1932

Abstract

Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid–liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-115951
2021-04-20
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-115951.html?itemId=/content/journals/10.1146/annurev-physchem-090419-115951&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387:6633569–72
    [Google Scholar]
  2. 2. 
    Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA et al. 2007. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. PNAS 104:93165–70
    [Google Scholar]
  3. 3. 
    Veatch SL, Keller SL. 2005. Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta Mol. Cell Res. 1746:3172–85
    [Google Scholar]
  4. 4. 
    Oldfield E, Chapman D. 1971. Effects of cholesterol and cholesterol derivatives on hydrocarbon chain mobility in lipids. Biochem. Biophys. Res. Commun. 43:3610–16
    [Google Scholar]
  5. 5. 
    Oldfield E, Chapman D. 1972. Dynamics of lipids in membranes: heterogeneity and the role of cholesterol. FEBS Lett 23:3285–97
    [Google Scholar]
  6. 6. 
    Engelman DM, Rothman JE. 1972. The planar organization of lecithin-cholesterol bilayers. J. Biol. Chem. 247:113694–97
    [Google Scholar]
  7. 7. 
    Shimshick EJ, McConnell HM. 1973. Lateral phase separations in binary mixtures of cholesterol and phospholipids. Biochem. Biophys. Res. Commun. 53:2446–51
    [Google Scholar]
  8. 8. 
    Chapman D, Penkett SA. 1966. Nuclear magnetic resonance spectroscopic studies of the interaction of phospholipids with cholesterol. Nature 211:50551304–5
    [Google Scholar]
  9. 9. 
    Ladbrooke BD, Williams RM, Chapman D 1968. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim. Biophys. Acta Biomembr. 150:3333–40
    [Google Scholar]
  10. 10. 
    Opella SJ, Yesinowski JP, Waugh JS 1976. Nuclear magnetic resonance description of molecular motion and phase separations of cholesterol in lecithin dispersions. PNAS 73:113812–15
    [Google Scholar]
  11. 11. 
    Lentz BR, Barrow DA, Hoechli M 1980. Cholesterol-phosphatidylcholine interactions in multilamellar vesicles. Biochemistry 19:91943–54
    [Google Scholar]
  12. 12. 
    Rubenstein JLR, Owicki JC, McConnell HM 1980. Dynamic properties of binary mixtures of phosphatidylcholines and cholesterol. Biochemistry 19:3569–73
    [Google Scholar]
  13. 13. 
    Recktenwald DJ, McConnell HM. 1981. Phase equilibriums in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry 20:154505–10
    [Google Scholar]
  14. 14. 
    Alecio MR, Golan DE, Veatch WR, Rando RR 1982. Use of a fluorescent cholesterol derivative to measure lateral mobility of cholesterol in membranes. PNAS 79:175171–74 Corrigendum. 1982. PNAS 79(24):7949
    [Google Scholar]
  15. 15. 
    Ipsen JH, Karlström G, Mourtisen OG, Wennerström H, Zuckermann MJ 1987. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta Biomembr. 905:1162–72
    [Google Scholar]
  16. 16. 
    Vist MR, Davis JH. 1990. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: deuterium nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:2451–64
    [Google Scholar]
  17. 17. 
    Almeida PF, Vaz WL, Thompson TE 1992. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:296739–47
    [Google Scholar]
  18. 18. 
    Huang TH, Lee CW, Das Gupta SK, Blume A, Griffin RG 1993. A 13C and 2H nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid–gel phases. Biochemistry 32:4813277–87
    [Google Scholar]
  19. 19. 
    McMullen TPW, McElhaney RN. 1995. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim. Biophys. Acta Biomembr. 1234:190–98
    [Google Scholar]
  20. 20. 
    Ahmed SN, Brown DA, London E 1997. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes:physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:3610944–53
    [Google Scholar]
  21. 21. 
    Feigenson GW, Buboltz JT. 2001. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80:62775–88
    [Google Scholar]
  22. 22. 
    van Meer G, Simons K 1982. Viruses budding from either the apical or the basolateral plasma membrane domain of MDCK cells have unique phospholipid compositions. EMBO J 1:7847–52
    [Google Scholar]
  23. 23. 
