1932

Abstract

Measurements of droplet phase and interfacial tension (IFT) are important in the fields of atmospheric aerosols and emulsion science. Bulk macroscale property measurements with similar constituents cannot capture the effect of microscopic length scales and highly curved surfaces on the transport characteristics and heterogeneous chemistry typical in these applications. Instead, microscale droplet measurements ensure properties are measured at the relevant length scale. With recent advances in microfluidics, customized multiphase fluid flows can be created in channels for the manipulation and observation of microscale droplets in an enclosed setting without the need for large and expensive control systems. In this review, we discuss the applications of different physical principles at the microscale and corresponding microfluidic approaches for the measurement of droplet phase state, viscosity, and IFT.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-105522
2021-04-20
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-105522.html?itemId=/content/journals/10.1146/annurev-physchem-090419-105522&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pipe CJ, McKinley GH. 2009. Microfluidic rheometry. Mech. Res. Commun. 36:1110–20
    [Google Scholar]
  2. 2. 
    Mukhopadhyay A, Granick S. 2001. Micro- and nanorheology. Curr. Opin. Colloid Interface Sci. 6:5–6423–29
    [Google Scholar]
  3. 3. 
    Seinfeld JH, Pandis SN. 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change Hoboken, NJ: John Wiley & Sons. , 3rd ed..
    [Google Scholar]
  4. 4. 
    Boyer HC, Dutcher CS. 2017. Atmospheric aqueous aerosol surface tensions: isotherm-based modeling and biphasic microfluidic measurements. J. Phys. Chem. A 121:254733–42
    [Google Scholar]
  5. 5. 
    Reid JP, Bertram AK, Topping DO, Laskin A, Martin ST et al. 2018. The viscosity of atmospherically relevant organic particles. Nat. Commun. 9:956
    [Google Scholar]
  6. 6. 
    Freedman MA. 2017. Phase separation in organic aerosol. Chem. Soc. Rev. 46:247694–705
    [Google Scholar]
  7. 7. 
    Kanji ZA, Ladino LA, Wex H, Boose Y, Burkert-Kohn M et al. 2017. Overview of ice nucleating particles. Meteorol. Monogr. 58:11–33
    [Google Scholar]
  8. 8. 
    Sullivan RC, Gorkowski K, Jahn L 2018. Characterization of individual aerosol particles. Physical Chemistry of Gas-Liquid Interfaces JA Faust, JE House 353–402 Amsterdam: Elsevier
    [Google Scholar]
  9. 9. 
    Lee HD, Tivanski AV. 2021. Atomic force microscopy: an emerging tool in measuring the phase state and surface tension of individual aerosol particles. Annu. Rev. Phys. Chem. 72:235–52
    [Google Scholar]
  10. 10. 
    Sackmann EK, Fulton AL, Beebe DJ 2014. The present and future role of microfluidics in biomedical research. Nature 507:7491181–89
    [Google Scholar]
  11. 11. 
    Lifton VA. 2016. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR). Lab Chip 16:101777–96
    [Google Scholar]
  12. 12. 
    Jokerst JC, Emory JM, Henry CS 2012. Advances in microfluidics for environmental analysis. Analyst 137:24–34
    [Google Scholar]
  13. 13. 
    Narayan S, Moravec DB, Hauser BG, Dallas AJ, Dutcher CS 2018. Removing water from diesel fuel: understanding the impact of droplet size on dynamic interfacial tension of water-in-fuel emulsions. Energy Fuels 32:7326–37
    [Google Scholar]
  14. 14. 
    Chen Y, Dutcher CS. 2020. Size dependent droplet interfacial tension and surfactant transport in liquid–liquid systems, with applications in shipboard oily bilgewater emulsions. Soft Matter 16:122994–3004
    [Google Scholar]
  15. 15. 
    Metcalf AR, Narayan S, Dutcher CS 2018. A review of microfluidic concepts and applications for atmospheric aerosol science. Aerosol Sci. Technol. 52:3310–29
    [Google Scholar]
  16. 16. 
    You Y, Smith ML, Song M, Martin ST, Bertram AK 2014. Liquid–liquid phase separation in atmospherically relevant particles consisting of organic species and inorganic salts. Int. Rev. Phys. Chem. 33:143–77
    [Google Scholar]
  17. 17. 
