1932

Abstract

Excitation energy transfer (EET) is fundamental to many processes in chemical and biological systems and carries significant implications for the design of materials suitable for efficient solar energy harvest and transport. This review discusses the role of intramolecular vibrations on the dynamics of EET in nonbonded molecular aggregates of bacteriochlorophyll, a perylene bisimide, and a model system, based on insights obtained from fully quantum mechanical real-time path integral results for a Frenkel exciton Hamiltonian that includes all vibrational modes of each molecular unit at finite temperature. Generic trends, as well as features specific to the vibrational characteristics of the molecules, are identified. Weak exciton-vibration (EV) interaction leads to compact, near-Gaussian densities on each electronic state, whose peak follows primarily a classical trajectory on a torus, while noncompact densities and nonlinear peak evolution are observed with strong EV coupling. Interaction with many intramolecular modes and increasing aggregate size smear, shift, and damp these dynamical features.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-120202
2022-04-20
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-090419-120202.html?itemId=/content/journals/10.1146/annurev-physchem-090419-120202&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Frenkel J. 1931. On the transformation of light into heat in solids. Phys. Rev. 37:17
    [Google Scholar]
  2. 2. 
    May V, Kühn O 2011. Charge and Energy Transfer Dynamics in Molecular Systems Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  3. 3. 
    Feynman RP. 1948. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20:367–87
    [Google Scholar]
  4. 4. 
    Feynman RP, Hibbs AR. 1965. Quantum Mechanics and Path Integrals New York: McGraw-Hill
    [Google Scholar]
  5. 5. 
    Caldeira AO, Leggett AJ. 1983. Path integral approach to quantum Brownian motion. Physica A 121:587–616
    [Google Scholar]
  6. 6. 
    Weiss U. 1993. Quantum Dissipative Systems Singapore: World Scientific
    [Google Scholar]
  7. 7. 
    Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger M. 1987. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59: 1–85. Erratum. 1995 Rev. Mod. Phys 67:725
    [Google Scholar]
  8. 8. 
    Li X-Q, Zhang X, Ghosh S, Würthner F 2008. Highly fluorescent lyotropic mesophases and organogels based on J-aggregates of core-twisted perylene bisimide dyes. Chem. Eur. J 14:8074–78
    [Google Scholar]
  9. 9. 
    Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. 2016. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem. Rev. 116:962–1052
    [Google Scholar]
  10. 10. 
    Würthner F, Thalacker C, Diele S, Tschierske C 2001. Fluorescent J-type aggregates and thermotropic columnar mesophases of perylene bisimide dyes. Chem. Eur. J 7:2245–53
    [Google Scholar]
  11. 11. 
    Kaiser TE, Wang H, Stepanenko V, Würthner F. 2007. Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes. Angew. Chem. Int. Ed. 46:5541–44
    [Google Scholar]
  12. 12. 
    Würthner F, Kaiser TE, Saha-Möller CR. 2011. J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 50:3376–410
    [Google Scholar]
  13. 13. 
    Ambrosek D, Köhn A, Schulze J, Kühn O. 2012. Quantum chemical parametrization and spectroscopic characterization of the Frenkel exciton Hamiltonian for a J-aggregate forming perylene bisimide dye. J. Phys. Chem. A 116:11451–58
    [Google Scholar]
  14. 14. 
    Schröter M, Ivanov SD, Schulze J, Polyutov SP, Yan Y et al. 2015. Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates. Phys. Rep. 567:1–78
    [Google Scholar]
  15. 15. 
    Ren J, Shuai Z, Chan K-LG. 2018. Time-dependent density matrix renormalization group algorithms for nearly exact absorption and fluorescence spectra of molecular aggregates at both zero and finite temperature. J. Chem. Theory Comput. 14:5027–39
    [Google Scholar]
  16. 16. 
    Rätsep M, Cai Z-L, Reimers JR, Freiberg A. 2011. Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a. J. Chem. Phys. 134:024506
    [Google Scholar]
  17. 17. 
    Blankenship RE. 2002. Molecular Mechanisms of Photosynthesis London: World Scientific
    [Google Scholar]
  18. 18. 
    Engel GS, Calhoun TR, Read EL, Ahn T-K, Mančal T et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86
    [Google Scholar]
  19. 19. 