    Heiniger H-J, Kandutsch AA, Chen HW 1976. Depletion of L-cell sterol depresses endocytosis. Nature 263:5577515–17
    [Google Scholar]
  24. 24. 
    Alderson JCE, Green C. 1975. Enrichment of lymphocytes with cholesterol and its effect on lymphocyte activation. FEBS Lett 52:2208–11
    [Google Scholar]
  25. 25. 
    Lohr KM, Snyderman R. 1982. Amphotericin B alters the affinity and functional activity of the oligopeptide chemotactic factor receptor on human polymorphonuclear leukocytes. J. Immunol. 129:41594–99
    [Google Scholar]
  26. 26. 
    Dahl C, Biemann HP, Dahl J 1987. A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: positive in vivo regulation by sterol. PNAS 84:124012–16
    [Google Scholar]
  27. 27. 
    Brown DA, Rose JK. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:3533–44
    [Google Scholar]
  28. 28. 
    Fiedler K, Kobayashi T, Kurzchalia TV, Simons K 1993. Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32:256365–73
    [Google Scholar]
  29. 29. 
    Harder T, Scheiffele P, Verkade P, Simons K 1998. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141:4929–42
    [Google Scholar]
  30. 30. 
    Ge M, Gidwani A, Brown HA, Holowka D, Baird B, Freed JH 2003. Ordered and disordered phases coexist in plasma membrane vesicles of RBL-2H3 mast cells. An ESR study. Biophys. J. 85:21278–88
    [Google Scholar]
  31. 31. 
    Gidwani A, Holowka D, Baird B 2001. Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. Biochemistry 40:4112422–29
    [Google Scholar]
  32. 32. 
    Kenworthy AK, Edidin M. 1998. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 Å using imaging fluorescence resonance energy transfer. J. Cell Biol. 142:169–84
    [Google Scholar]
  33. 33. 
    Sheets ED, Holowka D, Baird B 1999. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent-resistant membranes. J. Cell Biol. 145:4877–87
    [Google Scholar]
  34. 34. 
    Pierce SK. 2002. Lipid rafts and B-cell activation. Nat. Rev. Immunol. 2:296–105
    [Google Scholar]
  35. 35. 
    Plowman SJ, Muncke C, Parton RG, Hancock JF 2005. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. PNAS 102:4315500–5
    [Google Scholar]
  36. 36. 
    Brown DA, London E. 1998. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14:111–36
    [Google Scholar]
  37. 37. 
    Munro S. 2003. Lipid rafts: elusive or illusive. ? Cell 115:4377–88
    [Google Scholar]
  38. 38. 
    Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M et al. 2001. Lipid rafts reconstituted in model membranes. Biophys. J. 80:31417–28
    [Google Scholar]
  39. 39. 
    Samsonov AV, Mihalyov I, Cohen FS 2001. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81:31486–500
    [Google Scholar]
  40. 40. 
    Veatch SL, Keller SL. 2002. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89:26268101
    [Google Scholar]
  41. 41. 
    Veatch SL, Gawrisch K, Keller SL 2006. Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys. J. 90:124428–36
    [Google Scholar]
  42. 42. 
    Veatch SL, Keller SL. 2003. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85:53074–83
    [Google Scholar]
  43. 43. 
    Ionova IV, Livshits VA, Marsh D 2012. Phase diagram of ternary cholesterol/palmitoylsphingomyelin/palmitoyloleoyl-phosphatidylcholine mixtures: spin-label EPR study of lipid-raft formation. Biophys. J. 102:81856–65
    [Google Scholar]
  44. 44. 
    Veatch SL, Keller SL. 2005. Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94:14148101
    [Google Scholar]
  45. 45. 
    Veatch SL, Soubias O, Keller SL, Gawrisch K 2007. Critical fluctuations in domain-forming lipid mixtures. PNAS 104:4517650–55
    [Google Scholar]
  46. 46. 
    Zhao J, Wu J, Heberle FA, Mills TT, Klawitter P et al. 2007. Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. Biochim. Biophys. Acta Biomembr. 1768:112764–76
    [Google Scholar]
  47. 47. 
    Petruzielo RS, Heberle FA, Drazba P, Katsaras J, Feigenson GW 2013. Phase behavior and domain size in sphingomyelin-containing lipid bilayers. Biochim. Biophys. Acta Biomembr. 1828:41302–13
    [Google Scholar]
  48. 48. 