    Losey DJ, Parker RG, Freedman MA 2016. pH dependence of liquid–liquid phase separation in organic aerosol. J. Phys. Chem. Lett. 7:193861–65
    [Google Scholar]
  18. 18. 
    Song M, Marcolli C, Krieger UK, Zuend A, Peter T 2012. Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles. Atmos. Chem. Phys. 12:52691–712
    [Google Scholar]
  19. 19. 
    Tong H-J, Qian Z-G, Reid JP, Zhang Y-H 2011. High temporal and spatial resolution measurements of the rapid efflorescence of sea salt droplets. Acta Phys. Chim. Sin. 27:112521–27
    [Google Scholar]
  20. 20. 
    Wise ME, Baustian KJ, Koop T, Freedman MA, Jensen EJ, Tolbert MA 2012. Depositional ice nucleation onto crystalline hydrated NaCl particles: a new mechanism for ice formation in the troposphere. Atmos. Chem. Phys. 12:21121–34
    [Google Scholar]
  21. 21. 
    Wise ME, Baustian KJ, Tolbert MA 2010. Internally mixed sulfate and organic particles as potential ice nuclei in the tropical tropopause region. PNAS 107:156693–98
    [Google Scholar]
  22. 22. 
    Baustian KJ, Cziczo DJ, Wise ME, Pratt KA, Kulkarni G et al. 2012. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: a combined field and laboratory approach. J. Geophys. Res. Atmos. 117:D6 https://doi.org/10.1029/2011JD016784
    [Crossref] [Google Scholar]
  23. 23. 
    Schill GP, Tolbert MA. 2013. Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid versus glassy coatings. Atmos. Chem. Phys. 13:94681–95
    [Google Scholar]
  24. 24. 
    Mael LE, Busse H, Grassian VH 2019. Measurements of immersion freezing and heterogeneous chemistry of atmospherically relevant single particles with micro-Raman spectroscopy. Anal. Chem. 91:1711138–45
    [Google Scholar]
  25. 25. 
    You Y, Renbaum-Wolff L, Carreras-Sospedra M, Hanna SJ, Hiranuma N et al. 2012. Images reveal that atmospheric particles can undergo liquid–liquid phase separations. PNAS 109:3313188–93
    [Google Scholar]
  26. 26. 
    Hosny NA, Fitzgerald C, Vyšniauskas A, Athanasiadis A, Berkemeier T et al. 2016. Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging. Chem. Sci. 7:21357–67
    [Google Scholar]
  27. 27. 
    Waigh TA. 2005. Microrheology of complex fluids. Rep. Prog. Phys. 68:3685–742
    [Google Scholar]
  28. 28. 
    Dutcher CS, Woehl TJ, Talken NH, Ristenpart WD 2013. Hexatic-to-disorder transition in colloidal crystals near electrodes: rapid annealing of polycrystalline domains. Phys. Rev. Lett. 111:12128302
    [Google Scholar]
  29. 29. 
    Tokarev A, Aprelev A, Zakharov MN, Korneva G, Gogotsi Y, Kornev KG 2012. Multifunctional magnetic rotator for micro and nanorheological studies. Rev. Sci. Instrum. 83:6065110
    [Google Scholar]
  30. 30. 
    Renbaum-Wolff L, Grayson JW, Bertram AK 2013. Technical note: new methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples. Atmos. Chem. Phys. 13:2791–802
    [Google Scholar]
  31. 31. 
    Ren K, Zhou J, Wu H 2013. Materials for microfluidic chip fabrication. Acc. Chem. Res. 46:112396–406
    [Google Scholar]
  32. 32. 
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H et al. 2000. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:127–40
    [Google Scholar]
  33. 33. 
    Randall GC, Doyle PS. 2005. Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices. PNAS 102:3110813–18
    [Google Scholar]
  34. 34. 
    Nandy L, Liu S, Gunsbury C, Wang X, Pendergraft MA et al. 2019. Multistep phase transitions in sea surface microlayer droplets and aerosol mimics using microfluidic wells. ACS Earth Space Chem. 3:71260–67
    [Google Scholar]
  35. 35. 
    Roy P, Mael LE, Makhnenko I, Martz R, Grassian VH, Dutcher CS 2020. Temperature-dependent phase transitions of aqueous aerosol droplet systems in microfluidic traps. ACS Earth Space Chem 4:91527–39
    [Google Scholar]
  36. 36. 
