1932

Abstract

We discuss how Coulomb explosion imaging (CEI), triggered by intense femtosecond laser pulses and combined with laser-induced alignment and covariance analysis of the angular distributions of the recoiling fragment ions, provides new opportunities for imaging the structures of molecules and molecular complexes. First, focusing on gas phase molecules, we show how the periodic torsional motion of halogenated biphenyl molecules can be measured in real time by timed CEI, and how CEI of one-dimensionally aligned difluoroiodobenzene molecules can uniquely identify four structural isomers. Next, focusing on molecular complexes formed inside He nano-droplets, we show that the conformations of noncovalently bound dimers or trimers, aligned in one or three dimensions, can be determined by CEI. Results presented for homodimers of CS, OCS, and bromobenzene pave the way for femtosecond time-resolved structure imaging of molecules undergoing bimolecular interactions and ultimately chemical reactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-053627
2022-04-20
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-090419-053627.html?itemId=/content/journals/10.1146/annurev-physchem-090419-053627&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Yatsuhashi T, Nakashima N. 2018. Multiple ionization and Coulomb explosion of molecules, molecular complexes, clusters and solid surfaces. J. Photochem. Photobiol. C 34:52–84
    [Google Scholar]
  2. 2. 
    Vager Z, Kanter EP, Both G, Cooney PJ, Faibis A et al. 1986. Direct determination of the stereochemical structure of . Phys. Rev. Lett. 57:222793–95
    [Google Scholar]
  3. 3. 
    Vager Z, Naaman R, Kanter EP. 1989. Coulomb explosion imaging of small molecules. Science 244:4903426–31
    [Google Scholar]
  4. 4. 
    Frasinski LJ, Codling K, Hatherly P, Barr J, Ross IN, Toner WT 1987. Femtosecond dynamics of multielectron dissociative ionization by use of a picosecond laser. Phys. Rev. Lett. 58:232424–27
    [Google Scholar]
  5. 5. 
    Cornaggia C, Lavancier J, Normand D, Morellec J, Agostini P et al. 1991. Multielectron dissociative ionization of diatomic molecules in an intense femtosecond laser field. Phys. Rev. A 44:74499–505
    [Google Scholar]
  6. 6. 
    Strickland DT, Beaudoin Y, Dietrich P, Corkum PB 1992. Optical studies of inertially confined molecular iodine ions. Phys. Rev. Lett. 68:182755–58
    [Google Scholar]
  7. 7. 
    Codling K, Frasinski LJ. 1993. Dissociative ionization of small molecules in intense laser fields. J. Phys. B 26:5783–809
    [Google Scholar]
  8. 8. 
    Posthumus JH. 2004. The dynamics of small molecules in intense laser fields. Rep. Prog. Phys. 67:5623–65
    [Google Scholar]
  9. 9. 
    Snyder EM, Buzza SA, Castleman AW Jr. 1996. Intense field-matter interactions: multiple ionization of clusters. Phys. Rev. Lett. 77:163347–50
    [Google Scholar]
  10. 10. 
    Wabnitz H, Bittner L, de Castro ARB, Döhrmann R, Gürtler P et al. 2002. Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser. Nature 420:6915482–85
    [Google Scholar]
  11. 11. 
    Larsen JJ, Sakai H, Safvan CP, Wendt-Larsen I, Stapelfeldt H. 1999. Aligning molecules with intense nonresonant laser fields. J. Chem. Phys. 111:177774–81
    [Google Scholar]
  12. 12. 
    Rosca-Pruna F, Vrakking MJJ. 2001. Experimental observation of revival structures in picosecond laser-induced alignment of I2. Phys. Rev. Lett. 87:15153902
    [Google Scholar]
  13. 13. 
    Dooley PW, Litvinyuk IV, Lee KF, Rayner DM, Spanner M et al. 2003. Direct imaging of rotational wave-packet dynamics of diatomic molecules. Phys. Rev. A 68:2023406
    [Google Scholar]
  14. 14. 
    Karamatskos ET, Raabe S, Mullins T, Trabattoni A, Stammer P et al. 2019. Molecular movie of ultrafast coherent rotational dynamics of OCS. Nat. Commun. 10:13364
    [Google Scholar]
  15. 15. 