    Duan H-G, Stevens AL, Nalbach P, Thorwart M, Prokhorenko VI, Miller RJD. 2015. Two-dimensional electronic spectroscopy of light-harvesting complex II at ambient temperature: a joint experimental and theoretical study. J. Phys. Chem. B 119:12017–27
    [Google Scholar]
  20. 20. 
    Chenu A, Scholes GD. 2015. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66:69–96
    [Google Scholar]
  21. 21. 
    Duan H-G, Prokhorenko VI, Cogdell RJ, Ashraf K, Stevens AL et al. 2017. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. PNAS 114:8493–98
    [Google Scholar]
  22. 22. 
    Jang SJ, Mennucci B. 2018. Delocalized excitons in natural light-harvesting complexes. Rev. Mod. Phys. 90:035003
    [Google Scholar]
  23. 23. 
    Arsenault EA, Yusuke Y, Iwai M, Niyogi KK, Fleming GR. 2020. Vibronic mixing enables ultrafast energy flow in light-harvesting complex II. Nat. Commun. 11:1460
    [Google Scholar]
  24. 24. 
    Rafiq S, Fu B, Kudisch B, Scholes GD 2021. Interplay of vibrational wavepackets during an ultrafast electron transfer reaction. Nat. Chem. 13:70–76
    [Google Scholar]
  25. 25. 
    Tretiak S, Middleton C, Chernyak V, Mukamel S 2000. Exciton Hamiltonian for the bacteriochlorophyll system in the LH2 antenna complex of purple bacteria. J. Phys. Chem. B 104:4519–28
    [Google Scholar]
  26. 26. 
    Hestand NJ, Spano FC. 2018. Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118:7069–163
    [Google Scholar]
  27. 27. 
    Huang K, Rhys A. 1950. Theory of light absorption and non-radiative transitions in F-centres. Proc. R. Soc. A 204:406–23
    [Google Scholar]
  28. 28. 
    Heller EJ. 1975. Time-dependent approach to semiclassical dynamics. J. Chem. Phys. 62:1544–55
    [Google Scholar]
  29. 29. 
    Kundu S, Makri N. 2021. Exciton-vibration dynamics in J-aggregates of a perylene bisimide from real-time path integral calculations. J. Phys. Chem. C 125:201–10
    [Google Scholar]
  30. 30. 
    Kundu S, Makri N. 2021. Electronic-vibrational density evolution in a perylene bisimide dimer: mechanistic insights into excitation energy transfer. Phys. Chem. Chem. Phys. 23:15503–14
    [Google Scholar]
  31. 31. 
    Landau LD. 1932. On the theory of energy transfer II. Phys. Z. Sowjun. 2:46
    [Google Scholar]
  32. 32. 
    Zener C. 1932. Non-adiabatic crossing of energy levels. Proc. R. Soc. A 137:696–703
    [Google Scholar]
  33. 33. 
    Stückelberg ECG. 1932. Theory of inelastic collisions between atoms. Helv. Phys. Acta 5:369–423
    [Google Scholar]
  34. 34. 
    Lichtenberg A, Lieberman M. 1992. Regular and Chaotic Dynamics New York: Springer-Verlag, 2nd ed..
    [Google Scholar]
  35. 35. 
    Lambert R, Makri N. 2012. Quantum-classical path integral: classical memory and weak quantum nonlocality. J. Chem. Phys. 137:22A552
    [Google Scholar]
  36. 36. 
    Lambert R, Makri N. 2012. Quantum-classical path integral: numerical formulation. J. Chem. Phys. 137:22A553
    [Google Scholar]
  37. 37. 
    Makri N. 2015. Quantum-classical path integral: a rigorous approach to condensed phase dynamics. Int. J. Quant. Chem. 115:1209–14
    [Google Scholar]
  38. 38. 
    Piepho SB, Krausz ER, Schatz PN. 1978. Vibronic coupling model for calculation of mixed valence absorption profiles. J. Am. Chem. Soc. 100:2996–3005
    [Google Scholar]
  39. 39. 
    Bose A, Makri N. 2020. All-mode quantum-classical path integral simulation of bacteriochlorophyll dimer exciton-vibration dynamics. J. Phys. Chem. 124:5028–38
    [Google Scholar]
  40. 40. 
    Tiwari V, Peters WK, Jonas DM. 2013. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. PNAS 110:1203–8
    [Google Scholar]
  41. 41. 
