1932

Abstract

Many key industrial processes, from electricity production, conversion, and storage to electrocatalysis or electrochemistry in general, rely on physical mechanisms occurring at the interface between a metallic electrode and an electrolyte solution, summarized by the concept of an electric double layer, with the accumulation/depletion of electrons on the metal side and of ions on the liquid side. While electrostatic interactions play an essential role in the structure, thermodynamics, dynamics, and reactivity of electrode-electrolyte interfaces, these properties also crucially depend on the nature of the ions and solvent, as well as that of the metal itself. Such interfaces pose many challenges for modeling because they are a place where quantum chemistry meets statistical physics. In the present review, we explore the recent advances in the description and understanding of electrode-electrolyte interfaces with classical molecular simulations, with a focus on planar interfaces and solvent-based liquids, from pure solvent to water-in-salt electrolytes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090519-024042
2021-04-20
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090519-024042.html?itemId=/content/journals/10.1146/annurev-physchem-090519-024042&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL et al. 2016. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1:16070
    [Google Scholar]
  2. 2. 
    Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF. 2017. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:eaad4998
    [Google Scholar]
  3. 3. 
    Parsons R. 1990. The electrical double layer: recent experimental and theoretical developments. Chem. Rev. 90:813–26
    [Google Scholar]
  4. 4. 
    Gouy G. 1910. Sur la constitution de la charge électrique á la surface d'un électrolyte. J. Phys. Theor. Appl. 9:457–68
    [Google Scholar]
  5. 5. 
    Chapman D. 1913. LI. A contribution to the theory of electrocapillarity. 25:475–81
    [Google Scholar]
  6. 6. 
    Stern O. 1924. Zur Theorie Der Elektrolytischen Doppelschicht. Z. Elektrochem. 30:21–22
    [Google Scholar]
  7. 7. 
    Bazant MZ, Storey BD, Kornyshev AA. 2011. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106:046102
    [Google Scholar]
  8. 8. 
    McEldrew M, Goodwin ZAH, Kornyshev AA, Bazant MZ. 2018. Theory of the double layer in water-in-salt electrolytes. J. Phys. Chem. Lett. 9:5840–46
    [Google Scholar]
  9. 9. 
    Bazant MZ, Thornton K, Ajdari A 2004. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70:021506
    [Google Scholar]
  10. 10. 
    Netz RR. 2003. Electrofriction and dynamic Stern layers at planar charged surfaces. Phys. Rev. Lett. 91:138101
    [Google Scholar]
  11. 11. 
    Grün F, Jardat M, Turq P, Amatore C. 2004. Relaxation of the electrical double layer after an electron transfer approached by Brownian dynamics simulation. J. Chem. Phys. 120:9648
    [Google Scholar]
  12. 12. 
    Lobaskin V, Netz RR. 2016. Diffusive-convective transition in the non-equilibrium charging of an electric double layer. Europhys. Lett. 116:58001
    [Google Scholar]
  13. 13. 
    Asta AJ, Palaia I, Trizac E, Levesque M, Rotenberg B. 2019. Lattice Boltzmann electrokinetics simulation of nanocapacitors. J. Chem. Phys. 151:114104
    [Google Scholar]
  14. 14. 
    Striolo A, Michaelides A, Joly L. 2016. The carbon-water interface: modeling challenges and opportunities for the water-energy nexus. Annu. Rev. Chem. Biomol. Eng. 7:533–56
    [Google Scholar]
  15. 15. 
    Taylor CD, Wasileski SA, Filhol JS, Neurock M. 2006. First principles reaction modeling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys. Rev. B 73:165402
    [Google Scholar]
  16. 16. 
    Lautar AK, Hagopian A, Filhol JS. 2020. Modeling interfacial electrochemistry: concepts and tools. Phys. Chem. Chem. Phys. 22:10569–80
    [Google Scholar]
  17. 17. 