    Hamilton E, Seideman T, Ejdrup T, Poulsen MD, Bisgaard CZ et al. 2005. Alignment of symmetric top molecules by short laser pulses. Phys. Rev. A 72:4043402
    [Google Scholar]
  16. 16. 
    Kumarappan V, Bisgaard CZ, Viftrup SS, Holmegaard L, Stapelfeldt H 2006. Role of rotational temperature in adiabatic molecular alignment. J. Chem. Phys. 125:19194309
    [Google Scholar]
  17. 17. 
    Slater CS, Blake S, Brouard M, Lauer A, Vallance C et al. 2015. Coulomb-explosion imaging using a pixel-imaging mass-spectrometry camera. Phys. Rev. A 91:5053424
    [Google Scholar]
  18. 18. 
    Pickering JD, Shepperson B, Christiansen L, Stapelfeldt H. 2019. Alignment of the CS2 dimer embedded in helium droplets induced by a circularly polarized laser pulse. Phys. Rev. A 99:4043403
    [Google Scholar]
  19. 19. 
    Chatterley AS, Baatrup MO, Schouder CA, Stapelfeldt H. 2020. Laser-induced alignment dynamics of gas phase CS2 dimers. Phys. Chem. Chem. Phys. 22:63245–53
    [Google Scholar]
  20. 20. 
    Pentlehner D, Nielsen JH, Slenczka A, Mølmer K, Stapelfeldt H. 2013. Impulsive laser induced alignment of molecules dissolved in helium nanodroplets. Phys. Rev. Lett. 110:9093002
    [Google Scholar]
  21. 21. 
    Christensen L, Christiansen L, Shepperson B, Stapelfeldt H. 2016. Deconvoluting nonaxial recoil in Coulomb explosion measurements of molecular axis alignment. Phys. Rev. A 94:2023410
    [Google Scholar]
  22. 22. 
    Chatterley AS, Shepperson B, Stapelfeldt H. 2017. Three-dimensional molecular alignment inside helium nanodroplets. Phys. Rev. Lett. 119:7073202
    [Google Scholar]
  23. 23. 
    Shepperson B, Søndergaard AA, Christiansen L, Kaczmarczyk J, Zillich RE et al. 2017. Laser-induced rotation of iodine molecules in helium nanodroplets: revivals and breaking free. Phys. Rev. Lett. 118:20203203
    [Google Scholar]
  24. 24. 
    Chatterley AS, Schouder C, Christiansen L, Shepperson B, Rasmussen MH, Stapelfeldt H. 2019. Long-lasting field-free alignment of large molecules inside helium nanodroplets. Nat. Commun. 10:1133
    [Google Scholar]
  25. 25. 
    Chatterley AS, Christiansen L, Schouder CA, Jørgensen AV, Shepperson B et al. 2020. Rotational coherence spectroscopy of molecules in helium nanodroplets: reconciling the time and the frequency domains. Phys. Rev. Lett. 125:1013001
    [Google Scholar]
  26. 26. 
    Stapelfeldt H, Constant E, Corkum PB. 1995. Wave packet structure and dynamics measured by Coulomb explosion. Phys. Rev. Lett. 74:193780–83
    [Google Scholar]
  27. 27. 
    Chelkowski S, Corkum PB, Bandrauk AD. 1999. Femtosecond Coulomb explosion imaging of vibrational wave functions. Phys. Rev. Lett. 82:173416–19
    [Google Scholar]
  28. 28. 
    Skovsen E, Machholm M, Ejdrup T, Thøgersen J, Stapelfeldt H 2002. Imaging and control of interfering wave packets in a dissociating molecule. Phys. Rev. Lett. 89:13133004
    [Google Scholar]
  29. 29. 
    Petersen C, Péronne E, Thøgersen J, Stapelfeldt H, Machholm M. 2004. Control and imaging of interfering wave packets in dissociating I2 molecules. Phys. Rev. A 70:3033404
    [Google Scholar]
  30. 30. 
    Ergler T, Rudenko A, Feuerstein B, Zrost K, Schröter CD et al. 2006. Spatiotemporal imaging of ultrafast molecular motion: collapse and revival of the nuclear wave packet. Phys. Rev. Lett. 97:19193001
    [Google Scholar]
  31. 31. 
