 2. Effect of improved valence correlation. J. Phys. Chem. A 101:8119–22
    [Google Scholar]
  83. 83. 
    San-Fabián E, Pastor-Abia L. 2002. DFT calculations of correlation energies for excited electronic states using MCSCF wave functions. Int. J. Quantum Chem. 91:451–60
    [Google Scholar]
  84. 84. 
    Takeda R, Yamanaka S, Yamaguchi K. 2002. CAS-DFT based on odd-electron density and radical density. Chem. Phys. Lett. 366:321–28
    [Google Scholar]
  85. 85. 
    Takeda R, Yamanaka S, Yamaguchi K. 2003. Approximate on-top pair density into one-body functions for CAS-DFT. Int. J. Quantum Chem. 96:463–73
    [Google Scholar]
  86. 86. 
    Stoll H, Pavlidou CME, Preuß H. 1980. On the calculation of correlation energies in the spin-density functional formalism. Theor. Chim. Acta 49:143–49
    [Google Scholar]
  87. 87. 
    Staroverov VN, Davidson ER. 2000. Diradical character of the cope rearrangement transition state. J. Am. Chem. Soc. 122:186–87
    [Google Scholar]
  88. 88. 
    Tsuchimochi T, Scuseria GE. 2009. Strong correlations via constrained-pairing mean-field theory. J. Chem. Phys. 131:121102
    [Google Scholar]
  89. 89. 
    Tsuchimochi T, Scuseria GE, Savin A. 2009. Constrained-pairing mean-field theory. III. Inclusion of density functional exchange and correlation effects via alternative densities. J. Chem. Phys. 132:024111
    [Google Scholar]
  90. 90. 
    Tsuchimochi T, Henderson TM, Scuseria GE, Savin A. 2010. Constrained-pairing mean-field theory. IV. Inclusion of corresponding pair constraints and connection to unrestricted Hartree-Fock theory. J. Chem. Phys. 133:134108
    [Google Scholar]
  91. 91. 
    Ellis JK, Jiménez-Hoyos CA, Henderson TM, Tsuchimochi T, Scuseria GE. 2011. Constrained-pairing mean-field theory. V. Triplet pairing formalism. J. Chem. Phys. 135:034112
    [Google Scholar]
  92. 92. 
    Tao J, Perdew JP, Staroverov VN, Scuseria GE. 2003. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:146401
    [Google Scholar]
  93. 93. 
    Garza AJ, Bulik IW, Henderson TM, Scuseria GE. 2015. Synergy between pair coupled cluster doubles and pair density functional theory. J. Chem. Phys. 142:044109
    [Google Scholar]
  94. 94. 
    Sand AM, Truhlar DG, Gagliardi L. 2017. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene. J. Chem. Phys. 146:34101
    [Google Scholar]
  95. 95. 
    Sand AM, Hoyer CE, Sharkas K, Kidder KM, Lindh R et al. 2018. Analytic gradients for complete active space pair-density functional theory. J. Chem. Theory Comput. 14:126–38
    [Google Scholar]
  96. 96. 
    Scott TR, Hermes MR, Sand AM, Oakley MS, Truhlar DG, Gagliardi L. 2020. Analytic gradients for state-averaged multiconfiguration pair-density functional theory. J. Chem. Phys. 153:014106
    [Google Scholar]
  97. 97. 
    Schollwöck U. 2005. The density-matrix renormalization group. Rev. Mod. Phys. 77:259–315
    [Google Scholar]
  98. 98. 
    Chan GKL, Zgid D. 2009. The density matrix renormalization group in quantum chemistry. Annu. Rep. Comput. Chem. 5:149–62
    [Google Scholar]
  99. 99. 
    Keller S, Dolfi M, Troyer M, Reiher M. 2015. An efficient matrix product operator representation of the quantum chemical Hamiltonian. J. Chem. Phys. 143:244118
    [Google Scholar]
  100. 100. 
