1932

Abstract

Atmospheric aerosols are suspended particulate matter of varying composition, size, and mixing state. Challenges remain in understanding the impact of aerosols on the climate, atmosphere, and human health. The effect of aerosols depends on their physicochemical properties, such as their hygroscopicity, phase state, and surface tension. These properties are dynamic with respect to the highly variable relative humidity and temperature of the atmosphere. Thus, experimental approaches that permit the measurement of these dynamic properties are required. Such measurements also need to be performed on individual, submicrometer-, and supermicrometer-sized aerosol particles, as individual atmospheric particles from the same source can exhibit great variability in their form and function. In this context, this review focuses on the recent emergence of atomic force microscopy as an experimental tool in physical, analytical, and atmospheric chemistry that enables such measurements. Remaining challenges are noted and suggestions for future studies are offered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-110133
2021-04-20
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-110133.html?itemId=/content/journals/10.1146/annurev-physchem-090419-110133&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pöschl U. 2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44:7520–40
    [Google Scholar]
  2. 2. 
    Riemer N, Ault AP, West M, Craig RL, Curtis JH. 2019. Aerosol mixing state: measurements, modeling, and impacts. Rev. Geophys. 57:187–249
    [Google Scholar]
  3. 3. 
    Wang XF, Deane GB, Moore KA, Ryder OS, Stokes MD et al. 2017. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles. PNAS 114:6978–83
    [Google Scholar]
  4. 4. 
    Cochran RE, Laskina O, Trueblood JV, Estillore AD, Morris HS et al. 2017. Molecular diversity of sea spray aerosol particles: impact of ocean biology on particle composition and hygroscopicity. Chem 2:655–67
    [Google Scholar]
  5. 5. 
    Zhang Y, Chen Y, Lambe AT, Olson NE, Lei Z et al. 2018. Effect of the aerosol-phase state on secondary organic aerosol formation from the reactive uptake of isoprene-derived epoxydiols (IEPOX). Environ. Sci. Technol. Lett. 5:167–74
    [Google Scholar]
  6. 6. 
    Bondy AL, Kirpes RM, Merzel RL, Pratt KA, Banaszak Holl MM, Ault AP 2017. Atomic force microscopy-infrared spectroscopy of individual atmospheric aerosol particles: subdiffraction limit vibrational spectroscopy and morphological analysis. Anal. Chem. 89:8594–98
    [Google Scholar]
  7. 7. 
    Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ et al. 2017. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 51:13545–67
    [Google Scholar]
  8. 8. 
    Haywood J, Boucher O. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 38:513–43
    [Google Scholar]
  9. 9. 
    Seinfeld JH, Bretherton C, Carslaw KS, Coe H, DeMott PJ et al. 2016. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. PNAS 113:5781–90
    [Google Scholar]
  10. 10. 
    Petters MD, Kreidenweis SM. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7:1961–71
    [Google Scholar]
  11. 11. 
    McCluskey CS, Hill TCJ, Malfatti F, Sultana CM, Lee C et al. 2017. A dynamic link between ice nucleating particles released in nascent sea spray aerosol and oceanic biological activity during two mesocosm experiments. J. Atmos. Sci. 74:151–66
    [Google Scholar]
  12. 12. 
    IPCC (Intergov. Panel Clim. Chang.). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK/New York: Cambridge Univ. Press
  13. 13. 
    Hodas N, Zuend A, Mui W, Flagan RC, Seinfeld JH. 2015. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols. Atmos. Chem. Phys. 15:5027–45
    [Google Scholar]
  14. 14. 
    Schill SR, Collins DB, Lee C, Morris HS, Novak GA et al. 2015. The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol. ACS Central Sci 1:132–41
    [Google Scholar]
  15. 15. 
    Berkemeier T, Shiraiwa M, Pöschl U, Koop T. 2014. Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmos. Chem. Phys. 14:12513–31
    [Google Scholar]
  16. 16. 
    Collins DB, Ault AP, Moffet RC, Ruppel MJ, Cuadra-Rodriguez LA et al. 2013. Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol. J. Geophys. Res. Atmos. 118:8553–65
    [Google Scholar]
  17. 17. 
    Stock M, Cheng YF, Birmili W, Massling A, Wehner B et al. 2011. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions. Atmos. Chem. Phys. 11:4251–71
    [Google Scholar]
  18. 18. 
    Tandon A, Rothfuss NE, Petters MD. 2019. The effect of hydrophobic glassy organic material on the cloud condensation nuclei activity of particles with different morphologies. Atmos. Chem. Phys. 19:3325–39
    [Google Scholar]
  19. 19. 