    Ergler T, Rudenko A, Feuerstein B, Zrost K, Schröter CD et al. 2006. Ultrafast mapping of H2 nuclear wave packets using time-resolved Coulomb explosion imaging. J. Phys. B 39:13S493–501
    [Google Scholar]
  32. 32. 
    Zeller S, Kunitski M, Voigtsberger J, Kalinin A, Schottelius A et al. 2016. Imaging the He2 quantum halo state using a free electron laser. PNAS 113:5114651–55
    [Google Scholar]
  33. 33. 
    Schouder CA, Chatterley AS, Madsen LB, Jensen F, Stapelfeldt H. 2020. Laser-induced Coulomb-explosion imaging of the CS2 dimer: the effect of non-Coulombic interactions. Phys. Rev. A 102:6063125
    [Google Scholar]
  34. 34. 
    Pitzer M, Kunitski M, Johnson AS, Jahnke T, Sann H et al. 2013. Direct determination of absolute molecular stereochemistry in gas phase by Coulomb explosion imaging. Science 341:61501096–100
    [Google Scholar]
  35. 35. 
    Herwig P, Zawatzky K, Grieser M, Heber O, Jordon-Thaden B et al. 2013. Imaging the absolute configuration of a chiral epoxide in the gas phase. Science 342:61621084–86
    [Google Scholar]
  36. 36. 
    Christensen L, Nielsen JH, Slater CS, Lauer A, Brouard M, Stapelfeldt H. 2015. Using laser-induced Coulomb explosion of aligned chiral molecules to determine their absolute configuration. Phys. Rev. A 92:3033411
    [Google Scholar]
  37. 37. 
    Thomas EF, Henriksen NE 2019. Breaking dynamic inversion symmetry in a racemic mixture using simple trains of laser pulses. J. Chem. Phys. 150:2024301
    [Google Scholar]
  38. 38. 
    Saribal C, Owens A, Yachmenev A, Küpper J 2021. Detecting handedness of spatially oriented molecules by Coulomb explosion imaging. J. Chem. Phys. 154:7071101
    [Google Scholar]
  39. 39. 
    Constant E, Stapelfeldt H, Corkum PB. 1996. Observation of enhanced ionization of molecular ions in intense laser fields. Phys. Rev. Lett. 76:224140–43
    [Google Scholar]
  40. 40. 
    Ablikim U, Bomme C, Xiong H, Savelyev E, Obaid R et al. 2016. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging. Sci. Rep. 6:38202
    [Google Scholar]
  41. 41. 
    Ablikim U, Bomme C, Savelyev E, Xiong H, Kushawaha R et al. 2017. Isomer-dependent fragmentation dynamics of inner-shell photoionized difluoroiodobenzene. Phys. Chem. Chem. Phys. 19:2113419–31
    [Google Scholar]
  42. 42. 
    Burt M, Amini K, Lee JWL, Christiansen L, Johansen RR et al. 2018. Gas-phase structural isomer identification by Coulomb explosion of aligned molecules. J. Chem. Phys. 148:9091102
    [Google Scholar]
  43. 43. 
    Légaré F, Lee KF, Litvinyuk IV, Dooley PW, Bandrauk AD et al. 2005. Imaging the time-dependent structure of a molecule as it undergoes dynamics. Phys. Rev. A 72:5052717
    [Google Scholar]
  44. 44. 
    Bocharova IA, Alnaser AS, Thumm U, Niederhausen T, Ray D et al. 2011. Time-resolved Coulomb-explosion imaging of nuclear wave-packet dynamics induced in diatomic molecules by intense few-cycle laser pulses. Phys. Rev. A 83:1013417
    [Google Scholar]
  45. 45. 
    Burt M, Boll R, Lee JWL, Amini K, Köckert H et al. 2017. Coulomb-explosion imaging of concurrent CH2BrI photodissociation dynamics. Phys. Rev. A 96:4043415
    [Google Scholar]
  46. 46. 
    Corrales ME, González-Vázquez J, de Nalda R, Banares L. 2019. Coulomb explosion imaging for the visualization of a conical intersection. J. Phys. Chem. Lett. 10:2138–43
    [Google Scholar]
  47. 47. 
    Zhao X, Xu T, Yu X, Ren D, Zhang X et al. 2021. Tracking the nuclear movement of the carbonyl sulfide cation after strong-field ionization by time-resolved Coulomb-explosion imaging. Phys. Rev. A 103:5053103
    [Google Scholar]
  48. 48. 
