1932

Abstract

When an intense 1,064-nm continuous-wave laser is tightly focused at solution surfaces, it exerts an optical force on molecules, polymers, and nanoparticles (NPs). Initially, molecules and NPs are gathered into a single assembly inside the focus, and the laser is scattered and propagated through the assembly. The expanded laser further traps them at the edge of the assembly, producing a single assembly much larger than the focus along the surface. Amino acids and inorganic ionic compounds undergo crystallization and crystal growth, polystyrene NPs form periodic arrays and disklike structures with concentric circles or hexagonal packing, and Au NPs demonstrate assembling and swarming, in which the NPs fluctuate like a group of bees. These phenomena that depend on laser polarization are called optically evolved assembling at solution surfaces, and their dynamics and mechanisms are elucidated in this review. As a promising application in materials science, the optical trapping assembly of lead halide perovskites, supramolecules, and aggregation-induced emission enhancement–active molecules is demonstrated and future directions for fundamental study are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-044828
2021-04-20
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-044828.html?itemId=/content/journals/10.1146/annurev-physchem-090419-044828&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Maiman TH. 1960. Stimulated optical radiation in ruby. Nature 187:493–94
    [Google Scholar]
  2. 2. 
    Moore CB. 1971. Lasers in chemistry. Annu. Rev. Phys. Chem. 22:387–428
    [Google Scholar]
  3. 3. 
    Porter G, Topp MR. 1970. Nanosecond flash photolysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 315:163–84
    [Google Scholar]
  4. 4. 
    Novak JR, Windsor MW. 1967. Laser photolysis and spectroscopy in the nanosecond time range: excited singlet state absorption in coronene. J. Chem. Phys. 47:3075–76
    [Google Scholar]
  5. 5. 
    Eisert WG, Degenkolb EO, Noe LJ, Rentzepis PM. 1979. Kinetics of carboxymyoglobin and oxymyoglobin studied by picosecond spectroscopy. Biophys. J. 25:455–64
    [Google Scholar]
  6. 6. 
    Potter ED, Herek JL, Pedersen S, Liu Q, Zewail AH. 1992. Femtosecond laser control of a chemical reaction. Nature 355:66–68
    [Google Scholar]
  7. 7. 
    Wang XF, Herman B 1996. Fluorescence Imaging Spectroscopy and MicroscopyVol. 137 New York: John Wiley & Sons
    [Google Scholar]
  8. 8. 
    Rigler R, Orrit M, Basché T 2001. Single Molecule Spectroscopy: Nobel Conference Lectures Springer Ser. Chem. Phys . Vol. 67 Berlin/New York: Springer
    [Google Scholar]
  9. 9. 
    Sauer M, Hofkens J, Enderlein J 2011. Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  10. 10. 
    Masters BR. 2020. Superresolution Optical Microscopy: The Quest for Enhanced Resolution and Contrast Springer Ser. Opt. Sci. Vol. 227 Cham, Switz: Springer
    [Google Scholar]
  11. 11. 
    Moerner WE. 2002. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106:910–27
    [Google Scholar]
  12. 12. 
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S 1986. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11:288–90
    [Google Scholar]
  13. 13. 
    Lebedev PN. 1901. Experimental examination of light pressure. Ann. Phys. 6:433
    [Google Scholar]
  14. 14. 
    Grier DG. 2003. A revolution in optical manipulation. Nature 424:810–16
    [Google Scholar]
  15. 15. 
    Neuman KC, Block SM. 2004. Optical trapping. Rev. Sci. Instrum. 75:2787–809
    [Google Scholar]
  16. 16. 
    Moffitt JR, Chemla YR, Smith SB, Bustamante C. 2008. Recent advances in optical tweezers. Annu. Rev. Biochem. 77:205–28
    [Google Scholar]
  17. 17. 
    Dholakia K, Reece P, Gu M 2008. Optical micromanipulation. Chem. Soc. Rev. 37:42–45
    [Google Scholar]
  18. 18. 
    Padgett M, Bowman R. 2011. Tweezers with a twist. Nat. Photon. 5:343–48
    [Google Scholar]
  19. 19. 
    Juan ML, Righini M, Quidant R. 2011. Plasmon nano-optical tweezers. Nat. Photon. 5:349–56
    [Google Scholar]
  20. 20. 