    Knecht S, Hedegård ED, Keller S, Kovyrshin A, Ma Y et al. 2016. New approaches for ab initio calculations of molecules with strong electron correlation. Chimia 70:244–51
    [Google Scholar]
  101. 101. 
    DePrince AE III, Mazziotti DA. 2007. Parametric approach to variational two-electron reduced-density-matrix theory. Phys. Rev. A 76:42501
    [Google Scholar]
  102. 102. 
    Fosso-Tande J, Nguyen T-S, Gidofalvi G, DePrince AE III 2016. Large-scale variational two-electron reduced-density-matrix-driven complete active space self-consistent field methods. J. Chem. Theory Comput. 12:2260–71
    [Google Scholar]
  103. 103. 
    Sharma P, Bernales V, Knecht S, Truhlar DG, Gagliardi L. 2019. Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in polyacenes and polyacetylenes. Chem. Sci. 10:1716–23
    [Google Scholar]
  104. 104. 
    Carlson RK, Truhlar DG, Gagliardi L. 2015. Multiconfiguration pair-density functional theory: a fully translated gradient approximation and its performance for transition metal dimers and the spectroscopy of Re2Cl82. J. Comput. Theor. Chem. 11:4077–85
    [Google Scholar]
  105. 105. 
    Gáspár R. 1974. Statistical exchange for electron in shell and the Xα method. Acta Phys. Acad. Sci. Hung. 35:213–18
    [Google Scholar]
  106. 106. 
    Vosko SH, Wilk L, Nusair M. 1980. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58:1200–11
    [Google Scholar]
  107. 107. 
    Becke AD. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38:3098–100
    [Google Scholar]
  108. 108. 
    Thakkar AJ, McCarthy SP. 2009. Toward improved density functionals for the correlation energy. J. Chem. Phys. 131:134109
    [Google Scholar]
  109. 109. 
    Zhang W, Truhlar DG, Tang M. 2013. Tests of exchange-correlation functional approximations against reliable experimental data for average bond energies of 3D transition metal compounds. J. Chem. Theory Comput. 9:3965–77
    [Google Scholar]
  110. 110. 
    Zhang Y, Yang W 1998. Comment on “Generalized gradient approximation made simple.”. Phys. Rev. Lett. 80:890
    [Google Scholar]
  111. 111. 
    Carlson RK, Truhlar DG, Gagliardi L. 2017. On-top pair density as a measure of left−right correlation in bond breaking. J. Phys. Chem. A 121:5540–47
    [Google Scholar]
  112. 112. 
    Werner HJ, Meyer W. 1981. A quadratically convergent MCSCF method for the simultaneous optimization of several states. J. Chem. Phys. 74:5794–801
    [Google Scholar]
  113. 113. 
    Truhlar DG, Mead CA. 2003. The relative likelihood of encountering conical intersections and avoided intersections on the potential energy surfaces of polyatomic molecules. Phys. Rev. A 68:32501
    [Google Scholar]
  114. 114. 
    Sand AM, Hoyer CE, Truhlar DG, Gagliardi L. 2018. State-interaction pair-density functional theory. J. Chem. Phys. 149:024106
    [Google Scholar]
  115. 115. 
    Dong SS, Huang KB, Gagliardi L, Truhlar DG. 2019. State-interaction pair-density functional theory can accurately describe a spiro mixed valence compound. J. Phys. Chem. A 123:2100–6
    [Google Scholar]
  116. 116. 
    Zhou C, Gagliardi L, Truhlar DG. 2019. State-interaction pair-density functional theory for locally avoided crossings of potential energy surfaces in methylamine. Phys. Chem. Chem. Phys. 21:13486–93
    [Google Scholar]
  117. 117. 
    Bao JJ, Zhou C, Varga Z, Kanchanakungwankul S, Gagliardi L, Truhlar DG. 2020. Multi-state pair-density functional theory. Faraday Discuss 224:348–72
    [Google Scholar]
  118. 118. 
    Bao JJ, Zhou C, Truhlar DG. 2020. Compressed-state multi-state pair-density functional theory. J. Chem. Theory Comput. 16:7444–52
    [Google Scholar]
  119. 119. 