    Madsen CB, Madsen LB, Viftrup SS, Johansson MP, Poulsen TB et al. 2009. Manipulating the torsion of molecules by strong laser pulses. Phys. Rev. Lett. 102:7073007
    [Google Scholar]
  49. 49. 
    Christensen L, Nielsen JH, Brandt CB, Madsen CB, Madsen LB et al. 2014. Dynamic stark control of torsional motion by a pair of laser pulses. Phys. Rev. Lett. 113:7073005
    [Google Scholar]
  50. 50. 
    Endo T, Neville SP, Wanie V, Beaulieu S, Qu C et al. 2020. Capturing roaming molecular fragments in real time. Science 370:65201072–77
    [Google Scholar]
  51. 51. 
    Ibrahim H, Wales B, Beaulieu S, Schmidt BE, Thiré N et al. 2014. Tabletop imaging of structural evolutions in chemical reactions demonstrated for the acetylene cation. Nat. Commun. 5:4422
    [Google Scholar]
  52. 52. 
    Bringmann G, Mortimer AJP, Keller PA, Gresser MJ, Garner J, Breuning M. 2005. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44:345384–427
    [Google Scholar]
  53. 53. 
    Eliel EL, Wilen SH 1994. Chirality in molecules devoid of chiral centers. Stereochemistry of Organic Compounds EL Eliel, SH Wilen, LN Mander 1119–90 New York: Wiley
    [Google Scholar]
  54. 54. 
    Madsen CB, Madsen LB, Viftrup SS, Johansson MP, Poulsen TB et al. 2009. A combined experimental and theoretical study on realizing and using laser controlled torsion of molecules. J. Chem. Phys. 130:23234310
    [Google Scholar]
  55. 55. 
    Hansen JL, Nielsen JH, Madsen CB, Lindhardt AT, Johansson MP et al. 2012. Control and femtosecond time-resolved imaging of torsion in a chiral molecule. J. Chem. Phys. 136:20204310
    [Google Scholar]
  56. 56. 
    Stapelfeldt H, Seideman T. 2003. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75:2543–57
    [Google Scholar]
  57. 57. 
    Seideman T, Hamilton E 2005. Nonadiabatic alignment by intense pulses. Concepts, theory, and directions. Adv. At. Mol. Opt. Phys 52:289–329
    [Google Scholar]
  58. 58. 
    Ohshima Y, Hasegawa H. 2010. Coherent rotational excitation by intense nonresonant laser fields. Int. Rev. Phys. Chem. 29:4619–63
    [Google Scholar]
  59. 59. 
    Fleischer S, Khodorkovsky Y, Gershnabel E, Prior Y, Averbukh IS. 2012. Molecular alignment induced by ultrashort laser pulses and its impact on molecular motion. Isr. J. Chem. 52:5414–37
    [Google Scholar]
  60. 60. 
    Koch CP, Lemeshko M, Sugny D. 2019. Quantum control of molecular rotation. Rev. Mod. Phys. 91:3035005
    [Google Scholar]
  61. 61. 
    Larsen JJ, Hald K, Bjerre N, Stapelfeldt H, Seideman T. 2000. Three dimensional alignment of molecules using elliptically polarized laser fields. Phys. Rev. Lett. 85:122470–73
    [Google Scholar]
  62. 62. 
    Underwood JG, Sussman BJ, Stolow A. 2005. Field-free three dimensional molecular axis alignment. Phys. Rev. Lett. 94:14143002
    [Google Scholar]
  63. 63. 
    Lee KF, Villeneuve DM, Corkum PB, Stolow A, Underwood JG. 2006. Field-free three-dimensional alignment of polyatomic molecules. Phys. Rev. Lett. 97:17173001
    [Google Scholar]
  64. 64. 
    Ren X, Makhija V, Kumarappan V. 2014. Multipulse three-dimensional alignment of asymmetric top molecules. Phys. Rev. Lett. 112:17173602
    [Google Scholar]
  65. 65. 
    Torres R, de Nalda R, Marangos JP. 2005. Dynamics of laser-induced molecular alignment in the impulsive and adiabatic regimes: a direct comparison. Phys. Rev. A 72:2023420
    [Google Scholar]
  66. 66. 