    Sugiyama T, Yuyama K, Masuhara H. 2012. Laser trapping chemistry: from polymer assembly to amino acid crystallization. Acc. Chem. Res. 45:1946–54
    [Google Scholar]
  21. 21. 
    Maragò OM, Jones PH, Gucciardi PG, Volpe G, Ferrari AC. 2013. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8:807–19
    [Google Scholar]
  22. 22. 
    Woerdemann M, Alpmann C, Esseling M, Denz C. 2013. Advanced optical trapping by complex beam shaping. Laser Photon. Rev. 7:839–54
    [Google Scholar]
  23. 23. 
    Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong L, Käll M. 2015. Laser trapping of colloidal metal nanoparticles. ACS Nano 9:3453–69
    [Google Scholar]
  24. 24. 
    Daly M, Sergides M, Chormaic SN. 2015. Optical trapping and manipulation of micrometer and submicrometer particles. Laser Photon. Rev. 3:309–29
    [Google Scholar]
  25. 25. 
    Spesyvtseva SES, Dholakia K. 2016. Trapping in a material world. ACS Photon 3:719–36
    [Google Scholar]
  26. 26. 
    Rodríguez-Sevilla P, Labrador-Páez L, Jaque D, Haro-González P. 2017. Optical trapping for biosensing: materials and applications. J. Mater. Chem. B 5:9085–101
    [Google Scholar]
  27. 27. 
    Gao D, Ding W, Nieto-Vesperinas M, Ding X, Rahman M et al. 2017. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6:e17039
    [Google Scholar]
  28. 28. 
    Bradshaw DS, Andrews DL. 2017. Manipulating particles with light: radiation and gradient forces. Eur. J. Phys. 38:034008
    [Google Scholar]
  29. 29. 
    Bradac C. 2018. Nanoscale optical trapping: a review. Adv. Opt. Mater. 6:1800005
    [Google Scholar]
  30. 30. 
    Zemánek P, Volpe G, Jonáš A, Brzobohatý O. 2019. Perspective on light-induced transport of particles: from optical forces to phoretic motion. Adv. Opt. Photon. 11:577–678
    [Google Scholar]
  31. 31. 
    Bustamante C, Alexander L, Maciuba K, Kaiser CM. 2020. Single-molecule studies of protein folding with optical tweezers. Annu. Rev. Biochem. 89:443–70
    [Google Scholar]
  32. 32. 
    Ashkin A. 1970. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24:156–59
    [Google Scholar]
  33. 33. 
    Ashkin A. 1980. Application of laser radiation pressure. Science 210:1081–88
    [Google Scholar]
  34. 34. 
    Ashkin A, Dziedzic JM. 1987. Optical trapping and manipulation of viruses and bacteria. Science 235:1517–20
    [Google Scholar]
  35. 35. 
    Ashkin A, Dziedzic JM, Yamane T. 1987. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–71
    [Google Scholar]
  36. 36. 
    Smith SB, Cui Y, Bustamante C. 1996. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–99
    [Google Scholar]
  37. 37. 
    Wang MD, Yin H, Landick R, Gelles J, Block SM. 1997. Stretching DNA with optical tweezers. Biophys. J. 72:1335–46
    [Google Scholar]
  38. 38. 
    Sasaki K, Koshioka M, Misawa H, Kitamura N, Masuhara H. 1991. Laser-scanning micromanipulation and spatial patterning of fine particles. Jpn. J. Appl. Phys. 30:L907
    [Google Scholar]
  39. 39. 
    Sasaki K, Koshioka M, Misawa H, Kitamura N, Masuhara H. 1992. Optical trapping of a metal particle and a water droplet by a scanning laser beam. Appl. Phys. Lett. 60:807–9
    [Google Scholar]
  40. 40. 
    Kim H-B, Hayashi M, Nakatani K, Kitamura N, Sasaki K et al. 1996. In situ measurements of ion-exchange processes in single polymer particles: laser trapping microspectroscopy and confocal fluorescence microspectroscopy. Anal. Chem. 68:409–14
    [Google Scholar]
  41. 41. 
    Tamai N, Asahi T, Masuhara H. 1993. Femtosecond transient absorption microspectrophotometer combined with optical trapping technique. Rev. Sci. Instrum. 64:2496–503
    [Google Scholar]
  42. 42. 