    Shiraiwa M, Li Y, Tsimpidi AP, Karydis VA, Berkemeier T et al. 2017. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 8:15002
    [Google Scholar]
  20. 20. 
    Shiraiwa M, Zuend A, Bertram AK, Seinfeld JH. 2013. Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology. Phys. Chem. Chem. Phys. 15:11441–53
    [Google Scholar]
  21. 21. 
    Renbaum-Wolff L, Grayson JW, Bateman AP, Kuwata M, Sellier M et al. 2013. Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity. PNAS 110:8014–19
    [Google Scholar]
  22. 22. 
    Kuwata M, Martin ST 2012. Phase of atmospheric secondary organic material affects its reactivity. PNAS 109:17354–59
    [Google Scholar]
  23. 23. 
    Saukko E, Lambe AT, Massoli P, Koop T, Wright JP et al. 2012. Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors. Atmos. Chem. Phys. 12:7517–29
    [Google Scholar]
  24. 24. 
    Shiraiwa M, Ammann M, Koop T, Pöschl U 2011. Gas uptake and chemical aging of semisolid organic aerosol particles. PNAS 108:11003–8
    [Google Scholar]
  25. 25. 
    Virtanen A, Joutsensaari J, Koop T, Kannosto J, Yli-Pirila P et al. 2010. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467:824–27
    [Google Scholar]
  26. 26. 
    Zobrist B, Marcolli C, Pedernera DA, Koop T. 2008. Do atmospheric aerosols form glasses?. Atmos. Chem. Phys. 8:5221–44
    [Google Scholar]
  27. 27. 
    Davies JF, Zuend A, Wilson KR. 2019. Technical note: the role of evolving surface tension in the formation of cloud droplets. Atmos. Chem. Phys. 19:2933–46
    [Google Scholar]
  28. 28. 
    Forestieri SD, Staudt SM, Kuborn TM, Faber K, Ruehl CR et al. 2018. Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics. Atmos. Chem. Phys. 18:10985–1005
    [Google Scholar]
  29. 29. 
    Ovadnevaite J, Zuend A, Laaksonen A, Sanchez KJ, Roberts G et al. 2017. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 546:637–41
    [Google Scholar]
  30. 30. 
    Ruehl CR, Davies JF, Wilson KR. 2016. An interfacial mechanism for cloud droplet formation on organic aerosols. Science 351:1447–50
    [Google Scholar]
  31. 31. 
    Facchini MC, Mircea M, Fuzzi S, Charlson RJ. 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401:257–59
    [Google Scholar]
  32. 32. 
    Giessibl FJ. 2003. Advances in atomic force microscopy. Rev. Mod. Phys. 75:949–83
    [Google Scholar]
  33. 33. 
    Ault AP, Axson JL. 2017. Atmospheric aerosol chemistry: spectroscopic and microscopic advances. Anal. Chem. 89:430–52
    [Google Scholar]
  34. 34. 
    Gan Y. 2009. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf. Sci. Rep. 64:99–121
    [Google Scholar]
  35. 35. 
    Lansakara TI, Morris HS, Singh P, Kohen A, Tivanski AV. 2020. Rigid double-stranded DNA linkers for single molecule enzyme–drug interaction measurements using molecular recognition force spectroscopy. Langmuir 36:4174–83
    [Google Scholar]
  36. 36. 
    Poggi MA, Gadsby ED, Bottomley LA, King WP, Oroudjev E, Hansma H. 2004. Scanning probe microscopy. Anal. Chem. 76:3429–44
    [Google Scholar]
  37. 37. 
    Martínez NF, Lozano JR, Herruzo ET, Garcia F, Richter C et al. 2008. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 19:384011
    [Google Scholar]
  38. 38. 
    Martínez NF, García R. 2006. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 17:S167–72
    [Google Scholar]
  39. 39. 
    Scott WW, Bhushan B. 2003. Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films. Ultramicroscopy 97:151–69
    [Google Scholar]
  40. 40. 
    Nagao E, Dvorak JA. 1999. Phase imaging by atomic force microscopy: analysis of living homoiothermic vertebrate cells. Biophys. J. 76:3289–97
    [Google Scholar]
  41. 41. 
    Bar G, Thomann Y, Brandsch R, Cantow H-J, Whangbo M-H. 1997. Factors affecting the height and phase images in tapping mode atomic force microscopy. Study of phase-separated polymer blends of poly(ethene-co-styrene) and poly(2,6-dimethyl-1,4-phenylene oxide). Langmuir 13:3807–12
    [Google Scholar]
  42. 42. 