    Holmegaard L, Nielsen JH, Nevo I, Stapelfeldt H, Filsinger F et al. 2009. Laser-induced alignment and orientation of quantum-state-selected large molecules. Phys. Rev. Lett. 102:2023001
    [Google Scholar]
  67. 67. 
    Nevo I, Holmegaard L, Nielsen JH, Hansen JL, Stapelfeldt H et al. 2009. Laser-induced 3D alignment and orientation of quantum state-selected molecules. Phys. Chem. Chem. Phys. 11:429912–18
    [Google Scholar]
  68. 68. 
    Shepperson B, Chatterley AS, Søndergaard AA, Christiansen L, Lemeshko M, Stapelfeldt H 2017. Strongly aligned molecules inside helium droplets in the near-adiabatic regime. J. Chem. Phys. 147:1013946
    [Google Scholar]
  69. 69. 
    Hansen JL, Holmegaard L, Kalhøj L, Kragh SL, Stapelfeldt H et al. 2011. Ionization of one- and three-dimensionally-oriented asymmetric-top molecules by intense circularly polarized femtosecond laser pulses. Phys. Rev. A 83:2023406
    [Google Scholar]
  70. 70. 
    Filsinger F, Küpper J, Meijer G, Holmegaard L, Nielsen JH et al. 2009. Quantum-state selection, alignment, and orientation of large molecules using static electric and laser fields. J. Chem. Phys. 131:6064309
    [Google Scholar]
  71. 71. 
    Chandler DW, Houston PL. 1987. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87:21445–47
    [Google Scholar]
  72. 72. 
    Eppink ATJB, Parker DH. 1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68:93477–84
    [Google Scholar]
  73. 73. 
    Sakai H, Safvan CP, Larsen JJ, Hilligsøe KM, Hald K, Stapelfeldt H 1999. Controlling the alignment of neutral molecules by a strong laser field. J. Chem. Phys. 110:2110235–38
    [Google Scholar]
  74. 74. 
    Ortigoso J, Rodríguez M, Gupta M, Friedrich B. 1999. Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field. J. Chem. Phys. 110:83870–75
    [Google Scholar]
  75. 75. 
    Hansen JL, Stapelfeldt H, Dimitrovski D, Abu-samha M, Martiny CPJ, Madsen LB 2011. Time-resolved photoelectron angular distributions from strong-field ionization of rotating naphthalene molecules. Phys. Rev. Lett. 106:7073001
    [Google Scholar]
  76. 76. 
    Zhao A, van Beuzekom M, Bouwens B, Byelov D, Chakaberia I et al. 2017. Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution. Rev. Sci. Instrum. 88:11113104
    [Google Scholar]
  77. 77. 
    Vallance C, Brouard M, Lauer A, Slater CS, Halford E et al. 2014. Fast sensors for time-of-flight imaging applications. Phys. Chem. Chem. Phys. 16:2383–95
    [Google Scholar]
  78. 78. 
    Pickering JD, Amini K, Brouard M, Burt M, Bush IJ et al. 2016. Three-fold covariance imaging of laser-induced Coulomb explosions. J. Chem. Phys. 144:16161105
    [Google Scholar]
  79. 79. 
    Nomerotski A, Brouard M, Campbell E, Clark A, Crooks J et al. 2010. Pixel Imaging Mass Spectrometry with fast and intelligent Pixel detectors. J. Instrum. 5:7C07007
    [Google Scholar]
  80. 80. 
    John JJ, Brouard M, Clark A, Crooks J, Halford E et al. 2012. PImMS, a fast event-triggered monolithic pixel detector with storage of multiple timestamps. J. Instrum. 7:8C08001
    [Google Scholar]
  81. 81. 
    Sedgwick I, Clark A, Crooks J, Turchetta R, Hill L et al. 2012. PImMS: a self-triggered, 25ns resolution monolithic CMOS sensor for Time-of-Flight and Imaging Mass Spectrometry. New Circuits and Systems Conference (NEWCAS), 2012 IEEE 10th International497–500 New York: IEEE
    [Google Scholar]
  82. 82. 
    Slater CS, Blake S, Brouard M, Lauer A, Vallance C et al. 2014. Covariance imaging experiments using a pixel-imaging mass-spectrometry camera. Phys. Rev. A 89:1011401
    [Google Scholar]
  83. 83. 