    Nakatani K, Uchida T, Funakura S, Sekiguchi A, Misawa H et al. 1993. Control of a dye formation reaction in a single micrometer-sized oil-droplet by laser trapping and microelectrochemical methods. Chem. Lett. 22:717–20
    [Google Scholar]
  43. 43. 
    Misawa H, Koshioka M, Sasaki K, Kitamura N, Masuhara H. 1991. Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water. J. Appl. Phys. 70:3829–36
    [Google Scholar]
  44. 44. 
    Ito S, Tanaka Y, Yoshikawa H, Ishibashi Y, Miyasaka H, Masuhara H. 2011. Confinement of photopolymerization and solidification with radiation pressure. J. Am. Chem. Soc. 133:14472–75
    [Google Scholar]
  45. 45. 
    Masuhara H, De Schryver FC, Kitamura N, Tamai N 1994. Microchemistry: Spectroscopy and Chemistry in Small Domains North-Holland Delta Ser. Amsterdam: Elsevier Sci.
    [Google Scholar]
  46. 46. 
    Masuhara H, De Schryver FC 1999. Organic Mesoscopic Chemistry Malden, MA: Blackwell Sci.
    [Google Scholar]
  47. 47. 
    Ashkin A. 1997. Optical trapping and manipulation of neutral particles using lasers. PNAS 94:4853–60
    [Google Scholar]
  48. 48. 
    Ashkin A. 2000. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Electron. 6:841–56
    [Google Scholar]
  49. 49. 
    Lett PD, Julienne PS, Phillips WD. 1995. Photoassociative spectroscopy of laser-cooled atoms. Annu. Rev. Phys. Chem. 46:423–52
    [Google Scholar]
  50. 50. 
    Tsuboi Y, Shoji T, Kitamura N. 2007. Crystallization of lysozyme based on molecular assembling by photon pressure. Jpn. J. Appl. Phys. 46:L1234
    [Google Scholar]
  51. 51. 
    Tsuboi Y, Shoji T, Nishino M, Masuda S, Ishimori K, Kitamura N. 2009. Optical manipulation of proteins in aqueous solution. Appl. Surf. Sci. 255:9906–8
    [Google Scholar]
  52. 52. 
    Tsuboi Y, Shoji T, Kitamura N. 2010. Optical trapping of amino acids in aqueous solutions. J. Phys. Chem. C 114:5589–93
    [Google Scholar]
  53. 53. 
    Shoji T, Kitamura N, Tsuboi Y 2013. Resonant excitation effect on optical trapping of myoglobin: the important role of a heme cofactor. J. Phys. Chem. C 117:10691–97
    [Google Scholar]
  54. 54. 
    Tanaka Y, Yoshikawa H, Masuhara H. 2006. Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution. J. Phys. Chem. B 110:17906–11
    [Google Scholar]
  55. 55. 
    Mototsuji A, Shoji T, Wakisaka Y, Murakoshi K, Yao H, Tsuboi Y. 2017. Plasmonic optical trapping of nanometer-sized J-/H- dye aggregates as explored by fluorescence microspectroscopy. Opt. Express 25:13617–25
    [Google Scholar]
  56. 56. 
    Hofken J, Hotta J, Sasaki K, Masuhara H, Iwai K. 1997. Molecular assembling by the radiation pressure of a focused laser beam:poly(N-isopropylacrylamide) in aqueous solution. Langmuir 13:414–19
    [Google Scholar]
  57. 57. 
    Hofkens J, Hotta J, Sasaki K, Masuhara H, Taniguchi T, Miyashita T 1997. Molecular association by the radiation pressure of a focused laser beam: fluorescence characterization of pyrene-labeled PNIPAM. J. Am. Chem. Soc. 119:2741–42
    [Google Scholar]
  58. 58. 
    Borowicz P, Hotta J, Sasaki K, Masuhara H. 1998. Chemical and optical mechanism of microparticle formation of poly(N-vinylcarbazole) in N,N-dimethylformamide by photon pressure of a focused near-infrared laser beam. J. Phys. Chem. B 102:1896–901
    [Google Scholar]
  59. 59. 
    Smith TA, Hotta J, Sasaki K, Masuhara H, Itoh Y. 1999. Photon pressure-induced association of nanometer-sized polymer chains in solution. J. Phys. Chem. B 103:1660–63
    [Google Scholar]
  60. 60. 