    Ray KK, Lee HD, Gutierrez MA, Chang FJ, Tivanski AV. 2019. Correlating 3D morphology, phase state, and viscoelastic properties of individual substrate-deposited particles. Anal. Chem. 91:7621–30
    [Google Scholar]
  43. 43. 
    Lee HD, Estillore AD, Morris HS, Ray KK, Alejandro A et al. 2017. Direct surface tension measurements of individual sub-micrometer particles using atomic force microscopy. J. Phys. Chem. A 121:8296–305
    [Google Scholar]
  44. 44. 
    Lee HD, Ray KK, Tivanski AV. 2017. Solid, semisolid, and liquid phase states of individual submicrometer particles directly probed using atomic force microscopy. Anal. Chem. 89:12720–26
    [Google Scholar]
  45. 45. 
    Morris HS, Grassian VH, Tivanski AV. 2015. Humidity-dependent surface tension measurements of individual inorganic and organic submicrometre liquid particles. Chem. Sci. 6:3242–47
    [Google Scholar]
  46. 46. 
    Lee HD, Morris HS, Laskina O, Sultana CM, Lee C et al. 2020. Organic enrichment, physical phase state, and surface tension depression of nascent core–shell sea spray aerosols during two phytoplankton blooms. ACS Earth Space Chem 4:650–60
    [Google Scholar]
  47. 47. 
    Laskina O, Morris HS, Grandquist JR, Qiu Z, Stone EA et al. 2015. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles. J. Phys. Chem. A 119:4489–97
    [Google Scholar]
  48. 48. 
    Estillore AD, Morris HS, Or VW, Lee HD, Alves MR et al. 2017. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles. Phys. Chem. Chem. Phys. 19:21101–11
    [Google Scholar]
  49. 49. 
    Morris HS, Estillore AD, Laskina O, Grassian VH, Tivanski AV. 2016. Quantifying the hygroscopic growth of individual submicrometer particles with atomic force microscopy. Anal. Chem. 88:3647–54
    [Google Scholar]
  50. 50. 
    Lee HD, Kaluarachchi CP, Hasenecz ES, Zhu JZ, Popa E et al. 2019. Effect of dry or wet substrate deposition on the organic volume fraction of core–shell aerosol particles. Atmos. Meas. Tech. 12:2033–42
    [Google Scholar]
  51. 51. 
    Laskina O, Morris HS, Grandquist JR, Estillore AD, Stone EA et al. 2015. Substrate-deposited sea spray aerosol particles: influence of analytical method, substrate, and storage conditions on particle size, phase, and morphology. Environ. Sci. Technol. 49:13447–53
    [Google Scholar]
  52. 52. 
    DeMott PJ, Hill TCJ, McCluskey CS, Prather KA, Collins DB et al. 2016. Sea spray aerosol as a unique source of ice nucleating particles. PNAS 113:5797–803
    [Google Scholar]
  53. 53. 
    DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD et al. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate. PNAS 107:11217–22
    [Google Scholar]
  54. 54. 
    Jayarathne T, Sultana CM, Lee C, Malfatti F, Cox JL et al. 2016. Enrichment of saccharides and divalent cations in sea spray aerosol during two phytoplankton blooms. Environ. Sci. Technol. 50:11511–20
    [Google Scholar]
  55. 55. 
    Dutcher CS, Ge XL, Wexler AS, Clegg SL. 2013. An isotherm-based thermodynamic model of multicomponent aqueous solutions, applicable over the entire concentration range. J. Phys. Chem. A 117:3198–213
    [Google Scholar]
  56. 56. 
    Marshall FH, Miles REH, Song YC, Ohm PB, Power RM et al. 2016. Diffusion and reactivity in ultraviscous aerosol and the correlation with particle viscosity. Chem. Sci. 7:1298–308
    [Google Scholar]
  57. 57. 
    Song YC, Haddrell AE, Bzdek BR, Reid JP, Barman T et al. 2016. Measurements and predictions of binary component aerosol particle viscosity. J. Phys. Chem. A 120:8123–37
    [Google Scholar]
  58. 58. 
    Murray BJ, Wilson TW, Dobbie S, Cui ZQ, Al-Jumur SMRK et al. 2010. Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci. 3:233–37
    [Google Scholar]
  59. 59. 
    Baustian KJ, Wise ME, Jensen EJ, Schill GP, Freedman MA, Tolbert MA. 2013. State transformations and ice nucleation in amorphous (semi-)solid organic aerosol. Atmos. Chem. Phys. 13:5615–28
    [Google Scholar]
  60. 60. 