    Feynman RP, Vernon FL Jr 1963. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24:118–73
    [Google Scholar]
  42. 42. 
    Schulman LS. 1981. Techniques and Applications of Path Integration New York: John Wiley & Sons
    [Google Scholar]
  43. 43. 
    Trotter MF. 1959. On the product of semi-groups of operators. Proc. Am. Math. Soc. 10:545–51
    [Google Scholar]
  44. 44. 
    Makri N, Miller WH. 1988. Correct short time propagator for Feynman path integration by power series expansion in Δt. Chem. Phys. Lett. 151:1–8
    [Google Scholar]
  45. 45. 
    Feynman RP. 1972. Statistical Mechanics Redwood City, CA: Addison-Wesley
    [Google Scholar]
  46. 46. 
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller H, Teller E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087–92
    [Google Scholar]
  47. 47. 
    Ceperley DM. 1995. Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67:279–355
    [Google Scholar]
  48. 48. 
    Bernu B, Ceperley DM 2002. Path integral Monte Carlo. Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes; Winter School, 25 February – 1 March 2002, Rolduc Conference Centre, Kerkrade, The Netherlands J Grotendorst, D Marx, A Muramatsu 10 NIC Ser. Vol. 10 Jülich, Neth: John von Neumann Inst. Comput.
    [Google Scholar]
  49. 49. 
    Chandler D, Wolynes PG 1981. Exploiting the isomorphism between quantum theory and the classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 74:4078–95
    [Google Scholar]
  50. 50. 
    Parrinello M, Rahman A. 1984. Study of an F center in molten KCl. J. Chem. Phys. 80:860–67
    [Google Scholar]
  51. 51. 
    Cao J, Martyna GJ. 1996. Adiabatic path integral molecular dynamics methods. 2. Algorithms. J. Chem. Phys. 104:2028–35
    [Google Scholar]
  52. 52. 
    Deymier PA, Runge K, Oh K-D, Jabbour GE 2015. Path integral molecular dynamics methods. Multiscale Paradigms in Integrated Computational Materials Science and Engineering PA Deymier, K Runge, K Muralidharan 13–106 Springer Ser. Mater. Sci . Vol. 226 Cham, Switz: Springer Int.
    [Google Scholar]
  53. 53. 
    Voth GA 1996. Path integral centroid methods in quantum statistical mechanics and dynamics. New Methods in Computational Quantum Mechanics, ed. I Prigogine, SA Rice 135–218 Adv. Chem. Phys . Vol. 93 New York: John Wiley & Sons
    [Google Scholar]
  54. 54. 
    Habershon S, Manolopoulos DE, Markland TE, Miller TF. 2013. Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. Annu. Rev. Phys. Chem. 64:387–413
    [Google Scholar]
  55. 55. 
    Doll JD, Freeman DL, Beck TL. 1990. Equilibrium and dynamical Fourier path integral methods. Adv. Chem. Phys. 78:61–127
    [Google Scholar]
  56. 56. 
    Makri N. 1991. Feynman path integration in quantum dynamics. Comp. Phys. Commun. 63:389–414
    [Google Scholar]
  57. 57. 
    Makri N. 1992. Improved Feynman propagators on a grid and non-adiabatic corrections within the path integral framework. Chem. Phys. Lett. 193:435–44
    [Google Scholar]
  58. 58. 
    Topaler M, Makri N. 1993. System-specific discrete variable representations for path integral calculations with quasi-adiabatic propagators. Chem. Phys. Lett. 210:448–57
    [Google Scholar]
  59. 59. 
    Nalbach P, Eckel J, Thorwart M. 2010. Quantum coherent biomolecular energy transfer with spatially correlated fluctuations. New J. Phys. 12:065043
    [Google Scholar]
  60. 59a. 
    Ilk G, Makri N 1994. Real time path integral methods for a system coupled to an anharmonic bath. J. Chem. Phys 101:6708
    [Google Scholar]
  61. 60. 
    Makri N. 1995. Numerical path integral techniques for long-time quantum dynamics of dissipative systems. J. Math. Phys. 36:2430–56
    [Google Scholar]
  62. 61. 
    Walters PL, Allen TC, Makri N 2017. Direct determination of harmonic bath parameters from molecular dynamics simulations. J. Comput. Chem. 38:110–15
    [Google Scholar]
  63. 62. 