    Bithi SS, Vanapalli SA. 2010. Behavior of a train of droplets in a fluidic network with hydrodynamic traps. Biomicrofluidics 4:4044110
    [Google Scholar]
  37. 37. 
    Boukellal H, Selimović E, Jia Y, Cristobal G, Fraden S 2009. Simple, robust storage of drops and fluids in a microfluidic device. Lab Chip 9:2331–38
    [Google Scholar]
  38. 38. 
    Selimović E, Gobeaux F, Fraden S 2010. Mapping and manipulating temperature–concentration phase diagrams using microfluidics. Lab Chip 10:131696–99
    [Google Scholar]
  39. 39. 
    Wang W, Yang C, Li CM 2009. On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9:111504–6
    [Google Scholar]
  40. 40. 
    Nandy L, Dutcher CS. 2018. Phase behavior of ammonium sulfate with organic acid solutions in aqueous aerosol mimics using microfluidic traps. J. Phys. Chem. B 122:133480–90
    [Google Scholar]
  41. 41. 
    Bleier BJ, Anna SL, Walker LM 2018. Microfluidic droplet-based tool to determine phase behavior of a fluid system with high composition resolution. J. Phys. Chem. B 122:144067–76
    [Google Scholar]
  42. 42. 
    Boreyko JB, Mruetusatorn P, Retterer ST, Collier CP 2013. Aqueous two-phase microdroplets with reversible phase transitions. Lab Chip 13:71295–301
    [Google Scholar]
  43. 43. 
    Jung SY, Retterer ST, Collier CP 2010. On-demand generation of monodisperse femtolitre droplets by shape-induced shear. Lab Chip 10:202688–94
    [Google Scholar]
  44. 44. 
    Shim JU, Cristobal G, Link DR, Thorsen T, Jia Y et al. 2007. Control and measurement of the phase behavior of aqueous solutions using microfluidics. J. Am. Chem. Soc. 129:288825–35
    [Google Scholar]
  45. 45. 
    Cohen DE, Schneider T, Wang M, Chiu DT 2010. Self-digitization of sample volumes. Anal. Chem. 82:135707–17
    [Google Scholar]
  46. 46. 
    Polen M, Lawlis E, Sullivan RC 2016. The unstable ice nucleation properties of Snomax® bacterial particles. J. Geophys. Res. Atmos. 121:11666–78
    [Google Scholar]
  47. 47. 
    Polen M, Brubaker T, Somers J, Sullivan RC 2018. Cleaning up our water: reducing interferences from nonhomogeneous freezing of “pure” water in droplet freezing assays of ice-nucleating particles. Atmos. Meas. Tech. 11:95315–34
    [Google Scholar]
  48. 48. 
    Leng J, Lonetti B, Tabeling P, Joanicot M, Ajdari A 2006. Microevaporators for kinetic exploration of phase diagrams. Phys. Rev. Lett. 96:8084503
    [Google Scholar]
  49. 49. 
    Moreau P, Dehmoune J, Salmon JB, Leng J 2009. Microevaporators with accumulators for the screening of phase diagrams of aqueous solutions. Appl. Phys. Lett. 95:3033108
    [Google Scholar]
  50. 50. 
    Chao Y, Mak SY, Rahman S, Zhu S, Shum HC 2018. Generation of high-order all-aqueous emulsion drops by osmosis-driven phase separation. Small 14:391802107
    [Google Scholar]
  51. 51. 
    Laval P, Crombez A, Salmon JB 2009. Microfluidic droplet method for nucleation kinetics measurements. Langmuir 25:31836–41
    [Google Scholar]
  52. 52. 
    Sugiyama M, Gasperino D, Derby JJ, Barocas VH 2008. Protein−salt−water solution phase diagram determination by a combined experimental−computational scheme. Cryst. Growth Des. 8:124208–14
    [Google Scholar]
  53. 53. 
    Wang H, Khodaparast S, Carroll J, Kelly C, Robles ESJ, Cabral JT 2020. A microfluidic-multiwell platform for rapid phase mapping of surfactant solutions. Rev. Sci. Instrum. 91:445109
    [Google Scholar]
  54. 54. 
    Hübner M, Minceva M. 2020. Microfluidics approach for determination of the miscibility gap of multicomponent liquid-liquid systems. Exp. Therm. Fluid Sci. 112:109971
    [Google Scholar]
  55. 55. 