    Cohen AJ, Mori-Sánchez P, Yang W 2008. Insights into current limitations of density functional theory. Science 321:792–94
    [Google Scholar]
  120. 120. 
    Li C, Zheng X, Su NQ, Yang W 2018. Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations. Natl. Sci. Rev. 5:203–15
    [Google Scholar]
  121. 121. 
    Bao JL, Wang Y, He X, Gagliardi L, Truhlar DG. 2017. Multiconfiguration pair-density functional theory is free from delocalization error. J. Phys. Chem. Lett. 8:5616–20
    [Google Scholar]
  122. 122. 
    Bao JL, Gagliardi L, Truhlar DG. 2018. Self-interaction error in density functional theory: an appraisal. J. Phys. Chem. Lett. 9:2353–58
    [Google Scholar]
  123. 123. 
    Sharma P, Truhlar DG, Gagliardi L. 2018. Active space dependence in multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 14:660–69
    [Google Scholar]
  124. 124. 
    Nobes RH, Pople JA, Radom L, Handy NC, Knowles PJ. 1987. Slow convergence of the Møller-Plesset perturbation series: the dissociation energy of hydrogen cyanide and the electron affinity of the cyano radical. Chem. Phys. Lett. 138:481–85
    [Google Scholar]
  125. 125. 
    Ivanic J, Ruedenberg K. 2002. Deadwood in configuration spaces. II. Singles + doubles and singles + doubles + triples + quadruples spaces. Theor. Chem. Acc. 107:220–28
    [Google Scholar]
  126. 126. 
    Odoh SO, Manni GL, Carlson RK, Truhlar DG, Gagliardi L. 2016. Separated-pair approximation and separated-pair pair-density functional theory. Chem. Sci. 7:2399–413
    [Google Scholar]
  127. 127. 
    Tishchenko O, Zheng J, Truhlar DG. 2008. Multireference model chemistries for thermochemical kinetics. J. Chem. Theory Comput. 4:1208–19
    [Google Scholar]
  128. 128. 
    Bao JL, Sand A, Gagliardi L, Truhlar DG. 2016. Correlated-participating-orbitals pair-density functional method and application to multiplet energy splittings of main-group divalent radicals. J. Chem. Theory Comput. 12:4274–83
    [Google Scholar]
  129. 129. 
    Pople JA. 1999. Nobel lecture: quantum chemical models. Rev. Mod. Phys. 71:126774
    [Google Scholar]
  130. 130. 
    Bao JJ, Dong SS, Gagliardi L, Truhlar DG. 2018. Automatic selection of an active space for calculating electronic excitation spectra by MS-CASPT2 or MC-PDFT. J. Chem. Theory Comput. 14:2017–25
    [Google Scholar]
  131. 131. 
    Bao JJ, Truhlar DG. 2019. Automatic active space selection for calculating electronic excitation energies based on high-spin unrestricted Hartree-Fock orbitals. J. Chem. Theory Comput. 15:5308–18
    [Google Scholar]
  132. 132. 
    Mostafanejad M, DePrince AE III 2019. Combining pair-density functional theory and variational two-electron reduced-density matrix methods. J. Chem. Theory Comput. 15:290–302
    [Google Scholar]
  133. 133. 
    Mostafanejad M, Liebenthal MD, DePrince AE III 2020. Global hybrid multiconfiguration pair-density functional theory. J. Comput. Theor. Chem. 16:2274–83
    [Google Scholar]
  134. 134. 
    Gritsenko OV, van Meer R, Pernal K. 2018. Efficient evaluation of electron correlation along the bond-dissociation coordinate in the ground and excited ionic states with dynamic correlation suppression and enhancement functions of the on-top pair density. Phys. Rev. A 98:062510
    [Google Scholar]
  135. 135. 
    Gritsenko OV, van Meer R, Pernal K. 2018. Electron correlation energy with a combined complete active space and corrected density-functional approach in a small basis versus the reference complete basis set limit: a close agreement. Chem. Phys. Lett. 716:227–30
    [Google Scholar]
  136. 136. 