    Mikosch J, Patchkovskii S. 2013. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory. J. Mod. Opt. 60:171426–38
    [Google Scholar]
  84. 84. 
    Mikosch J, Patchkovskii S. 2013. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. II. Analysis and applications. J. Mod. Opt. 60:171439–51
    [Google Scholar]
  85. 85. 
    Frasinski LJ. 2016. Covariance mapping techniques. J. Phys. B 49:15152004
    [Google Scholar]
  86. 86. 
    Vallance C, Heathcote D, Lee JWL 2021. Covariance-map imaging: a powerful tool for chemical dynamics studies. J. Phys. Chem. A 125:51117–33
    [Google Scholar]
  87. 87. 
    Viftrup SS, Kumarappan V, Trippel S, Stapelfeldt H, Hamilton E, Seideman T 2007. Holding and spinning molecules in space. Phys. Rev. Lett. 99:14143602
    [Google Scholar]
  88. 88. 
    Müller-Dethlefs K, Hobza P. 2000. Noncovalent interactions: a challenge for experiment and theory. Chem. Rev. 100:1143–68
    [Google Scholar]
  89. 89. 
    Ikkanda BA, Iverson BL. 2016. Exploiting the interactions of aromatic units for folding and assembly in aqueous environments. Chem. Comm. 52:507752–59
    [Google Scholar]
  90. 90. 
    Becucci M, Melandri S. 2016. High-resolution spectroscopic studies of complexes formed by medium-size organic molecules. Chem. Rev. 116:95014–37
    [Google Scholar]
  91. 91. 
    Zehnacker A, Suhm MA. 2008. Chirality recognition between neutral molecules in the gas phase. Angew. Chem. Int. Ed. 47:376970–92
    [Google Scholar]
  92. 92. 
    Fenniri H, Deng BL, Ribbe AE, Hallenga K, Jacob J, Thiyagarajan P 2002. Entropically driven self-assembly of multichannel rosette nanotubes. PNAS 99:6487–92
    [Google Scholar]
  93. 93. 
    Gibbs GV, Crawford TD, Wallace AF, Cox DF, Parrish RM et al. 2011. Role of long-range intermolecular forces in the formation of inorganic nanoparticle clusters. J. Phys. Chem. A 115:4512933–40
    [Google Scholar]
  94. 94. 
    Yip WT, Levy DH. 1996. Excimer/exciplex formation in van der Waals dimers of aromatic molecules. J. Phys. Chem. 100:2811539–45
    [Google Scholar]
  95. 95. 
    Wheeler MD, Anderson DT, Lester MI 2000. Probing reactive potential energy surfaces by vibrational activation of H2-OH entrance channel complexes. Int. Rev. Phys. Chem. 19:4501–29
    [Google Scholar]
  96. 96. 
    Nesbitt DJ. 1988. High-resolution infrared spectroscopy of weakly bound molecular complexes. Chem. Rev. 88:6843–70
    [Google Scholar]
  97. 97. 
    Moazzen-Ahmadi N, McKellar ARW. 2013. Spectroscopy of dimers, trimers and larger clusters of linear molecules. Int. Rev. Phys. Chem. 32:4611–50
    [Google Scholar]
  98. 98. 
    Toennies JP, Vilesov AF. 2004. Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes. Angew. Chem. Int. Ed. 43:202622–48
    [Google Scholar]
  99. 99. 
    Choi MY, Douberly GE, Falconer TM, Lewis WK, Lindsay CM et al. 2006. Infrared spectroscopy of helium nanodroplets: novel methods for physics and chemistry. Int. Rev. Phys. Chem. 25:1–21575
    [Google Scholar]
  100. 100. 
    Yang S, Ellis AM 2012. Helium droplets: a chemistry perspective. Chem. Soc. Rev. 42:2472–84
    [Google Scholar]
  101. 101. 
    Mauracher A, Echt O, Ellis AM, Yang S, Bohme DK et al. 2018. Cold physics and chemistry: collisions, ionization and reactions inside helium nanodroplets close to zero K. Phys. Rep. 751:1–90
    [Google Scholar]
  102. 102. 