    Silva DFC, Azevedo AM, Fernandes P, Chu V, Conde JP, Aires-Barros MR 2014. Determination of aqueous two phase system binodal curves using a microfluidic device. J. Chromatogr. A 1370:115–20
    [Google Scholar]
  56. 56. 
    Bao B, Riordon J, Xu Y, Li H, Sinton D 2016. Direct measurement of the fluid phase diagram. Anal. Chem. 88:2
    [Google Scholar]
  57. 57. 
    Xu Y, Riordon J, Cheng X, Bao B, Sinton D 2017. The full pressure-temperature phase envelope of a mixture in 1000 microfluidic chambers. Angew. Chem. Int. Ed. 56:4513962–67
    [Google Scholar]
  58. 58. 
    Toprakcioglu Z, Challa PK, Levin A, Knowles TPJ 2018. Observation of molecular self-assembly events in massively parallel microdroplet arrays. Lab Chip 18:213303–9
    [Google Scholar]
  59. 59. 
    Brubaker T, Polen M, Cheng P, Ekambaram V, Somers J et al. 2019. Development and characterization of a “store and create” microfluidic device to determine the heterogeneous freezing properties of ice nucleating particles. Aerosol Sci. Technol. 54:179–93
    [Google Scholar]
  60. 60. 
    Lau BTC, Baitz CA, Dong XP, Hansen CL 2007. A complete microfluidic screening platform for rational protein crystallization. J. Am. Chem. Soc. 129:3454–55
    [Google Scholar]
  61. 61. 
    Zhang Y, Nguyen N-T. 2017. Magnetic digital microfluidics—a review. Lab Chip 17:6994–1008
    [Google Scholar]
  62. 62. 
    Choi K, Ng AHC, Fobel R, Wheeler AR 2012. Digital microfluidics. Annu. Rev. Anal. Chem. 5:413–40
    [Google Scholar]
  63. 63. 
    Lin Y-Y, Lin C-W, Yang L-J, Wang A-B 2007. Micro-viscometer based on electrowetting on dielectric. Electrochim. Acta 52:82876–83
    [Google Scholar]
  64. 64. 
    Tröls A, Clara S, Jakoby B 2016. A low-cost viscosity sensor based on electrowetting on dielectrics (EWOD) forces. Sens. Actuators A Phys. 244:261–69
    [Google Scholar]
  65. 65. 
    De Ruiter R, Wennink P, Banpurkar AG, Duits MHG, Mugele F 2012. Use of electrowetting to measure dynamic interfacial tensions of a microdrop. Lab Chip 12:162832–36
    [Google Scholar]
  66. 66. 
    Davoust L, Theisen J. 2013. Evaporation rate of drop arrays within a digital microfluidic system. Sens. Actuators B Chem. 189:157–64
    [Google Scholar]
  67. 67. 
    Brassard D, Malic L, Normandin F, Tabrizian M, Veres T 2008. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices. Lab Chip 8:81342–49
    [Google Scholar]
  68. 68. 
    DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD et al. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate. PNAS 107:2511217–22
    [Google Scholar]
  69. 69. 
    Murray BJ, O'Sullivan D, Atkinson JD, Webb ME 2012. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 41:196519–54
    [Google Scholar]
  70. 70. 
    Hill TCJ, Moffett BF, DeMott PJ, Georgakopoulos DG, Stump WL, Franc GD 2014. Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR. Appl. Environ. Microbiol. 80:41256–67
    [Google Scholar]
  71. 71. 
    Murray BJ, Broadley SL, Wilson TW, Bull SJ, Wills RH et al. 2010. Kinetics of the homogeneous freezing of water. Phys. Chem. Chem. Phys. 12:3510380–87
    [Google Scholar]
  72. 72. 
    Whale TF, Murray BJ, O'Sullivan D, Wilson TW, Umo NS et al. 2015. A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets. Atmos. Meas. Tech. 8:62437–47
    [Google Scholar]
  73. 73. 
    Riechers B, Wittbracht F, Hütten A, Koop T 2013. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Phys. Chem. Chem. Phys. 15:165873–87
    [Google Scholar]
  74. 74. 
    Tarn MD, Sikora SNF, Porter GCE, O'Sullivan D, Adams M et al. 2018. The study of atmospheric ice-nucleating particles via microfluidically generated droplets. Microfluid. Nanofluidics 22:52
    [Google Scholar]
  75. 75. 