    Gritsenko OV, Pernal K. 2019. Complete active space and corrected density functional theories helping each other to describe vertical electronic π→π* excitations in prototype multiple-bonded molecules. J. Chem. Phys. 151:024111
    [Google Scholar]
  137. 137. 
    Pernal K, Gritsenko OV, van Meer R. 2019. Reproducing benchmark potential energy curves of molecular bond dissociation with small complete active space aided with density and density-matrix functional corrections. J. Chem. Phys. 151:164122
    [Google Scholar]
  138. 138. 
    Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG et al. 2016. Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 5:506–41
    [Google Scholar]
  139. 139. 
    Sun Q, Berkelbach TC, Blunt NS, Booth GH, Guo S et al. 2018. PySCF: the Python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 8:e1340
    [Google Scholar]
  140. 140. 
    Hermes MR. 2020. MatthewRHermes GitHub repository. GitHub. https://github.com/MatthewRHermes/mrh
    [Google Scholar]
  141. 141. 
    Gordon MS, Schmidt MW. 2005. Advances in electronic structure theory: GAMESS a decade later. Theory and Applications of Computational Chemistry1167–89 Amsterdam: Elsevier
    [Google Scholar]
  142. 142. 
    Ghosh S, Sonnenberger AL, Hoyer CE, Truhlar DG, Gagliardi L. 2015. Multiconfiguration pair-density functional theory outperforms Kohn-Sham density functional theory and multireference perturbation theory for ground-state and excited-state charge transfer. J. Chem. Theory Comput. 11:3643–49
    [Google Scholar]
  143. 143. 
    Bao JL, Odoh SO, Gagliardi L, Truhlar DG. 2017. Predicting bond dissociation energies of transition-metal compounds by multiconfiguration pair-density functional theory and second-order perturbation theory based on correlated participating orbitals and separated pairs. J. Chem. Theory Comput. 13:616–26
    [Google Scholar]
  144. 144. 
    Sharkas K, Gagliardi L, Truhlar DG. 2017. Multiconfiguration pair-density functional theory and complete active space second order perturbation theory. Bond dissociation energies of FeC, NiC, FeS, Nis, FeSe, and NiSe. J. Phys. Chem. A 121:9392–400
    [Google Scholar]
  145. 145. 
    Bao JJ, Gagliardi L, Truhlar DG. 2017. Multiconfiguration pair-density functional theory for doublet excitation energies and excited state geometries: the excited states of CN. Phys. Chem. Chem. Phys. 19:30089–96
    [Google Scholar]
  146. 146. 
    Oakley MS, Bao JJ, Klobukowski M, Truhlar DG, Gagliardi L. 2018. Multireference methods for calculating the dissociation enthalpy of tetrahedral P4 to two P2. J. Phys. Chem. A 122:5742–49
    [Google Scholar]
  147. 147. 
    Bao LJ, Verma P, Truhlar DG. 2018. How well can density functional theory and pair-density functional theory predict the correct atomic charges for dissociation and accurate dissociation energetics of ionic bonds?. Phys. Chem. Chem. Phys. 20:23072–78
    [Google Scholar]
  148. 148. 
    Bao JJ, Gagliardi L, Truhlar DG. 2019. Weak interactions in alkaline earth metal dimers by pair-density functional theory. J. Phys. Chem. Lett. 10:799–805
    [Google Scholar]
  149. 149. 
    Roos BO, Lindh R, Malmqvist PA, Veryzaov V, Widmark PO. 2004. Main group atoms and dimers studied with a new relativistic ANO basis set. J. Phys. Chem. A 108:2851–58
    [Google Scholar]
  150. 150. 
    Li S, Gagliardi L, Truhlar DG. 2020. Extended separated-pair approximation for transition metal potential energy curves. J. Chem. Phys. 152:124118
    [Google Scholar]
  151. 151. 
    Zhao Y, Truhlar DG. 2006. Assessment of model chemistries for noncovalent interactions. J. Chem. Theory Comput. 2:1009–18
    [Google Scholar]
  152. 152. 