    Connell SD, Heath G, Olmsted PD, Kisil A 2013. Critical point fluctuations in supported lipid membranes. Faraday Discuss 161:91–111
    [Google Scholar]
  49. 49. 
    Khadka NK, Ho CS, Pan J 2015. Macroscopic and nanoscopic heterogeneous structures in a three-component lipid bilayer mixtures determined by atomic force microscopy. Langmuir 31:4512417–25
    [Google Scholar]
  50. 50. 
    Konyakhina TM, Wu J, Mastroianni JD, Heberle FA, Feigenson GW 2013. Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol. Biochim. Biophys. Acta Biomembr. 1828:92204–14
    [Google Scholar]
  51. 51. 
    Mills TT, Tristram-Nagle S, Heberle FA, Morales NF, Zhao J et al. 2008. Liquid-liquid domains in bilayers detected by wide angle X-ray scattering. Biophys. J. 95:2682–90
    [Google Scholar]
  52. 52. 
    Konyakhina TM, Feigenson GW. 2016. Phase diagram of a polyunsaturated lipid mixture: brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol. Biochim. Biophys. Acta Biomembr. 1858:1153–61
    [Google Scholar]
  53. 53. 
    de Almeida RFM, Borst J, Fedorov A, Prieto M, Visser AJWG 2007. Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence. Biophys. J. 93:2539–53
    [Google Scholar]
  54. 54. 
    Sibold J, Tewaag VE, Vagedes T, Mey I, Steinem C 2020. Phase separation in pore-spanning membranes induced by differences in surface adhesion. Phys. Chem. Chem. Phys. 22:179308–15
    [Google Scholar]
  55. 55. 
    Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P 2003. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278:3028109–15
    [Google Scholar]
  56. 56. 
    Aufderhorst-Roberts A, Chandra U, Connell SD 2017. Three-phase coexistence in lipid membranes. Biophys. J. 112:2313–24
    [Google Scholar]
  57. 57. 
    Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E 2014. The molecular structure of the liquid-ordered phase of lipid bilayers. J. Am. Chem. Soc. 136:2725–32
    [Google Scholar]
  58. 58. 
    Sodt AJ, Pastor RW, Lyman E 2015. Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin. Biophys. J. 109:5948–55
    [Google Scholar]
  59. 59. 
    Goñi FM, Alonso A, Bagatolli LA, Brown RE, Marsh D et al. 2008. Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1781:11665–84
    [Google Scholar]
  60. 60. 
    Heberle FA, Feigenson GW. 2011. Phase separation in lipid membranes. Cold Spring Harb. Perspect. Biol. 3:4a004630
    [Google Scholar]
  61. 61. 
    Ladbrooke BD, Chapman D. 1969. Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem. Phys. Lipids 3:4304–56
    [Google Scholar]
  62. 62. 
    Janiak MJ, Small DM, Shipley GG 1979. Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J. Biol. Chem. 254:136068–78
    [Google Scholar]
  63. 63. 
    Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW 2010. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J. 99:103309–18
    [Google Scholar]
  64. 64. 
    Pathak P, London E. 2011. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophys. J. 101:102417–25
    [Google Scholar]
  65. 65. 
    Pathak P, London E. 2015. The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys. J. 109:81630–38
    [Google Scholar]
  66. 66. 
    Konyakhina TM, Goh SL, Amazon J, Heberle FA, Wu J, Feigenson GW 2011. Control of a nanoscopic-to-macroscopic transition: modulated phases in four-component DSPC/DOPC/POPC/chol giant unilamellar vesicles. Biophys. J. 101:2L8–10
    [Google Scholar]
  67. 67. 
    Collado MI, Goñi FM, Alonso A, Marsh D 2005. Domain formation in sphingomyelin/cholesterol mixed membranes studied by spin-label electron spin resonance spectroscopy. Biochemistry 44:124911–18
    [Google Scholar]
  68. 68. 
    de Almeida RFM, Fedorov A, Prieto M 2003. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85:42406–16
    [Google Scholar]
  69. 69. 
    Doktorova M, Heberle FA, Eicher B, Standaert RF, Katsaras J et al. 2018. Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nat. Protoc. 13:92086–101
    [Google Scholar]
  70. 70. 