    Murray BJ. 2008. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets. Atmos. Chem. Phys. 8:5423–33
    [Google Scholar]
  61. 61. 
    Mikhailov E, Vlasenko S, Martin ST, Koop T, Poeschl U. 2009. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 9:9491–522
    [Google Scholar]
  62. 62. 
    Pilinis C, Pandis SN, Seinfeld JH. 1995. Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J. Geophys. Res. Atmos. 100:18739–54
    [Google Scholar]
  63. 63. 
    Ruehl CR, Wilson KR. 2014. Surface organic mono layers control the hygroscopic growth of submicrometer particles at high relative humidity. J. Phys. Chem. A 118:3952–66
    [Google Scholar]
  64. 64. 
    Ruehl CR, Chuang PY, Nenes A. 2010. Aerosol hygroscopicity at high (99 to 100%) relative humidities. Atmos. Chem. Phys. 10:1329–44
    [Google Scholar]
  65. 65. 
    Barnes HA, Hutton JF, Walters K. 1989. An Introduction to Rheology Amsterdam: Elsevier
  66. 66. 
    Reid JP, Bertram AK, Topping DO, Laskin A, Martin ST et al. 2018. The viscosity of atmospherically relevant organic particles. Nat. Commun. 9:956
    [Google Scholar]
  67. 67. 
    Renbaum-Wolff L, Grayson JW, Bertram AK. 2013. Technical note: new methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples. Atmos. Chem. Phys. 13:791–802
    [Google Scholar]
  68. 68. 
    Song MJ, Liu PFF, Hanna SJ, Zaveri RA, Potter K et al. 2016. Relative humidity-dependent viscosity of secondary organic material from toluene photo-oxidation and possible implications for organic particulate matter over megacities. Atmos. Chem. Phys. 16:8817–30
    [Google Scholar]
  69. 69. 
    Bzdek BR, Power RM, Simpson SH, Reid JP, Royall CP. 2016. Precise, contactless measurements of the surface tension of picolitre aerosol droplets. Chem. Sci. 7:274–85
    [Google Scholar]
  70. 70. 
    Power RM, Simpson SH, Reid JP, Hudson AJ. 2013. The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles. Chem. Sci. 4:2597–604
    [Google Scholar]
  71. 71. 
    Grayson JW, Song M, Sellier M, Bertram AK. 2015. Validation of the poke-flow technique combined with simulations of fluid flow for determining viscosities in samples with small volumes and high viscosities. Atmos. Meas. Tech. 8:2463–72
    [Google Scholar]
  72. 72. 
    Bateman AP, Bertram AK, Martin ST. 2015. Hygroscopic influence on the semisolid-to-liquid transition of secondary organic materials. J. Phys. Chem. A 119:4386–95
    [Google Scholar]
  73. 73. 
    Bateman AP, Belassein H, Martin ST. 2014. Impactor apparatus for the study of particle rebound: relative humidity and capillary forces. Aerosol Sci. Technol. 48:42–52
    [Google Scholar]
  74. 74. 
    Slade JH, Ault AP, Bui AT, Ditto JC, Lei Z et al. 2019. Bouncier particles at night: biogenic secondary organic aerosol chemistry and sulfate drive diel variations in the aerosol phase in a mixed forest. Environ. Sci. Technol. 53:4977–87
    [Google Scholar]
  75. 75. 
    Roy P, Liu S, Dutcher CS. 2020. Droplet interfacial tensions and phase transitions measured in microfluidic channels. Annu. Rev. Phys. Chem. 72:73–98
    [Google Scholar]
  76. 76. 
    Nandy L, Liu S, Gunsbury C, Wang X, Pendergraft MA et al. 2019. Multistep phase transitions in sea surface microlayer droplets and aerosol mimics using microfluidic wells. ACS Earth Space Chem 3:1260–67
    [Google Scholar]
  77. 77. 
    Nandy L, Dutcher CS. 2018. Phase behavior of ammonium sulfate with organic acid solutions in aqueous aerosol mimics using microfluidic traps. J. Phys. Chem. B 122:3480–90
    [Google Scholar]
  78. 78. 
    Metcalf AR, Narayan S, Dutcher CS. 2018. A review of microfluidic concepts and applications for atmospheric aerosol science. Aerosol Sci. Technol. 52:310–29
    [Google Scholar]
  79. 79. 
    Wang B, Harder TH, Kelly ST, Piens DS, China S et al. 2016. Airborne soil organic particles generated by precipitation. Nat. Geosci. 9:433–37
    [Google Scholar]
  80. 80. 