    Merlet C, Rotenberg B, Madden PA, Taberna PL, Simon P et al. 2012. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11:306–10
    [Google Scholar]
  18. 18. 
    Simoncelli M, Ganfoud N, Sene A, Haefele M, Daffos B et al. 2018. Blue energy and desalination with nanoporous carbon electrodes: capacitance from molecular simulations to continuous models. Phys. Rev. X 8:021024
    [Google Scholar]
  19. 19. 
    Merlet C, Limmer DT, Salanne M, van Roij R, Madden PA et al. 2014. The electric double layer has a life of its own. J. Phys. Chem. C 118:18291–98
    [Google Scholar]
  20. 20. 
    Fedorov MV, Kornyshev AA. 2014. Ionic liquids at electrified interfaces. Chem. Rev. 114:2978–3036
    [Google Scholar]
  21. 21. 
    Burt R, Birkett G, Zhao XS. 2014. A review of molecular modelling of electric double layer capacitors. Phys. Chem. Chem. Phys. 16:6519–38
    [Google Scholar]
  22. 22. 
    Torrie GM, Valleau JP, Patey GN. 1982. Electrical double layers. II. Monte Carlo and HNC studies of image effects. J. Chem. Phys. 76:4615–22
    [Google Scholar]
  23. 23. 
    Glosli JN, Philpott MR. 1992. Molecular dynamics simulation of adsorption of ions from aqueous media onto charged electrodes. J. Chem. Phys. 96:6962–69
    [Google Scholar]
  24. 24. 
    Kiyohara K, Asaka K. 2007. Monte Carlo simulation of electrolytes in the constant voltage ensemble. J. Chem. Phys. 126:214704
    [Google Scholar]
  25. 25. 
    Kiyohara K, Asaka K. 2007. Monte Carlo simulation of porous electrodes in the constant voltage ensemble. J. Phys. Chem. C 111:15903–9
    [Google Scholar]
  26. 26. 
    van Megen W, Snook I. 1980. The grand canonical ensemble Monte Carlo method applied to the electrical double layer. J. Chem. Phys. 73:4656–62
    [Google Scholar]
  27. 27. 
    Crozier PS, Rowley RL, Henderson D. 2001. Molecular-dynamics simulations of ion size effects on the fluid structure of aqueous electrolyte systems between charged model electrodes. J. Chem. Phys. 114:7513–17
    [Google Scholar]
  28. 28. 
    Lee SH, Rasaiah JC, Hubbard JB. 1986. Molecular dynamics study of a dipolar fluid between charged plates. J. Chem. Phys. 85:5232–37
    [Google Scholar]
  29. 29. 
    Hautman J, Halley JW, Rhee YJ. 1989. Molecular dynamics simulation of water between two ideal classical metal walls. J. Chem. Phys. 91:467–72
    [Google Scholar]
  30. 30. 
    Rose DA, Benjamin I. 1993. Adsorption of Na+ and Cl at the charged water–platinum interface. J. Chem. Phys. 98:2283–90
    [Google Scholar]
  31. 31. 
    Smith BB, Halley JW. 1994. Simulation study of the ferrous ferric electron transfer at a metal–aqueous electrolyte interface. J. Chem. Phys. 101:10915–24
    [Google Scholar]
  32. 32. 
    Daub CD, Bratko D, Leung K, Luzar A. 2007. Electrowetting at the nanoscale. J. Phys. Chem. C 111:505–9
    [Google Scholar]
  33. 33. 
    Siepmann JI, Sprik M. 1995. Influence of surface-topology and electrostatic potential on water electrode systems. J. Chem. Phys. 102:511–24
    [Google Scholar]
  34. 34. 
    Reed SK, Lanning OJ, Madden PA. 2007. Electrochemical interface between an ionic liquid and a model metallic electrode. J. Chem. Phys. 126:084704
    [Google Scholar]
  35. 35. 