    Jaksch S, Mähr I, Denifl S, Bacher A, Echt O et al. 2009. Electron attachment to doped helium droplets: C60, (C60)2, and C60D2O anions. Eur. Phys. J. D 52:191–94
    [Google Scholar]
  103. 103. 
    Renzler M, Daxner M, Kranabetter L, Kaiser A, Hauser AW et al. 2016. Dopant-induced solvation of alkalis in liquid helium nanodroplets. J. Chem. Phys. 145:18181101
    [Google Scholar]
  104. 104. 
    Wewer M, Stienkemeier F. 2003. Molecular versus excitonic transitions in PTCDA dimers and oligomers studied by helium nanodroplet isolation spectroscopy. Phys. Rev. B 67:12125201
    [Google Scholar]
  105. 105. 
    Ltaief LB, Shcherbinin M, Mandal S, Krishnan SR, Richter R et al. 2021. Photoelectron spectroscopy of coronene molecules embedded in helium nanodroplets. J. Low Temp. Phys. 202:5444–55
    [Google Scholar]
  106. 106. 
    Moradi CP, Douberly GE. 2015. Infrared laser spectroscopy of the L-shaped Cl-HCl complex formed in superfluid 4He nanodroplets. J. Phys. Chem. A 119:5012028–35
    [Google Scholar]
  107. 107. 
    Verma D, Tanyag RMP, O'Connell SMO, Vilesov AF. 2019. Infrared spectroscopy in superfluid helium droplets. Adv. Phys. X 4:11553569
    [Google Scholar]
  108. 108. 
    Rezaei M, Norooz Oliaee J, Moazzen-Ahmadi N, McKellar ARW 2011. Spectroscopic observation and structure of CS2 dimer. J. Chem. Phys. 134:14144306
    [Google Scholar]
  109. 109. 
    Pickering JD, Shepperson B, Hübschmann BA, Thorning F, Stapelfeldt H 2018. Alignment and imaging of the CS2 dimer inside helium nanodroplets. Phys. Rev. Lett. 120:11113202
    [Google Scholar]
  110. 110. 
    Pickering JD, Shepperson B, Christiansen L, Stapelfeldt H. 2018. Femtosecond laser induced Coulomb explosion imaging of aligned OCS oligomers inside helium nanodroplets. J. Chem. Phys. 149:15154306
    [Google Scholar]
  111. 111. 
    Miller I, Faulkner T, Saunier J, Raston PL. 2020. Observation of the elusive “oxygen-in” OCS dimer. J. Chem. Phys. 152:22221102
    [Google Scholar]
  112. 112. 
    Nauta K, Miller RE. 1999. Nonequilibrium self-assembly of long chains of polar molecules in superfluid helium. Science 283:54091895–97
    [Google Scholar]
  113. 113. 
    Nauta K, Miller RE. 2000. Formation of cyclic water hexamer in liquid helium. Science 287:293–95
    [Google Scholar]
  114. 114. 
    Seideman T. 2001. On the dynamics of rotationally broad, spatially aligned wave packets. J. Chem. Phys. 115:135965–73
    [Google Scholar]
  115. 115. 
    Chatterley AS, Karamatskos ET, Schouder C, Christiansen L, Jørgensen AV et al. 2018. Switched wave packets with spectrally truncated chirped pulses. J. Chem. Phys. 148:22221105
    [Google Scholar]
  116. 116. 
    Poikela T, Plosila J, Westerlund T, Campbell M, Gaspari MD et al. 2014. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J. Instrum. 9:5C05013
    [Google Scholar]
  117. 117. 
    Schouder C, Chatterley AS, Johny M, Hübschmann F, Al-Refaie AF et al. 2021. Laser-induced Coulomb explosion imaging of (C6H5Br)2 and C6H5Br-I2 dimers in helium nanodroplets using a Tpx3Cam. J. Phys. B 54:184001
    [Google Scholar]
  118. 118. 
    Schouder C, Chatterley AS, Calvo F, Christiansen L, Stapelfeldt H. 2019. Structure determination of the tetracene dimer in helium nanodroplets using femtosecond strong-field ionization. Struct. Dyn. 6:4044301
    [Google Scholar]
  119. 119. 
    Kjeldsen TK, Bisgaard CZ, Madsen LB, Stapelfeldt H. 2005. Influence of molecular symmetry on strong-field ionization: studies on ethylene, benzene, fluorobenzene, and chlorofluorobenzene. Phys. Rev. A 71:1013418
    [Google Scholar]
  120. 120. 