    Masuo S, Yoshikawa H, Nothofer HG, Grimsdale AC, Scherf U et al. 2005. Assembling and orientation of polyfluorenes in solution controlled by a focused near-infrared laser beam. J. Phys. Chem. B 109:6917–21
    [Google Scholar]
  61. 61. 
    Singer W, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. 2007. Collecting single molecules with conventional optical tweezers. Phys. Rev. E 75:011916
    [Google Scholar]
  62. 62. 
    Gould OEC, Qiu H, Lunn DJ, Rowden J, Harniman RL et al. 2015. Transformation and patterning of supermicelles using dynamic holographic assembly. Nat. Commun. 6:10009
    [Google Scholar]
  63. 63. 
    Yuyama K, Marcelis L, Su PM, Chung WS, Masuhara H. 2017. Photocontrolled supramolecular assembling of azobenzene-based biscalix[4]arenes upon starting and stopping laser trapping. Langmuir 33:755–63
    [Google Scholar]
  64. 64. 
    Gould OEC, Box SJ, Boott CE, Ward AD, Winnik MA et al. 2019. Manipulation and deposition of complex, functional block copolymer nanostructures using optical tweezers. ACS Nano 13:3858–66
    [Google Scholar]
  65. 65. 
    Katsura S, Hirano K, Matsuzawa Y, Mizuno A, Yoshikawa K. 1998. Direct laser trapping of single DNA molecules in the globular state. Nucleic Acids Res 26:4943–45
    [Google Scholar]
  66. 66. 
    Tan S, Lopez HA, Cai CW, Zhang Y. 2004. Optical trapping of single-walled carbon nanotubes. Nano Lett 4:1415–19
    [Google Scholar]
  67. 67. 
    Rodgers T, Shoji S, Sekkat Z, Kawata S. 2008. Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam. Phys. Rev. Lett. 101:127402
    [Google Scholar]
  68. 68. 
    Hotta J, Sasaki K, Masuhara H. 1996. A single droplet formation from swelled micelles by radiation pressure of a focused infrared laser beam. J. Am. Chem. Soc. 118:11968–69
    [Google Scholar]
  69. 69. 
    Kitamura N, Sekiguchi N, Kim HB. 1998. Optical transformation and fission of single giant vesicles in water by radiation pressure. J. Am. Chem. Soc. 120:1942–43
    [Google Scholar]
  70. 70. 
    Murshid N, Yuyama K, Wu SL, Wu KY, Masuhara H et al. 2016. Highly-integrated, laser manipulable aqueous metal carbonyl vesicles (MCsomes) with aggregation-induced emission (AIE) and aggregation-enhanced IR absorption (AEIRA). J. Mater. Chem. 4:5231–40
    [Google Scholar]
  71. 71. 
    Pan L, Ishikawa A, Tamai N. 2007. Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence. Phys. Rev. B 75:161305(R)
    [Google Scholar]
  72. 72. 
    Jauffred L, Oddershede LB. 2010. Two-photon quantum dot excitation during optical trapping. Nano Lett 10:1927–30
    [Google Scholar]
  73. 73. 
    Chiang WY, Okuhata T, Usman A, Tamai N, Masuhara H. 2014. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses. J. Phys. Chem. B 118:14010–16
    [Google Scholar]
  74. 74. 
    Pin C, Otsuka R, Sasaki K. 2020. Optical transport and sorting of fluorescent nanodiamonds inside a tapered glass capillary: optical sorting of nanomaterials at the femtonewton scale. ACS Appl. Nano Mater. 3:4127–34
    [Google Scholar]
  75. 75. 
    Pauzauskie PJ, Radenovic A, Trepagnier E, Shroff H, Yang P, Liphardt J 2006. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat. Mater. 5:97–101
    [Google Scholar]
  76. 76. 
    Yan Z, Jureller JE, Sweet J, Guffey MJ, Pelton M, Scherer NF. 2012. Three-dimensional optical trapping and manipulation of single silver nanowires. Nano Lett 12:5155–61
    [Google Scholar]
  77. 77. 
    Yan Z, Pelton M, Vigderman L, Zubarev ER, Scherer NF. 2013. Why single-beam optical tweezers trap gold nanowires in three dimensions. ACS Nano 7:8794–800
    [Google Scholar]
  78. 78. 
    Hosokawa C, Yoshikawa H, Masuhara H. 2005. Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy. Phys. Rev. E 72:021408
    [Google Scholar]
  79. 79. 