    Pounds M, Tazi S, Salanne M, Madden PA. 2009. Ion adsorption at a metallic electrode: an ab initio based simulation study. J. Phys. Condens. Matter 21:424109
    [Google Scholar]
  36. 36. 
    Vatamanu J, Borodin O, Smith GD. 2009. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Phys. Chem. Chem. Phys. 12:170–82
    [Google Scholar]
  37. 37. 
    Petersen MK, Kumar R, White HS, Voth GA. 2012. A computationally efficient treatment of polarizable electrochemical cells held at a constant potential. J. Phys. Chem. C 116:4903–12
    [Google Scholar]
  38. 38. 
    Parsonage NG, Nicholson D. 1986. Computer simulation of water between metal walls. J. Chem. Soc. Faraday Trans. 2 82:1521–35
    [Google Scholar]
  39. 39. 
    Gardner AA, Valleau JP. 1987. Water–like particles at surfaces. II. In a double layer and at a metallic surface. J. Chem. Phys. 86:4171–76
    [Google Scholar]
  40. 40. 
    Takae K, Onuki A. 2015. Fluctuations of local electric field and dipole moments in water between metal walls. J. Chem. Phys. 143:154503
    [Google Scholar]
  41. 41. 
    Girotto M, dos Santos AP, Levin Y. 2017. Simulations of ionic liquids confined by metal electrodes using periodic Green functions. J. Chem. Phys. 147:074109
    [Google Scholar]
  42. 42. 
    Arnold A, Breitsprecher K, Fahrenberger F, Kesselheim S, Lenz O, Holm C. 2013. Efficient algorithms for electrostatic interactions including dielectric contrasts. Entropy 15:4569–88
    [Google Scholar]
  43. 43. 
    Allen R, Hansen JP, Melchionna S. 2001. Electrostatic potential inside ionic solutions confined by dielectrics: a variational approach. Phys. Chem. Chem. Phys. 3:4177–86
    [Google Scholar]
  44. 44. 
    Boda D, Gillespie D, Nonner W, Henderson D, Eisenberg B. 2004. Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E 69:046702
    [Google Scholar]
  45. 45. 
    Tyagi S, Süzen M, Sega M, Barbosa M, Kantorovich SS, Holm C. 2010. An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. J. Chem. Phys. 132:154112
    [Google Scholar]
  46. 46. 
    Breitsprecher K, Szuttor K, Holm C. 2015. Electrode models for ionic liquid-based capacitors. J. Phys. Chem. C 119:22445–51
    [Google Scholar]
  47. 47. 
    Barros K, Sinkovits D, Luijten E. 2014. Efficient and accurate simulation of dynamic dielectric objects. J. Chem. Phys. 140:064903
    [Google Scholar]
  48. 48. 
    Geada IL, Ramezani-Dakhel H, Jamil T, Sulpizi M, Heinz H. 2018. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard–Jones potential. Nat. Commun. 9:716
    [Google Scholar]
  49. 49. 
    Iori F, Corni S. 2008. Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces. J. Comput. Chem. 29:1656–66
    [Google Scholar]
  50. 50. 
    Iori F, Felice RD, Molinari E, Corni S. 2009. GolP: An atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J. Comput. Chem. 30:1465–76
    [Google Scholar]
  51. 51. 
    Schmickler W, Henderson D. 1984. The interphase between jellium and a hard sphere electrolyte. A model for the electric double layer. J. Chem. Phys. 80:3381–86
    [Google Scholar]
  52. 52. 
    Shelley JC, Patey GN, Brard DR, Torrie GM 1997. Modeling and structure of mercury-water interfaces. J. Chem. Phys. 107:2122–41
    [Google Scholar]
  53. 53. 
    Price DL, Halley JW. 1995. Molecular dynamics, density functional theory of the metal–electrolyte interface. J. Chem. Phys. 102:6603–12
    [Google Scholar]
  54. 54. 