    Stan CA, Schneider GF, Shevkoplyas SS, Hashimoto M, Ibanescu M et al. 2009. A microfluidic apparatus for the study of ice nucleation in supercooled water drops. Lab Chip 9:162293–305
    [Google Scholar]
  76. 76. 
    Young T. 1805. III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. 95:65–87
    [Google Scholar]
  77. 77. 
    Rehbinder P. 1924. Über die Abhängigkeit der Oberflächenaktivität und der Oberflächenspannung der Lösungen von der Temperatur und Konzentration. I. Z. Phys. Chem. 111U:1447–64
    [Google Scholar]
  78. 78. 
    Bendure RL. 1971. Dynamic surface tension determination with the maximum bubble pressure method. J. Colloid Interface Sci. 35:2238–48
    [Google Scholar]
  79. 79. 
    Alvarez NJ, Walker LM, Anna SL 2010. A microtensiometer to probe the effect of radius of curvature on surfactant transport to a spherical interface. Langmuir 26:1613310–19
    [Google Scholar]
  80. 80. 
    Lee S, Kim DH, Needham D 2001. Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 1. A new method for determination of interfacial tension. Langmuir 17:185537–43
    [Google Scholar]
  81. 81. 
    Gu H, Duits MHG, Mugele F 2011. Interfacial tension measurements with microfluidic tapered channels. Colloids Surfaces A Physicochem. Eng. Asp. 389:1–338–42
    [Google Scholar]
  82. 82. 
    Zhou H, Yao Y, Chen Q, Li G, Yao S 2013. A facile microfluidic strategy for measuring interfacial tension. Appl. Phys. Lett. 103:23234102
    [Google Scholar]
  83. 83. 
    Li S, Xu J, Wang Y, Luo G 2009. A new interfacial tension measurement method through a pore array micro-structured device. J. Colloid Interface Sci. 331:1127–31
    [Google Scholar]
  84. 84. 
    Honaker LW, Lagerwall JPF, Jampani VSR 2018. Microfluidic tensiometry technique for the characterization of the interfacial tension between immiscible liquids. Langmuir 34:72403–9
    [Google Scholar]
  85. 85. 
    Lan W, Wang Z, Wang M, Liu D, Guo X et al. 2019. Determination of transient interfacial tension in a microfluidic device using a Laplace sensor. Chem. Eng. Sci. 209:115207
    [Google Scholar]
  86. 86. 
    Vonnegut B. 1942. Rotating bubble method for the determination of surface and interfacial tensions. Rev. Sci. Instrum. 13:16–9
    [Google Scholar]
  87. 87. 
    Drelich J, Fang CH, White CL 2002. Measurement of interfacial tension in fluid-fluid systems. Encyclopedia of Surface and Colloid Science, Vol. 3 AT Hubbard, P Somasundaran 3152–66 New York, NY: Marcel Dekker
    [Google Scholar]
  88. 88. 
    KRÜSS Sci 2020.Drop shape analyzer needle specificationsBroch., KRÜSS Sci., Hamburg, Ger https://www.kruss-scientific.com/fileadmin/user_upload/website/brochures/kruss-bro-acc-dsa-needle-specifications-en.pdf
  89. 89. 
    Zhu P, Wang L. 2017. Passive and active droplet generation with microfluidics: a review. Lab Chip 17:134–75
    [Google Scholar]
  90. 90. 
    Anna SL. 2016. Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48:285–309
    [Google Scholar]
  91. 91. 
    Nguyen N-T, Lassemono S, Chollet FA, Yang C 2006. Microfluidic sensor for dynamic surface tension measurement. IEEE Proc. Nanobiotechnol. 153:4102–6
    [Google Scholar]
  92. 92. 
    Xu JH, Li SW, Lan WJ, Luo GS 2008. Microfluidic approach for rapid interfacial tension measurement. Langmuir 24:1911287–92
    [Google Scholar]
  93. 93. 
    Lamb H. 2015. 1932. Hydrodynamics New York, NY: Dover. , 6th ed..
    [Google Scholar]
  94. 94. 
    Taylor GI. 1934. The formation of emulsions in definable fields of flow. Proc. R. Soc. A Math. Phys. Eng. Sci. 146:858501–23
    [Google Scholar]
  95. 95. 
    Taylor GI. 1932. The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. A Math. Phys. Eng. Sci. 138:83441–48
    [Google Scholar]
  96. 96. 