    Hosokawa C, Yoshikawa H, Masuhara H. 2004. Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection. Phys. Rev. E 70:061410
    [Google Scholar]
  80. 80. 
    Ito S, Yoshikawa H, Masuhara H. 2002. Laser manipulation and fixation of single gold nanoparticles in solution at room temperature. Appl. Phys. Lett. 80:482–84
    [Google Scholar]
  81. 81. 
    Tanaka Y, Yoshikawa H, Itoh T, Ishikawa M. 2009. Laser-induced self-assembly of silver nanoparticles via plasmonic interactions. Opt. Express 17:18760–67
    [Google Scholar]
  82. 82. 
    Jiang Y, Narushima T, Okamoto H. 2010. Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat. Phys. 6:1005–9
    [Google Scholar]
  83. 83. 
    Urban AS, Lutich AA, Stefani FD, Feldmann J. 2010. Laser printing single gold nanoparticles. Nano Lett. 10:4794–98
    [Google Scholar]
  84. 84. 
    Ohlinger A, Nedev S, Lutich AA, Feldmann J. 2011. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett 4:1770–74
    [Google Scholar]
  85. 85. 
    Kyrsting A, Bendix PM, Oddershede LB. 2013. Mapping 3D focal intensity exposes the stable trapping positions of single nanoparticles. Nano Lett 13:31–35
    [Google Scholar]
  86. 86. 
    Harada Y, Asakura T. 1996. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124:529–41
    [Google Scholar]
  87. 87. 
    Ito S, Sugiyama T, Toitani N, Katayama G, Miyasaka H. 2007. Application of fluorescence correlation spectroscopy to the measurement of local temperature in solutions under optical trapping condition. J. Phys. Chem. B 111:2365–71
    [Google Scholar]
  88. 88. 
    Chiu DT, Zare R. 1996. Biased diffusion, optical trapping, and manipulation of single molecules in solution. J. Am. Chem. Soc. 118:6512–13
    [Google Scholar]
  89. 89. 
    Osborne MA, Balasubramanian S, Furey WS, Klenerman D. 1998. Optically biased diffusion of single molecules studied by confocal fluorescence microscopy. J. Phys. Chem. B 102:3160–67
    [Google Scholar]
  90. 90. 
    Chirico G, Fumagalli C, Baldini G. 2002. Trapped Brownian motion in single- and two-photon excitation fluorescence correlation experiments. J. Phys. Chem. B 106:2508–19
    [Google Scholar]
  91. 91. 
    Nabetani Y, Yoshikawa H, Grimsdale AC, Müllen K, Masuhara H. 2007. Effects of optical trapping and liquid surface deformation on the laser microdeposition of a polymer assembly in solution. Langmuir 23:6725–29
    [Google Scholar]
  92. 92. 
    Louchev OA, Juodkazis S, Murazawa N, Wada S, Misawa H. 2008. Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection. Opt. Express 16:5673–80
    [Google Scholar]
  93. 93. 
    Bartkiewicz S, Miniewicz A. 2015. Whirl-enhanced continuous wave laser trapping of particles. Phys. Chem. Chem. Phys. 17:1077–83
    [Google Scholar]
  94. 94. 
    Yuyama K, Sugiyama T, Masuhara H. 2010. Millimeter-scale dense liquid droplet formation and crystallization in glycine solution induced by photon pressure. J. Phys. Chem. Lett. 1:1321–25
    [Google Scholar]
  95. 95. 
    Yuyama K, Rungsimanon T, Sugiyama T, Masuhara H. 2012. Formation, dissolution, and transfer dynamics of a millimeter-scale thin liquid droplet in glycine solution by laser trapping. J. Phys. Chem. C 116:6809–16
    [Google Scholar]
  96. 96. 
    Sugiyama T, Adachi T, Masuhara H. 2007. Crystallization of glycine by photon pressure of a focused CW laser beam. Chem. Lett. 36:1480–81
    [Google Scholar]
  97. 97. 
    Rungsimanon T, Yuyama K, Sugiyama T, Masuhara H, Tohnai N, Miyata M. 2010. Control of crystal polymorph of glycine by photon pressure of a focused continuous wave near-infrared laser beam. J. Phys. Chem. Lett. 1:599–603
    [Google Scholar]
  98. 98. 