    O'Brien RE, Neu A, Epstein SA, MacMillan AC, Wang B et al. 2014. Physical properties of ambient and laboratory-generated secondary organic aerosol. Geophys. Res. Lett. 41:4347–53
    [Google Scholar]
  81. 81. 
    Lee JY, Hildemann LM. 2013. Surface tension of solutions containing dicarboxylic acids with ammonium sulfate, d-glucose, or humic acid. J. Aerosol Sci. 64:94–102
    [Google Scholar]
  82. 82. 
    Lee BB, Chan ES, Ravindra P, Khan TA. 2012. Surface tension of viscous biopolymer solutions measured using the du Nouy ring method and the drop weight methods. Polymer Bull 69:471–89
    [Google Scholar]
  83. 83. 
    Tuckermann R. 2007. Surface tension of aqueous solutions of water-soluble organic and inorganic compounds. Atmos. Environ. 41:6265–75
    [Google Scholar]
  84. 84. 
    Padday JF, Pitt AR, Pashley RM. 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condensed Phases 71:1919–31
    [Google Scholar]
  85. 85. 
    Harkins WD, Jordan HF. 1930. A method for the determination of surface and interfacial tension from the maximum pull on a ring. J. Am. Chem. Soc. 52:1751–72
    [Google Scholar]
  86. 86. 
    Berry JD, Neeson MJ, Dagastine RR, Chan DYC, Tabor RF. 2015. Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454:226–37
    [Google Scholar]
  87. 87. 
    Yazdanpanah MM, Hosseini M, Pabba S, Berry SM, Dobrokhotov VV et al. 2008. Micro-Wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes. Langmuir 24:13753–64
    [Google Scholar]
  88. 88. 
    Boyer HC, Dutcher CS. 2017. Atmospheric aqueous aerosol surface tensions: isotherm-based modeling and biphasic microfluidic measurements. J. Phys. Chem. A 121:4733–42
    [Google Scholar]
  89. 89. 
    Bertram TH, Cochran RE, Grassian VH, Stone EA. 2018. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. Chem. Soc. Rev. 47:2374–400
    [Google Scholar]
  90. 90. 
    Prather KA, Bertram TH, Grassian VH, Deane GB, Stokes MD et al. 2013. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. PNAS 110:7550–55
    [Google Scholar]
  91. 91. 
    Trueblood JV, Wang X, Or VW, Alves MR, Santander MV et al. 2019. The old and the new: aging of sea spray aerosol and formation of secondary marine aerosol through OH oxidation reactions. ACS Earth Space Chem 3:2307–14
    [Google Scholar]
  92. 92. 
    Estillore AD, Trueblood JV, Grassian VH. 2016. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci. 7:6604–16
    [Google Scholar]
  93. 93. 
    Benaglia S, Gisbert VG, Perrino AP, Amo CA, Garcia R. 2018. Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM. Nat. Protoc. 13:2890–907
    [Google Scholar]
  94. 94. 
    Amo CA, Perrino AP, Payam AF, Garcia R. 2017. Mapping elastic properties of heterogeneous materials in liquid with angstrom-scale resolution. ACS Nano 11:8650–59
    [Google Scholar]
  95. 95. 
    Herruzo ET, Perrino AP, Garcia R. 2014. Fast nanomechanical spectroscopy of soft matter. Nat. Commun. 5:3126
    [Google Scholar]
  96. 96. 
    Or VW, Estillore AD, Tivanski AV, Grassian VH. 2018. Lab on a tip: atomic force microscopy – photothermal infrared spectroscopy of atmospherically relevant organic/inorganic aerosol particles in the nanometer to micrometer size range. Analyst 143:2765–74
    [Google Scholar]
  97. 97. 
    Lee JY, Hildemann LM. 2014. Surface tensions of solutions containing dicarboxylic acid mixtures. Atmos. Environ 89:260–67
    [Google Scholar]
  98. 98. 
    Gaman AI, Kulmala M, Vehkamaki H, Napari I, Mircea M et al. 2004. Binary homogeneous nucleation in water-succinic acid and water-glutaric acid systems. J. Chem. Phys. 120:282–91
    [Google Scholar]
  99. 99. 
    Aumann E, Hildemann LM, Tabazadeh A. 2010. Measuring and modeling the composition and temperature-dependence of surface tension for organic solutions. Atmos. Environ. 44:329–37
    [Google Scholar]
  100. 100. 
    Shulman ML, Jacobson MC, Carlson RJ, Synovec RE, Young TE. 1996. Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophys. Res. Lett. 23:277–80
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-110133
Loading
/content/journals/10.1146/annurev-physchem-090419-110133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error