    Goel S, Joshi N, Uddin MS, Ng S, Acosta E, Ramachandran A 2019. Interfacial tension of the water-diluted bitumen interface at high bitumen concentrations measured using a microfluidic technique. Langmuir 35:4815710–22
    [Google Scholar]
  97. 97. 
    Motagamwala AH. 2013. A microfluidic, extensional flow device for manipulating soft particles MS Thesis: Univ. Toronto
    [Google Scholar]
  98. 98. 
    Rallison J. 1984. The deformation of small viscous drops and bubbles in shear flows. Annu. Rev. Fluid Mech. 16:45–66
    [Google Scholar]
  99. 99. 
    Hudson SD, Cabral JT, Goodrum WJ, Beers KL, Amis EJ 2005. Microfluidic interfacial tensiometry. Appl. Phys. Lett. 87:8081905
    [Google Scholar]
  100. 100. 
    Cabral JT, Hudson SD. 2006. Microfluidic approach for rapid multicomponent interfacial tensiometry. Lab Chip 6:3427–36
    [Google Scholar]
  101. 101. 
    Metcalf AR, Boyer HC, Dutcher CS 2016. Interfacial tensions of aged organic aerosol particle mimics using a biphasic microfluidic platform. Environ. Sci. Technol. 50:31251–59
    [Google Scholar]
  102. 102. 
    Riva M, Chen Y, Zhang Y, Lei Z, Olson NE et al. 2019. Increasing isoprene epoxydiol-to-inorganic sulfate aerosol ratio results in extensive conversion of inorganic sulfate to organosulfur forms: implications for aerosol physicochemical properties. Environ. Sci. Technol. 53:158682–94
    [Google Scholar]
  103. 103. 
    Lee D, Fang C, Ravan AS, Fuller GG, Shen AQ 2017. Temperature controlled tensiometry using droplet microfluidics. Lab Chip 17:4717–26
    [Google Scholar]
  104. 104. 
    Brosseau Q. 2014. Dynamics of soft interfaces in droplet-based microfluidics PhD Thesis, Georg-August Univ Göttingen, Ger:.
    [Google Scholar]
  105. 105. 
    Brosseau Q, Vrignon J, Baret JC 2014. Microfluidic dynamic interfacial tensiometry (μDIT). Soft Matter 10:173066–76
    [Google Scholar]
  106. 106. 
    Micklavzina B, Metaxas A, Dutcher CS 2020. Microfluidic rheology of methylcellulose solutions in hyperbolic contractions and the effect of salt in shear and extensional flows. Soft Matter 16:5273–81
    [Google Scholar]
  107. 107. 
    Kang K, Lee LJ, Koelling KW 2005. High shear microfluidics and its application in rheological measurement. Exp. Fluids 38:2222–32
    [Google Scholar]
  108. 108. 
    Wang J, James DF. 2011. Lubricated extensional flow of viscoelastic fluids in a convergent microchannel. J. Rheol. 55:51103–26
    [Google Scholar]
  109. 109. 
    Pipe CJ, Majmudar TS, McKinley GH 2008. High shear rate viscometry. Rheol. Acta 47:5–6621–42
    [Google Scholar]
  110. 110. 
    Ober TJ, Haward SJ, Pipe CJ, Soulages J, McKinley GH 2013. Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheol. Acta 52:6529–46
    [Google Scholar]
  111. 111. 
    Quist A, Chand A, Ramachandran S, Cohen D, Lal R 2006. Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels. Lab Chip 6:111450–54
    [Google Scholar]
  112. 112. 
    Kim HJ, Kim J, Zandieh O, Chae MS, Kim TS et al. 2014. Piezoelectric layer embedded-microdiaphragm sensors for the determination of blood viscosity and density. Appl. Phys. Lett. 105:15153504
    [Google Scholar]
  113. 113. 
    Liu MC, Shih HC, Wu JG, Weng TW, Wu CY et al. 2013. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab Chip 13:91743–53
    [Google Scholar]
  114. 114. 
    Lee T-A, Liao W-H, Tung Y-C 2017. Fully disposable and optically transparent microfluidic viscometer based on electrofluidic pressure sensor. 2017 19th International Conference on Solid-State Sensors, Actuators, and Microsystems (TRANSDUCERS 2017)pp. 579–82 Piscataway, NJ: IEEE:
    [Google Scholar]
  115. 115. 