    Lin Q, London E. 2015. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Biophys. J. 108:92212–22
    [Google Scholar]
  71. 71. 
    Honerkamp-Smith AR, Cicuta P, Collins MD, Veatch SL, den Nijs M et al. 2008. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys. J. 95:1236–46
    [Google Scholar]
  72. 72. 
    Leibler S, Andelman D. 1987. Ordered and curved meso-structures in membranes and amphiphilic films. J. Phys. 48:112013–18
    [Google Scholar]
  73. 73. 
    Palmieri B, Yamamoto T, Brewster RC, Safran SA 2014. Line active molecules promote inhomogeneous structures in membranes: theory, simulations and experiments. Adv. Colloid Interface Sci. 208:58–65
    [Google Scholar]
  74. 74. 
    Brodbek L, Schmid F. 2016. Interplay of curvature-induced micro- and nanodomain structures in multicomponent lipid bilayers. Int. J. Adv. Eng. Sci. Appl. Math. 8:2111–20
    [Google Scholar]
  75. 75. 
    Cornell CE, Skinkle AD, He S, Levental I, Levental KR, Keller SL 2018. Tuning length scales of small domains in cell-derived membranes and synthetic model membranes. Biophys. J. 115:4690–701
    [Google Scholar]
  76. 76. 
    Fridriksson EK, Shipkova PA, Sheets ED, Holowka D, Baird B, McLafferty FW 1999. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38:258056–63
    [Google Scholar]
  77. 77. 
    Lingwood D, Ries J, Schwille P, Simons K 2008. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. PNAS 105:2910005–10
    [Google Scholar]
  78. 78. 
    Levental I, Grzybek M, Simons K 2011. Raft domains of variable properties and compositions in plasma membrane vesicles. PNAS 108:2811411–16
    [Google Scholar]
  79. 79. 
    Levental I, Byfield FJ, Chowdhury P, Gai F, Baumgart T, Janmey PA 2009. Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem. J. 424:2163–67
    [Google Scholar]
  80. 80. 
    Zhao J, Wu J, Veatch SL 2013. Adhesion stabilizes robust lipid heterogeneity in supercritical membranes at physiological temperature. Biophys. J. 104:4825–34
    [Google Scholar]
  81. 81. 
    Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D, Baird B 2008. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3:5287–93
    [Google Scholar]
  82. 82. 
    Burns M, Wisser K, Wu J, Levental I, Veatch SL 2017. Miscibility transition temperature scales with growth temperature in a zebrafish cell line. Biophys. J. 113:61212–22
    [Google Scholar]
  83. 83. 
    Gray EM, Díaz-Vázquez G, Veatch SL 2015. Growth conditions and cell cycle phase modulate phase transition temperatures in RBL-2H3 derived plasma membrane vesicles. PLOS ONE 10:9e0137741
    [Google Scholar]
  84. 84. 
    Levental KR, Lorent JH, Lin X, Skinkle AD, Surma MA et al. 2016. Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys. J. 110:81800–10
    [Google Scholar]
  85. 85. 
    Levental KR, Surma MA, Skinkle AD, Lorent JH, Zhou Y et al. 2017. ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. Sci. Adv. 3:11eaao1193
    [Google Scholar]
  86. 86. 
    Cammarota E, Soriani C, Taub R, Morgan F, Sakai J et al. 2020. Criticality of plasma membrane lipids reflects activation state of macrophage cells. J. R. Soc. Interface 17:16320190803
    [Google Scholar]
  87. 87. 
    Symons JL, Cho K-J, Chang JT, Du G, Waxham MN et al. 2020. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter In press. http://doi.org/10.1039/D0SM00404A
    [Crossref] [Google Scholar]
  88. 88. 
    Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V et al. 2012. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta Biomembr. 1818:71777–84
    [Google Scholar]
  89. 89. 
    Kaiser H-J, Lingwood D, Levental I, Sampaio JL, Kalvodova L et al. 2009. Order of lipid phases in model and plasma membranes. PNAS 106:3916645–50
    [Google Scholar]
  90. 90. 
    Lorent JH, Diaz-Rohrer B, Lin X, Spring K, Gorfe AA et al. 2017. Structural determinants and functional consequences of protein affinity for membrane rafts. Nat. Commun. 8:1219
    [Google Scholar]
  91. 91. 