    Rungsimanon T, Yuyama K, Sugiyama T, Masuhara H. 2010. Crystallization in unsaturated glycine/D2O solution achieved by irradiating a focused continuous wave near infrared laser. Cryst. Growth Des. 10:4686–88
    [Google Scholar]
  99. 99. 
    Yuyama K, Rungsimanon T, Sugiyama T, Masuhara H. 2012. Selective fabrication of α- and γ-polymorphs of glycine by intense polarized continuous wave laser beams. Cryst. Growth Des. 12:2427–34
    [Google Scholar]
  100. 100. 
    Yuyama K, Ishiguro K, Sugiyama T, Masuhara H 2012. Laser trapping dynamics of L-alanine depending on the laser polarization. Proceedings SPIE 8458: Optical Trapping and Optical Micromanipulation IX K Dholakia, GC Spalding 84582D–17 Bellingham, WA: SPIE
    [Google Scholar]
  101. 101. 
    Yuyama K, Sugiyama T, Masuhara H. 2013. Laser trapping and crystallization dynamics of l-phenylalanine at solution surface. J. Phys. Chem. Lett. 4:2436–40
    [Google Scholar]
  102. 102. 
    Yuyama K, Wu CS, Sugiyama T, Masuhara H. 2014. Laser trapping-induced crystallization of l-phenylalanine through its high-concentration domain formation. Photochem. Photobiol. Sci. 13:254–60
    [Google Scholar]
  103. 103. 
    Yuyama K, George J, Thomas KG, Sugiyama T, Masuhara H. 2016. Two-dimensional growth rate control of l-phenylalanine crystal by laser trapping in unsaturated aqueous solution. Cryst. Growth Des. 16:953–60
    [Google Scholar]
  104. 104. 
    Yuyama K, Chiu DS, Liu YE, Sugiyama T, Masuhara H. 2018. Crystal growth and dissolution dynamics of l-phenylalanine controlled by solution surface laser trapping. Cryst. Growth Des. 18:7079–87
    [Google Scholar]
  105. 105. 
    Chen JJ-K, Yuyama K, Sugiyama T, Masuhara H. 2019. In situ reflection imaging and microspectroscopic study on three-dimensional crystal growth of L-phenylalanine under laser trapping. Appl. Phys. Express 12:112008
    [Google Scholar]
  106. 106. 
    Cheng AC, Masuhara H, Sugiyama T. 2020. Evolving crystal morphology of potassium chloride controlled by optical trapping. J. Phys. Chem. C 124:6913–21
    [Google Scholar]
  107. 107. 
    Niinomi H, Sugiyama T, Miyamoto K, Omatsu T. 2018.. “ Freezing” of NaClO3 metastable crystalline state by optical trapping in unsaturated microdroplet. Cryst. Growth Des. 18:734–41
    [Google Scholar]
  108. 108. 
    Yuyama K, Islam MJ, Takahashi K, Nakamura T, Biju V. 2018. Crystallization of methylammonium lead halide perovskites by optical trapping. Angew. Chem. Int. Ed. 57:13424–28
    [Google Scholar]
  109. 109. 
    Islam MJ, Yuyama K, Takahashi K, Nakamura T, Konishi K, Biju V. 2019. Mixed-halide perovskite synthesis by chemical reaction and crystal nucleation under an optical potential. NPG Asia Mater. 11:31
    [Google Scholar]
  110. 110. 
    Wang SF, Kudo T, Yuyama K, Sugiyama T, Masuhara H. 2016. Optically evolved assembly formation in laser trapping of polystyrene nanoparticles at solution surface. Langmuir 32:12488–96
    [Google Scholar]
  111. 111. 
    Lu JS, Kudo T, Louis B, Bresolí-Obach R, Scheblykin IG et al. 2020. Optical force-induced dynamics of assembling, rearrangement, and three-dimensional pistol-like ejection of microparticles at the solution surface. J. Phys. Chem. C 124:27107–17
    [Google Scholar]
  112. 112. 
    Nam HJ, Jung D-Y, Yi G-R, Choi H 2006. Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres. Langmuir 22:7358–63
    [Google Scholar]
  113. 113. 
    Shoji T, Shibata M, Kitamura N, Nagasawa F, Takase M. et al. 2013. Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure. J. Phys. Chem. C 117:2500–6
    [Google Scholar]
  114. 114. 