    Hudson SD, Sarangapani P, Pathak JA, Migler KB 2015. A microliter capillary rheometer for characterization of protein solutions. J. Pharm. Sci. 104:2678–85
    [Google Scholar]
  116. 116. 
    Solomon DE, Abdel-Raziq A, Vanapalli SA 2016. A stress-controlled microfluidic shear viscometer based on smartphone imaging. Rheol. Acta 55:9727–38
    [Google Scholar]
  117. 117. 
    Zarifi MH, Sadabadi H, Hejazi SH, Daneshmand M, Sanati-Nezhad A 2018. Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering. Sci. Rep. 8:1139
    [Google Scholar]
  118. 118. 
    Noeth N, Keller SS, Boisen A 2013. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems. Sensors 14:1229–44
    [Google Scholar]
  119. 119. 
    Lee J, Tripathi A. 2005. Intrinsic viscosity of polymers and biopolymers measured by microchip. Anal. Chem. 77:227137–47
    [Google Scholar]
  120. 120. 
    Solomon DE, Vanapalli SA. 2014. Multiplexed microfluidic viscometer for high-throughput complex fluid rheology. Microfluid. Nanofluidics 16:4677–90
    [Google Scholar]
  121. 121. 
    Srivastava N, Davenport RD, Burns MA 2005. Nanoliter viscometer for analyzing blood plasma and other liquid samples. Anal. Chem. 77:2383–92
    [Google Scholar]
  122. 122. 
    Delamarre MF, Keyzer A, Shippy SA 2015. Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids. Anal. Chem. 87:94649–57
    [Google Scholar]
  123. 123. 
    Nie Z, Seo MS, Xu S, Lewis PC, Mok M et al. 2008. Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid. Nanofluidics 5:5585–94
    [Google Scholar]
  124. 124. 
    Li Y, Ward KR, Burns MA 2017. Viscosity measurements using microfluidic droplet length. Anal. Chem. 89:73996–4006
    [Google Scholar]
  125. 125. 
    Gupta S, Wang WS, Vanapalli SA 2016. Microfluidic viscometers for shear rheology of complex fluids and biofluids. Biomicrofluidics 10:43402
    [Google Scholar]
  126. 126. 
    Strutt JW(Lord Rayleigh) 1879. VI. On the capillary phenomena of jets. Proc. R. Soc. 29:196–19971–97
    [Google Scholar]
  127. 127. 
    Prosperetti A. 1980. Free oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech. 100:2333–47
    [Google Scholar]
  128. 128. 
    Suryanarayana PVR, Bayazitoglu Y. 1991. Surface tension and viscosity from damped free oscillations of viscous droplets. Int. J. Thermophys. 12:1137–51
    [Google Scholar]
  129. 129. 
    Miller CA, Scriven LE. 1968. The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32:3417–35
    [Google Scholar]
  130. 130. 
    Hiller WJ, Kowalewski TA. 1989. Optical investigation of oscillating liquid droplets. Z. Angew. Math. Mech. 69:6T629–78
    [Google Scholar]
  131. 131. 
    Trinh E, Zwern A, Wang TG 1982. An experimental study of small-amplitude drop oscillations in immiscible liquid systems. J. Fluid Mech. 115:453–74
    [Google Scholar]
  132. 132. 
    Brenn G, Frohn A. 1993. An experimental method for the investigation of droplet oscillations in a gaseous medium. Exp. Fluids 15:285–90
    [Google Scholar]
  133. 133. 
    Staat HJJ, van der Bos A, van den Berg M, Reinten H, Wijshoff H et al. 2017. Ultrafast imaging method to measure surface tension and viscosity of inkjet-printed droplets in flight. Exp. Fluids 58:2
    [Google Scholar]
  134. 134. 
    Narayan S, Moravec DB, Dallas AJ, Dutcher CS 2020. Droplet shape relaxation in a four-channel microfluidic hydrodynamic trap. Phys. Rev. Fluids 5:113603
    [Google Scholar]
  135. 135. 
    Hong J, Kim YK, Kang KH, Kim J, Lee SJ 2014. Effects of drop viscosity on oscillation dynamics induced by AC electrowetting. Sens. Actuators B Chem. 190:48–54
    [Google Scholar]
  136. 136. 
    Choi S, Kwon Y, Lee J 2014. Electrowetting-based measurement of interfacial tension. Appl. Phys. Lett. 105:183509
    [Google Scholar]
  137. 137. 