    Menon AK, Holowka D, Webb WW, Baird B 1986. Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization. J. Cell Biol. 102:2541–50
    [Google Scholar]
  92. 92. 
    Machta BB, Papanikolaou S, Sethna JP, Veatch SL 2011. Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. Biophys. J. 100:71668–77
    [Google Scholar]
  93. 93. 
    Keller H, Lorizate M, Schwille P 2009. PI(4,5)P2 degradation promotes the formation of cytoskeleton-free model membrane systems. ChemPhysChem 10:162805–12
    [Google Scholar]
  94. 94. 
    McLaughlin S, Wang J, Gambhir A, Murray D 2002. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31:151–75
    [Google Scholar]
  95. 95. 
    Skinkle AD, Levental KR, Levental I 2020. Cell-derived plasma membrane vesicles are permeable to hydrophilic macromolecules. Biophys. J. 118:61292–300
    [Google Scholar]
  96. 96. 
    Li G, Wang Q, Kakuda S, London E 2020. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. J. Lipid Res. 61:758–66
    [Google Scholar]
  97. 97. 
    Toulmay A, Prinz WA. 2013. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 202:135–44
    [Google Scholar]
  98. 98. 
    Rayermann SP, Rayermann GE, Cornell CE, Merz AJ, Keller SL 2017. Hallmarks of reversible separation of living, unperturbed cell membranes into two liquid phases. Biophys. J. 113:112425–32
    [Google Scholar]
  99. 99. 
    Lee I-H, Saha S, Polley A, Huang H, Mayor S et al. 2015. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures. J. Phys. Chem. B 119:124450–59
    [Google Scholar]
  100. 100. 
    Sevcsik E, Brameshuber M, Fölser M, Weghuber J, Honigmann A, Schütz GJ 2015. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat. Commun. 6:6969
    [Google Scholar]
  101. 101. 
    Levental I, Levental KR, Heberle FA 2020. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol 30:5341–53
    [Google Scholar]
  102. 102. 
    Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu A-A et al. 2020. Defining raft domains in the plasma membrane. Traffic 21:1106–37
    [Google Scholar]
  103. 103. 
    Castello-Serrano I, Lorent JH, Ippolito R, Levental KR, Levental I 2020. Myelin-associated MAL and PLP are unusual among multipass transmembrane proteins in preferring ordered membrane domains. J. Phys. Chem. B 124:285930–39
    [Google Scholar]
  104. 104. 
    Marinko JT, Kenworthy AK, Sanders CR 2020. Peripheral myelin protein 22 preferentially partitions into ordered phase membrane domains. PNAS 117:2514168–77
    [Google Scholar]
  105. 105. 
    Yang S-T, Kreutzberger AJB, Kiessling V, Ganser-Pornillos BK, White JM, Tamm LK 2017. HIV virions sense plasma membrane heterogeneity for cell entry. Sci. Adv. 3:6e1700338
    [Google Scholar]
  106. 106. 
    Anderson RGW, Jacobson K. 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296:55741821–25
    [Google Scholar]
  107. 107. 
    Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu R-X, Siuda I et al. 2018. Lipid–protein interactions are unique fingerprints for membrane proteins. ACS Cent. Sci. 4:6709–17
    [Google Scholar]
  108. 108. 
    Gray E, Karslake J, Machta BB, Veatch SL 2013. Liquid general anesthetics lower critical temperatures in plasma membrane vesicles. Biophys. J. 105:122751–59
    [Google Scholar]
  109. 109. 
    Machta BB, Gray E, Nouri M, McCarthy NLC, Gray EM et al. 2016. Conditions that stabilize membrane domains also antagonize n-alcohol anesthesia. Biophys. J. 111:3537–45
    [Google Scholar]
  110. 110. 
    Grinstein G, Ma S. 1982. Roughening and lower critical dimension in the random-field Ising model. Phys. Rev. Lett. 49:9685–88
    [Google Scholar]
  111. 111. 
    Yethiraj A, Weisshaar JC. 2007. Why are lipid rafts not observed in vivo. ? Biophys. J. 93:93113–19
    [Google Scholar]
  112. 112. 
    Honigmann A, Sadeghi S, Keller J, Hell SW, Eggeling C, Vink R 2014. A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife 3:e01671
    [Google Scholar]
  113. 113. 
    Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M 2003. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. PNAS 100:2413964–69
    [Google Scholar]
  114. 114. 
    Liu AP, Fletcher DA. 2006. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91:114064–70
    [Google Scholar]
  115. 115. 
    Shelby SA, Veatch SL, Holowka DA, Baird BA 2016. Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling. Mol. Biol. Cell. 27:223645–58
    [Google Scholar]
  116. 116. 
    Gudheti MV, Curthoys NM, Gould TJ, Kim D, Gunewardene MS et al. 2013. Actin mediates the nanoscale membrane organization of the clustered membrane protein influenza hemagglutinin. Biophys. J. 104:102182–92
    [Google Scholar]
  117. 117. 
    Chichili GR, Rodgers W. 2009. Cytoskeleton-membrane interactions in membrane raft structure. Cell. Mol. Life Sci. 66:142319–28
    [Google Scholar]
  118. 118. 
    Stone MB, Shelby SA, Núñez MF, Wisser K, Veatch SL 2017. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 6:e19891
    [Google Scholar]
  119. 119. 
    Kinoshita M, Suzuki KGN, Matsumori N, Takada M, Ano H et al. 2017. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J. Cell Biol. 216:41183–204
    [Google Scholar]
  120. 120. 
    Allender DW, Giang H, Schick M 2020. Model plasma membrane exhibits a microemulsion in both leaves providing a foundation for “rafts. .” Biophys. J. 118:51019–31
    [Google Scholar]
  121. 121. 
    Foret L. 2005. A simple mechanism of raft formation in two-component fluid membranes. Europhys. Lett. 71:3508–14
    [Google Scholar]
  122. 122. 
    Gowrishankar K, Ghosh S, Saha S, Rumamol C, Mayor S, Rao M 2012. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149:61353–67
    [Google Scholar]
  123. 123. 
    Schmid F. 2017. Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes. Biochim. Biophys. Acta Biomembr. 1859:4509–28
    [Google Scholar]
  124. 124. 
    Goldenfeld N. 2018. Lectures on Phase Transitions and the Renormalization Group Boca Raton, FL: CRC Press
  125. 125. 
    Cardy J. 1996. Scaling and Renormalization in Statistical Physics Cambridge, UK: Cambridge Univ. Press
  126. 126. 
    Kardar M. 2007. Statistical Physics of Fields Cambridge, UK: Cambridge Univ. Press
  127. 127. 
    Chaikin PM, Lubensky TC. 2010. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press
  128. 128. 
    Honerkamp-Smith AR, Veatch SL, Keller SL 2009. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta Biomembr. 1788:153–63
    [Google Scholar]
  129. 129. 
    Cagniard de la, Tour C 1822. Exposé de quelques résultats obtenu par l'action combinée de la chaleur et de la compression sur certains liquides, tels que l'eau, l'alcool, l’éther sulfurique et l'essence de pétrole rectifiée. Ann. Chim. Phys. 21:127–32
    [Google Scholar]
  130. 130. 
    van der Waals JD, Rowlinson JS 2004. On the Continuity of the Gaseous and Liquid States Mineola, NY: Dover
  131. 131. 
    Ornstein L, Zernike F. 1918. Die linearen Dimensionen der Dichteschwankungen. Phys. Zeit. 19:134–37
    [Google Scholar]
  132. 132. 
    Guggenheim EA. 1945. The principle of corresponding states. J. Chem. Phys. 13:7253–61
    [Google Scholar]
  133. 133. 
    Fisher ME. 1967. The theory of equilibrium critical phenomena. Rep. Prog. Phys 30:2615–730 Corrigendum. 1968. Rep. Prog. Phys. 31:418–20
    [Google Scholar]
  134. 134. 
    Onsager L. 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65:3–4117–49
    [Google Scholar]
  135. 135. 
    Lee TD, Yang CN. 1952. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87:3410–19
    [Google Scholar]
  136. 136. 
    Widom B. 1965. Equation of state in the neighborhood of the critical point. J. Chem. Phys. 43:113898–905
    [Google Scholar]
  137. 137. 
    Kadanoff LP. 1966. Scaling laws for Ising models near Tc. Phys. Phys. . Fiz 2:6263–72
    [Google Scholar]
  138. 138. 
    Wilson KG. 1971. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4:93174–83
    [Google Scholar]
  139. 139. 