    Wang SF, Yuyama K, Sugiyama T, Masuhara H. 2016. Reflection microspectroscopic study of laser trapping assembling of polystyrene nanoparticles at air/solution interface. J. Phys. Chem. C 120:15578–85
    [Google Scholar]
  115. 115. 
    Kudo T, Wang S-F, Yuyama K, Masuhara H. 2016. Optical trapping-formed colloidal assembly with horns extended to the outside of a focus through light propagation. Nano Lett 16:3058–62
    [Google Scholar]
  116. 116. 
    Kudo T, Yang S-J, Masuhara H. 2018. A single large assembly with dynamically fluctuating swarms of gold nanoparticles formed by trapping laser. Nano Lett 18:5846–53
    [Google Scholar]
  117. 117. 
    Huang C-H, Kudo T, Bresolí-Obach R, Hofkens J, Sugiyama T, Masuhara H. 2020. Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at interface. Opt. Express 28:27727–35
    [Google Scholar]
  118. 118. 
    Aibara I, Huang C-H, Kudo T, Bresolí-Obach R, Hofkens J et al. 2020. Dynamic coupling of optically evolved assembling and swarming of gold nanoparticles with photothermal local phase separation of polymer solution. J. Phys. Chem. C 124:16604–15
    [Google Scholar]
  119. 119. 
    Kuppe C, Rusimova KR, Ohnoutek L, Slavov D, Valev VK. 2020.. “ Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 8:1901166
    [Google Scholar]
  120. 120. 
    Setoura K, Ito S, Miyasaka H. 2017. Stationary bubble formation and Marangoni convection induced by CW laser heating of a single gold nanoparticle. Nanoscale 9:719–30
    [Google Scholar]
  121. 121. 
    Heskins M, Guillet JE. 1968. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. A 2:1441–55
    [Google Scholar]
  122. 122. 
    Hashimoto C, Ushiki H. 2006. Graphical analysis for gel morphology. III. Gel size and temperature effects on the volume phase transition of gels. J. Chem. Phys. 124:044903
    [Google Scholar]
  123. 123. 
    Aibara I, Mukai S, Hashimoto S. 2016. Plasmonic-heating-induced nanoscale phase separation of free poly(N-isopropylacrylamide) molecules. J. Phys. Chem. C 120:17745–52
    [Google Scholar]
  124. 124. 
    Aibara I, Chikazawa JI, Uwada T, Hashimoto S. 2017. Localized phase separation of thermoresponsive polymers induced by plasmonic heating. J. Phys. Chem. C 121:22496–507
    [Google Scholar]
  125. 125. 
    Braun D, Libchaber A. 2002. Trapping of DNA by thermophoretic depletion and convection. Phys. Rev. Lett. 89:188103
    [Google Scholar]
  126. 126. 
    Young JB. 2011. Thermophoresis of a spherical particle: reassessment, clarification, and new analysis. Aerosol Sci. Technol. 45:927–48
    [Google Scholar]
  127. 127. 
    Leng J, Guo Z, Zhang H, Chang T, Guo X, Gao H. 2016. Negative thermophoresis in concentric carbon nanotube nanodevices. Nano Lett 16:6396–402
    [Google Scholar]
  128. 128. 
    Wu CL, Wang SF, Kudo T, Yuyama K, Sugiyama T, Masuhara H. 2020. Anomalously large assembly formation of polystyrene nanoparticles by optical trapping at solution surface. Langmuir 36:14234–42
    [Google Scholar]
  129. 129. 
    Taschin A, Bartolini P, Eramo R, Righini R, Torre R 2014. Optical Kerr effect of liquid and supercooled water: the experimental and data analysis perspective. J. Chem. Phys. 141:084507
    [Google Scholar]
  130. 130. 
    Garetz BA, Aber JE, Goddard NL, Young RG, Myerson AS. 1996. Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solution. Phys. Rev. Lett. 77:3475–76
    [Google Scholar]
  131. 131. 
    Maloney RC, Hall CK. 2020. Clustering and phase separation in mixtures of dipolar and active particles in an external field. Langmuir 36:6378–87
    [Google Scholar]
  132. 132. 
    Lu J-S, Wang H-Y, Kudo T, Masuhara M. 2020. A large submillimeter assembly of microparticles with necklace-like patterns formed by laser trapping at solution surface. J. Phys. Chem. Lett. 11:6057–62
    [Google Scholar]
  133. 133. 