    Yamada T, Sakai K. 2012. Observation of collision and oscillation of microdroplets with extremely large shear deformation. Phys. Fluids 24:2022103
    [Google Scholar]
  138. 138. 
    Bzdek BR, Power RM, Simpson SH, Reid JP, Royall CP 2016. Precise, contactless measurements of the surface tension of picolitre aerosol droplets. Chem. Sci. 7:1274–85
    [Google Scholar]
  139. 139. 
    Power RM, Reid JP. 2014. Probing the micro-rheological properties of aerosol particles using optical tweezers. Rep. Prog. Phys. 77:7074601
    [Google Scholar]
  140. 140. 
    Miles REH, Glerum MWJ, Boyer HC, Walker JS, Dutcher CS, Bzdek BR 2019. Surface tensions of picoliter droplets with sub-millisecond surface age. J. Phys. Chem. A 123:133021–29
    [Google Scholar]
  141. 141. 
    Richards DS, Trobaugh KL, Hajek-Herrera J, Davis RD 2020. Dual-balance electrodynamic trap as a microanalytical tool for identifying gel transitions and viscous properties of levitated aerosol particles. Anal. Chem. 92:43086–94
    [Google Scholar]
  142. 142. 
    Keen S, Yao A, Leach J, Di Leonardo R, Saunter C et al. 2009. Multipoint viscosity measurements in microfluidic channels using optical tweezers. Lab Chip 9:142059–62
    [Google Scholar]
  143. 143. 
    Zhang Y, Wu X, Wang Y, Zhu S, Gao BZ, Yuan XC 2014. Measurement of the microscopic viscosities of microfluids with a dynamic optical tweezers system. Laser Phys 24:65
    [Google Scholar]
  144. 144. 
    Narayan S, Metaxas AE, Bachnak R, Neumiller T, Dutcher CS 2020. Zooming in on the role of surfactants in droplet coalescence at the macroscale and microscale. Curr. Opin. Colloid Interface Sci. 50:101385
    [Google Scholar]
  145. 145. 
    Narayan S, Metaxas AE, Bachnak R, Neumiller T, Dutcher CS 2020. Insights into the microscale coalescence behavior of surfactant-stabilized droplets using a microfluidic hydrodynamic trap. Langmuir 36:9827–42
    [Google Scholar]
  146. 146. 
    Madou MJ. 2002. Fundamentals of Microfabrication: The Science of Miniaturization Boca Raton, FL: CRC Press
    [Google Scholar]
  147. 147. 
    Goodwin ARH, Donzier EP, Vancauwenberghe O, Fitt AD, Ronaldson KA et al. 2006. A vibrating edge supported plate, fabricated by the methods of micro electro mechanical system for the simultaneous measurement of density and viscosity: results for methylbenzene and octane at temperatures between (323 and 423) K and pressures in the range (0.1 to 68) MPa. J. Chem. Eng. Data 51:1190–208
    [Google Scholar]
  148. 148. 
    Etchart I, Chen H, Dryden P, Jundt J, Harrison C et al. 2008. MEMS sensors for density-viscosity sensing in a low-flow microfluidic environment. Sens. Actuators A Phys. 141:2266–75
    [Google Scholar]
  149. 149. 
    Cerimovic S, Beigelbeck R, Antlinger H, Schalko J, Jakoby B, Keplinger F 2012. Sensing viscosity and density of glycerol-water mixtures utilizing a suspended plate MEMS resonator. Microsyst. Technol. 18:1045–56
    [Google Scholar]
  150. 150. 
    Yang LJ, Liu KC, Lin WC 2014. On deriving surface tension force in MEMS. J. Appl. Sci. Eng. 17:3223–30
    [Google Scholar]
  151. 151. 
    Arenas KJL, Schill SR, Malla A, Hudson PK 2012. Deliquescence phase transition measurements by quartz crystal microbalance frequency shifts. J. Phys. Chem. A 116:297658–67
    [Google Scholar]
  152. 152. 
    Schuttlefield J, Al-Hosney H, Zachariah A, Grassian VH 2007. Attenuated total reflection Fourier transform infrared spectroscopy to investigate water uptake and phase transitions in atmospherically relevant particles. Appl. Spectrosc. 61:3283–92
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-105522
Loading
/content/journals/10.1146/annurev-physchem-090419-105522
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error