    Mora T, Bialek W. 2011. Are biological systems poised at criticality. ? J. Stat. Phys. 144:2268–302
    [Google Scholar]
  140. 140. 
    Honerkamp-Smith AR, Machta BB, Keller SL 2012. Experimental observations of dynamic critical phenomena in a lipid membrane. Phys. Rev. Lett. 108:26265702
    [Google Scholar]
  141. 141. 
    Frazier ML, Wright JR, Pokorny A, Almeida PFF 2007. Investigation of domain formation in sphingo-myelin/cholesterol/POPC mixtures by fluorescence resonance energy transfer and Monte Carlo simulations. Biophys. J. 92:72422–33
    [Google Scholar]
  142. 142. 
    Manley S, Horton MR, Lecszynski S, Gast AP 2008. Sorting of streptavidin protein coats on phase-separating model membranes. Biophys. J. 95:52301–7
    [Google Scholar]
  143. 143. 
    Núñez MF, Wisser K, Veatch SL 2019. Synergistic factors control kinase-phosphatase organization in B-cells engaged with supported bilayers. Mol. Biol. Cell 31:7667–82
    [Google Scholar]
  144. 144. 
    Kimchi O, Veatch SL, Machta BB 2018. Ion channels can be allosterically regulated by membrane domains near a de-mixing critical point. J. Gen. Physiol. 150:121769–77
    [Google Scholar]
  145. 145. 
    Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50
    [Google Scholar]
  146. 146. 
    Pike LJ. 2006. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47:1597–98
    [Google Scholar]
  147. 147. 
    Levental I, Veatch SL. 2016. The continuing mystery of lipid rafts. J. Mol. Biol. 428:24, Part A4749–64
    [Google Scholar]
  148. 148. 
    Sezgin E, Levental I, Mayor S, Eggeling C 2017. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18:6361–74
    [Google Scholar]
  149. 149. 
    Casimir HBG. 1948. On the attraction between two perfectly conducting plates. Indag. Math. 10:261–63
    [Google Scholar]
  150. 150. 
    Machta BB, Veatch SL, Sethna JP 2012. Critical Casimir forces in cellular membranes. Phys. Rev. Lett. 109:13138101
    [Google Scholar]
  151. 151. 
    Reynwar BJ, Deserno M. 2008. Membrane composition-mediated protein-protein interactions. Biointerphases 3:2FA117–24
    [Google Scholar]
  152. 152. 
    Saheki Y, De Camilli P 2017. Endoplasmic reticulum-plasma membrane contact sites. Annu. Rev. Biochem. 86:659–84
    [Google Scholar]
  153. 153. 
    Zeng M, Chen X, Guan D, Xu J, Wu H et al. 2018. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 174:51172–87.e16
    [Google Scholar]
  154. 154. 
    Ayuyan AG, Cohen FS. 2018. The chemical potential of plasma membrane cholesterol: implications for cell biology. Biophys. J. 114:4904–18
    [Google Scholar]
  155. 155. 
    Fantini J, Epand RM, Barrantes FJ 2019. Cholesterol-recognition motifs in membrane proteins. Adv. Exp. Med. Biol. 1135:3–25
    [Google Scholar]
  156. 156. 
    De Craene J-O, Bertazzi DL, Bär S, Friant S 2017. Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int. J. Mol. Sci. 18:3634
    [Google Scholar]
  157. 157. 
    Shimizu T. 2009. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49:123–50
    [Google Scholar]
  158. 158. 
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K et al. 2009. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:72331159–62
    [Google Scholar]
  159. 159. 
    Rao M, Mayor S. 2014. Active organization of membrane constituents in living cells. Curr. Opin. Cell Biol. 29:126–32
    [Google Scholar]
  160. 160. 
    Sorre B, Callan-Jones A, Manneville J-B, Nassoy P, Joanny J-F et al. 2009. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. PNAS 106:145622–26
    [Google Scholar]
  161. 161. 
    Mitra ED, Whitehead SC, Holowka D, Baird B, Sethna JP 2018. Computation of a theoretical membrane phase diagram and the role of phase in lipid-raft-mediated protein organization. J. Phys. Chem. B 122:133500–13
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-115951
Loading
/content/journals/10.1146/annurev-physchem-090419-115951
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error