    Allen TC, Walters PL, Makri N. 2016. Direct computation of influence functional coefficients from numerical correlation functions. J. Chem. Theory Comput. 12:4169–77
    [Google Scholar]
  64. 63. 
    Makri N. 1998. Quantum dissipative systems: a numerically exact methodology. J. Phys. Chem. 102:4414–27
    [Google Scholar]
  65. 64. 
    Zwanzig R. 1973. Nonlinear generalized Langevin equations. J. Stat. Phys. 9:215–20
    [Google Scholar]
  66. 65. 
    Feit MD, Fleck JA Jr., Steiger SA. 1982. Solution of the Schrödinger equation by a spectral method. J. Comput. Phys. 47:412–33
    [Google Scholar]
  67. 66. 
    Thirumalai D, Bruskin EJ, Berne BJ. 1983. An iterative scheme for the evaluation of discretized path integrals. J. Chem. Phys. 79:5063–69
    [Google Scholar]
  68. 67. 
    LeForestier C, Bisseling R, Cerjan C, Feit MD, Friesner R et al. 1991. A comparison of different propagation schemes for the time-dependent Schrödinger equation. J. Comput. Phys. 94:59–80
    [Google Scholar]
  69. 68. 
    Makri N, Makarov DE. 1995. Tensor multiplication for iterative quantum time evolution of reduced density matrices. I. Theory. J. Chem. Phys. 102:4600–10
    [Google Scholar]
  70. 69. 
    Makri N, Makarov DE. 1995. Tensor multiplication for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J. Chem. Phys. 102:4611–18
    [Google Scholar]
  71. 70. 
    Sim E, Makri N 1996. Tensor propagator with weight-selected paths for quantum dissipative dynamics with long-memory kernels. Chem. Phys. Lett. 249:224–30
    [Google Scholar]
  72. 71. 
    Sim E, Makri N 1997. Filtered propagator functional for iterative dynamics of quantum dissipative systems. Comp. Phys. Commun. 99:335–54
    [Google Scholar]
  73. 72. 
    Sim E. 2001. Quantum dynamics for a system coupled to slow baths: on-the-fly filtered propagator method. J. Chem. Phys. 115:4450–56
    [Google Scholar]
  74. 73. 
    Lambert R, Makri N 2012. Memory path propagator matrix for long-time dissipative charge transport dynamics. Mol. Phys. 110:1967–75
    [Google Scholar]
  75. 74. 
    Sato Y. 2019. A scalable algorithm of numerical real-time path integral for quantum dissipative systems. J. Chem. Phys. 150:224108
    [Google Scholar]
  76. 75. 
    Dattani NS. 2012. Numerical Feynman integrals with physically inspired interpolation: faster convergence and significant reduction of computational cost. AIP Adv 2:012121
    [Google Scholar]
  77. 76. 
    Makri N. 2012. Path integral renormalization for quantum dissipative dynamics with multiple timescales. Mol. Phys. 110:1001–7
    [Google Scholar]
  78. 77. 
    Richter M, Fingerhut BP. 2017. Coarse-grained representation of the quasi adiabatic propagator path integral for the treatment of non-Markovian long-time bath memory. J. Chem. Phys. 146:214101
    [Google Scholar]
  79. 78. 
    Straatsma TP, Lovett BW, Kirton P. 2017. Efficient real-time path integrals for non-Markovian spin-boson models. New J. Phys. 19:093009
    [Google Scholar]
  80. 79. 
    Makri N. 2014. Blip decomposition of the path integral: exponential acceleration of real-time calculations for quantum dissipative systems. J. Chem. Phys. 141:134117
    [Google Scholar]
  81. 80. 
    Makri N. 2017. Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments. J. Chem. Phys. 146:134101
    [Google Scholar]
  82. 81. 
    Makri N. 2020. Small matrix disentanglement of the path integral: overcoming the exponential tensor scaling with memory length. J. Chem. Phys. 152:041104
    [Google Scholar]
  83. 82. 
    Makri N. 2020. Small matrix path integral for system-bath dynamics. J. Chem. Theory Comput. 16:4038–49
    [Google Scholar]
  84. 83. 
    Makri N. 2021. Small matrix path integral with extended memory. J. Chem. Theory Comput. 17:1–6
    [Google Scholar]
  85. 84. 