    Islam MJ, Shahjahan M, Yuyama K, Biju V. 2020. Remote tuning of bandgap and emission of lead perovskites by spatially controlled halide exchange reactions. ACS Mater. Lett. 2:403–8
    [Google Scholar]
  134. 134. 
    Wang S-F, Lin J-R, Ishiwari F, Fukushima T, Masuhara H, Sugiyama T. 2020. Spatiotemporal dynamics of aggregation-induced emission enhancement controlled by optical manipulation. Angew. Chem. Int. Ed. 59:7063–68
    [Google Scholar]
  135. 135. 
    Kawata S, Masuhara Heds 2006. Nanoplasmonics: from Fundamentals to Applications Amsterdam: Elsevier:
    [Google Scholar]
  136. 136. 
    Tsai W-Y, Huang J-S, Huang C-B. 2014. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Lett 14:547–52
    [Google Scholar]
  137. 137. 
    Shoji T, Saitoh J, Kitamura N, Nagasawa F, Murakoshi K et al. 2013. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light. J. Am. Chem. Soc. 135:6643–48
    [Google Scholar]
  138. 138. 
    Kotsifaki DG, Chormaic SN. 2019. Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects. Nanophoton 8:1227–45
    [Google Scholar]
  139. 139. 
    Shoji T, Itoh K, Saitoh J, Kitamura N, Yoshii T et al. 2020. Plasmonic manipulation of DNA using a combination of optical and thermophoretic forces: separation of different-sized DNA from mixture solution. Sci. Rep. 10:3349
    [Google Scholar]
  140. 140. 
    Shoji T, Mototsuji A, Balčytis A, Linklater D, Juodkazis S, Tsuboi Y. 2017. Optical tweezing and binding at high irradiation powers on black-Si. Sci. Rep. 7:12298
    [Google Scholar]
  141. 141. 
    Hanasaki I, Shoji T, Tsuboi Y. 2019. Regular assembly of polymer nanoparticles by optical trapping enhanced with a random array of Si needles for reconfigurable photonic crystals in liquid. ACS Appl. Nano Mater. 2:7637–43
    [Google Scholar]
  142. 142. 
    Hosokawa C, Yoshikawa H, Masuhara H. 2006. Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams. Jpn. J. Appl. Phys. 45:L453
    [Google Scholar]
  143. 143. 
    Kudo T, Ishihara H. 2012. Proposed nonlinear resonance laser technique for manipulating nanoparticles. Phys. Rev. Lett. 109:087402
    [Google Scholar]
  144. 144. 
    Kudo T, Ishihara H, Masuhara H. 2017. Resonance optical trapping of individual dye-doped polystyrene particles with blue- and red-detuned lasers. Opt. Express 25:4655–64
    [Google Scholar]
  145. 145. 
    Louis B, Camacho R, Bresolí-Obach R, Abakumov S, Vandaele J et al. 2020. Fast-tracking of single emitters in large volumes with nanometer precision. Opt. Express 28:28656–71
    [Google Scholar]
  146. 146. 
    Hanasaki I, Okano K, Yoshikawa HY, Sugiyama T. 2019. Spatiotemporal dynamics of laser-induced molecular crystal precursors visualized by particle image diffusometry. J. Phys. Chem. Lett. 10:7452–57
    [Google Scholar]
  147. 147. 
    Usman A, Chiang W-Y, Masuhara H. 2012. Optical trapping and polarization-controlled scattering of dielectric spherical nanoparticles by femtosecond laser pulses. J. Photochem. Photobiol. A Chem. 234:83–90
    [Google Scholar]
  148. 148. 
    Chiang W-Y, Usman A, Masuhara H. 2013. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles. J. Phys. Chem. C 117:19182–88
    [Google Scholar]
  149. 149. 
    Muramatsu M, Shen T-F, Chiang W-Y, Usman A, Masuhara H. 2016. Picosecond motional relaxation of nanoparticles in femtosecond laser trapping. J. Phys. Chem. C 120:5251–56
    [Google Scholar]
  150. 150. 
    Chiang W-Y, Chen JJ-K, Usman A, Kudo T, Xia K et al. 2019. Formation mechanism and fluorescence characterization of a transient assembly of nanoparticles generated by femtosecond laser trapping. J. Phys. Chem. C 123:27823–33
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-044828
Loading
/content/journals/10.1146/annurev-physchem-090419-044828
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error