    Petretti S, Vanne YV, Saenz A, Castro A, Decleva P. 2010. Alignment-dependent ionization of N2, O2, and CO2 in intense laser fields. Phys. Rev. Lett. 104:22223001
    [Google Scholar]
  121. 121. 
    Hansen JL, Holmegaard L, Nielsen JH, Stapelfeldt H, Dimitrovski D, Madsen LB 2012. Orientation-dependent ionization yields from strong-field ionization of fixed-in-space linear and asymmetric top molecules. J. Phys. B 45:1015101
    [Google Scholar]
  122. 122. 
    Mikosch J, Boguslavskiy AE, Wilkinson I, Spanner M, Patchkovskii S, Stolow A 2013. Channel- and angle-resolved above threshold ionization in the molecular frame. Phys. Rev. Lett. 110:2023004
    [Google Scholar]
  123. 123. 
    Smith MB, Michl J. 2013. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64:361–86
    [Google Scholar]
  124. 124. 
    Okuyama K, Numata Y, Odawara S, Suzuka I 1998. Electronic spectra of jet-cooled 1-phenylpyrrole: large-amplitude torsional motion and twisted intramolecular charge-transfer phenomenon. J. Chem. Phys. 109:177185–96
    [Google Scholar]
  125. 125. 
    Beenken WJD, Lischka H. 2005. Spectral broadening and diffusion by torsional motion in biphenyl. J. Chem. Phys. 123:14144311
    [Google Scholar]
  126. 126. 
    Wittig C, Sharpe S, Beaudet RA. 1988. Photoinitiated reactions in weakly bonded complexes. Acc. Chem. Res. 21:9341–47
    [Google Scholar]
  127. 127. 
    Cheng PY, Zhong D, Zewail AH. 1996. Femtosecond real-time probing of reactions. XXI. Direct observation of transition-state dynamics and structure in charge-transfer reactions. J. Chem. Phys. 105:156216–48
    [Google Scholar]
  128. 128. 
    Stert V, Farmanara P, Radloff W, Noack F, Skowronek S et al. 1999. Real-time study of the femtosecond harpooning reaction in Ba…FCH3. Phys. Rev. A 59:3R1727–30
    [Google Scholar]
  129. 129. 
    Amini K, Savelyev E, Brauße F, Berrah N, Bomme C et al. 2018. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization. Struct. Dyn. 5:1014301
    [Google Scholar]
  130. 130. 
    Takanashi T, Nakamura K, Kukk E, Motomura K, Fukuzawa H et al. 2017. Ultrafast Coulomb explosion of a diiodomethane molecule induced by an X-ray free-electron laser pulse. Phys. Chem. Chem. Phys. 19:3019707–21
    [Google Scholar]
  131. 131. 
    Rudenko A, Inhester L, Hanasaki K, Li X, Robatjazi SJ et al. 2017. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays. Nature 546:7656129–32
    [Google Scholar]
  132. 132. 
    Zhou W, Ge L, Cooper GA, Crane SW, Evans MH et al. 2020. Coulomb explosion imaging for gas-phase molecular structure determination: an ab initio trajectory simulation study. J. Chem. Phys. 153:18184201
    [Google Scholar]
  133. 133. 
    Hensley CJ, Yang J, Centurion M 2012. Imaging of isolated molecules with ultrafast electron pulses. Phys. Rev. Lett. 109:13133202
    [Google Scholar]
  134. 134. 
    Boll R, Anielski D, Bostedt C, Bozek JD, Christensen L et al. 2013. Femtosecond photoelectron diffraction on laser-aligned molecules: towards time-resolved imaging of molecular structure. Phys. Rev. A 88:6061402
    [Google Scholar]
  135. 135. 
    Küpper J, Stern S, Holmegaard L, Filsinger F, Rouzée A et al. 2014. X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser. Phys. Rev. Lett. 112:8083002
    [Google Scholar]
  136. 136. 
    Wolter B, Pullen MG, Le AT, Baudisch M, Doblhoff-Dier K et al. 2016. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene. Science 354:6310308–12
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-053627
Loading
/content/journals/10.1146/annurev-physchem-090419-053627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error