    Makri N. 2021. Small matrix path integral for driven dissipative dynamics. J. Phys. Chem. A 125:10500–6
    [Google Scholar]
  86. 85. 
    Tully JC. 1990. Molecular dynamics with electronic transitions. J. Chem. Phys. 93:1061–71
    [Google Scholar]
  87. 86. 
    Tully JC. 2012. Nonadiabatic dynamics theory. J. Chem. Phys. 137:22A301
    [Google Scholar]
  88. 87. 
    Wigner EJ. 1937. Calculation of the rate of elementary association reactions. Chem. Phys. 5:720
    [Google Scholar]
  89. 88. 
    Banerjee T, Makri N. 2013. Quantum-classical path integral with self-consistent solvent-driven propagators. J. Phys. Chem. 117:13357–66
    [Google Scholar]
  90. 89. 
    Makri N. 2014. Exploiting classical decoherence in dissipative quantum dynamics: memory, phonon emission, and the blip sum. Chem. Phys. Lett. 593:93–103
    [Google Scholar]
  91. 90. 
    Miller WH. 1974. Classical-limit quantum mechanics and the theory of molecular collisions. Adv. Chem. Phys. 25:69–177
    [Google Scholar]
  92. 91. 
    Makri N. 2016. Blip-summed quantum-classical path integral with cumulative quantum memory. Faraday Discuss 195:81–92
    [Google Scholar]
  93. 92. 
    Wang F, Makri N 2019. Quantum-classical path integral with a harmonic treatment of the back-reaction. J. Chem. Phys. 150:184102
    [Google Scholar]
  94. 93. 
    Makri N. 2018. Modular path integral: quantum dynamics via sequential necklace linking. J. Chem. Phys. 148:101101
    [Google Scholar]
  95. 94. 
    Makri N. 2018. Modular path integral methodology for real-time quantum dynamics. J. Chem. Phys. 149:214108
    [Google Scholar]
  96. 95. 
    Kundu S, Makri N. 2020. Modular path integral for finite-temperature dynamics of extended systems with intramolecular vibrations. J. Chem. Phys. 153:044124
    [Google Scholar]
  97. 96. 
    Kundu S, Makri N. 2019. Modular path integral for discrete systems with non-diagonal couplings. J. Chem. Phys. 151:074110
    [Google Scholar]
  98. 97. 
    Kundu S, Makri N. 2021. Efficient matrix factorisation of the modular path integral for extended systems. Mol. Phys. 119:e1797200
    [Google Scholar]
  99. 98. 
    Makri N. 2021. Small matrix modular path integral: iterative dynamics in space and time. Phys. Chem. Chem. Phys. 23:12537–40
    [Google Scholar]
  100. 99. 
    Makri N. 2021. Small matrix decomposition of Feynman path amplitudes. J. Chem. Theory Comput. 17:3825–29
    [Google Scholar]
  101. 100. 
    Kundu S, Makri N. 2021. Time evolution of bath properties in spin-boson dynamics. J. Phys. Chem. B 125:8137–51
    [Google Scholar]
  102. 101. 
    Kundu S, Makri N. 2021. Origin of vibrational features in the excitation energy transfer dynamics of perylene bisimide J-aggregates. J. Chem. Phys. 154:114301
    [Google Scholar]
  103. 102. 
    Harris RA, Silbey R. 1983. On the stabilization of optical isomers through tunneling friction. J. Chem. Phys. 78:7330–33
    [Google Scholar]
  104. 103. 
    Gutzwiller MC. 1990. Chaos in Classical and Quantum Mechanics New York: Springer
    [Google Scholar]
  105. 104. 
    Kundu S, Makri N. 2020. Real-time path integral simulation of exciton-vibration dynamics in light-harvesting bacteriochlorophyll aggregates. J. Phys. Chem. Lett. 11:8783–89
    [Google Scholar]
  106. 105. 
    Nalbach P, Ishizaki A, Fleming GR, Thorwart M. 2011. Iterative path-integral algorithm versus cumulant time-nonlocal master equation approach for dissipative biomolecular exciton transport. New J. Phys. 13:063040
    [Google Scholar]
  107. 106. 
    Nalbach P, Thorwart M. 2012. The role of discrete molecular modes in the coherent exciton dynamics in FMO. J. Phys. B 45:154009
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-120202
Loading
/content/journals/10.1146/annurev-physchem-090419-120202
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error