    Carlson RK, Li Manni G, Sonnenberger AL, Truhlar DG, Gagliardi L 2015. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics. J. Chem. Theory Comput. 11:82–90
    [Google Scholar]
  153. 153. 
    Sand AM, Kidder KM, Truhlar DG, Gagliardi L. 2019. Calculation of chemical reaction barrier heights by multiconfiguration pair-density functional theory with correlated participating orbitals. J. Phys. Chem. A 123:9809–17
    [Google Scholar]
  154. 154. 
    Ghosh S, Cramer CJ, Truhlar DG, Gagliardi L. 2017. Generalized-active-space pair-density functional theory: an efficient method to study large, strongly correlated, conjugated systems. Chem. Sci. 8:2741–50
    [Google Scholar]
  155. 155. 
    Wilbraham L, Verma P, Truhlar DG, Gagliardi L, Ciofini I. 2017. Multiconfiguration pair-density functional theory predicts spin-state ordering in iron complexes with the same accuracy as complete active space second-order perturbation theory at a significantly reduced computational cost. J. Phys. Chem. Lett. 8:2026–30
    [Google Scholar]
  156. 156. 
    Stoneburner SJ, Truhlar DG, Gagliardi L. 2018. MC-PDFT can calculate singlet-triplet splittings of organic diradicals. J. Chem. Phys. 148:64108
    [Google Scholar]
  157. 157. 
    Presti D, Stoneburner SJ, Truhlar DG, Gagliardi L. 2019. Full correlation in a multiconfigurational study of bimetallic clusters: restricted active space pair-density functional theory study of [2Fe-2S] systems. J. Phys. Chem. C 123:11899–907
    [Google Scholar]
  158. 158. 
    Zhou C, Gagliardi L, Truhlar DG. 2019. Multiconfiguration pair-density functional theory for iron porphyrin with CAS, RAS, and DMRG active spaces. J. Phys. Chem. A 123:3389–94
    [Google Scholar]
  159. 159. 
    Hoyer CE, Gagliardi L, Truhlar DG. 2015. Multiconfiguration pair-density functional theory spectral calculations are stable to adding diffuse basis functions. J. Phys. Chem. Lett. 6:4184–88
    [Google Scholar]
  160. 160. 
    Hoyer CE, Ghosh S, Truhlar DG, Gagliardi L. 2016. Multiconfiguration pair-density functional theory is as accurate as CASPT2 for electronic excitation. J. Phys. Chem. Lett. 7:586–91
    [Google Scholar]
  161. 161. 
    Dong SS, Gagliardi L, Truhlar DG. 2018. Excitation spectra of retinal by multiconfiguration pair-density functional theory. Phys. Chem. Chem. Phys. 20:7265–76
    [Google Scholar]
  162. 162. 
    Sharma P, Bernales V, Truhlar DG, Gagliardi L. 2018. Valence ππ* excitations in benzene studied by multiconfiguration pair-density functional theory. J. Phys. Chem. Lett. 10:75–81
    [Google Scholar]
  163. 163. 
    Presti D, Truhlar DG, Gagliardi L. 2018. Intramolecular charge transfer and local excitation in organic fluorescent photoredox catalysts explained by RASCI-PDFT. J. Phys. Chem. C 122:12061–70
    [Google Scholar]
  164. 164. 
    Dong SS, Gagliardi L, Truhlar DG. 2019. Nature of the 11Bu and 21Ag excited states of butadiene and the Goldilocks principle of basis set diffuseness. J. Chem. Theory Comput. 15:4591–601
    [Google Scholar]
  165. 165. 
    Ning J, Truhlar DG. 2020. The valence and Rydberg states of dienes. Phys. Chem. Chem. Phys. 22:6176–83
    [Google Scholar]
  166. 166. 
    Sharma P, Truhlar DG, Gagliardi L. 2018. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4. J. Chem. Phys. 148:124305
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-043839
Loading
/content/journals/10.1146/annurev-physchem-090419-043839
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error