    Walbran S, Mazzolo A, Halley J, Price D. 1998. Model for the electrostatic response of the copper–water interface. J. Chem. Phys. 109:8076–80
    [Google Scholar]
  55. 55. 
    Finnis MW. 1991. The interaction of a point charge with an aluminium (111) surface. Surface Sci 241:61–72
    [Google Scholar]
  56. 56. 
    Finnis MW, Kaschner R, Kruse C, Furthmuller J, Scheffler M. 1995. The interaction of a point charge with a metal surface: theory and calculations for (111), (100) and (110) aluminium surfaces. J. Phys. Condens. Matter 7:2001–19
    [Google Scholar]
  57. 57. 
    Nalewajski RF. 1984. Electrostatic effects in interactions between hard (soft) acids and bases. J. Am. Chem. Soc. 106:944–45
    [Google Scholar]
  58. 58. 
    Mortier WJ, Ghosh SK, Shankar S. 1986. Electronegativity-equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108:4315–20
    [Google Scholar]
  59. 59. 
    Rappe AK, Goddard WAIII 1991. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95:3358–63
    [Google Scholar]
  60. 60. 
    York DM, Yang W 1996. A chemical potential equalization method for molecular simulations. J. Chem. Phys. 104:159–72
    [Google Scholar]
  61. 61. 
    Gingrich TR, Wilson M 2010. On the Ewald summation of Gaussian charges for the simulation of metallic surfaces. Chem. Phys. Lett. 500:178–83
    [Google Scholar]
  62. 62. 
    Coretti A, Scalfi L, Bacon C, Rotenberg B, Vuilleumier R et al. 2020. Mass-zero constrained molecular dynamics for electrode charges in simulations of electrochemical systems. J. Chem. Phys. 152:194701
    [Google Scholar]
  63. 63. 
    Streitz FH, Mintmire JW. 1994. Electrostatic potentials for metal-oxide surfaces and interfaces. Phys. Rev. B 50:11996–2003
    [Google Scholar]
  64. 64. 
    Onofrio N, Strachan A. 2015. Voltage equilibration for reactive atomistic simulations of electrochemical processes. J. Chem. Phys. 143:054109
    [Google Scholar]
  65. 65. 
    Onofrio N, Guzman D, Strachan A. 2015. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 14:440–46
    [Google Scholar]
  66. 66. 
    Liang T, Antony AC, Akhade SA, Janik MJ, Sinnott SB. 2018. Applied potentials in variable-charge reactive force fields for electrochemical systems. J. Phys. Chem. A 122:631–38
    [Google Scholar]
  67. 67. 
    Nakano H, Sato H. 2019. A chemical potential equalization approach to constant potential polarizable electrodes for electrochemical-cell simulations. J. Chem. Phys. 151:164123
    [Google Scholar]
  68. 68. 
    Buraschi M, Sansotta S, Zahn D. 2020. Polarization effects in dynamic interfaces of platinum electrodes and ionic liquid phases: a molecular dynamics study. J. Phys. Chem. C 124:2002–7
    [Google Scholar]
  69. 69. 
    Nistor RA, Müser MH 2009. Dielectric properties of solids in the regular and split-charge equilibration formalisms. Phys. Rev. B 79:104303
    [Google Scholar]
  70. 70. 
    Pastewka L, Järvi TT, Mayrhofer L, Moseler M 2011. Charge-transfer model for carbonaceous electrodes in polar environments. Phys. Rev. B 83:165418
    [Google Scholar]
  71. 71. 
    Salanne M. 2015. Simulations of room temperature ionic liquids: from polarizable to coarse-grained force fields. Phys. Chem. Chem. Phys. 17:14270–79
    [Google Scholar]
  72. 72. 
    Merlet C, Salanne M, Rotenberg B, Madden PA. 2013. Influence of solvation on the structural and capacitive properties of electrical double layer capacitors. Electrochim. Acta 101:262–71
    [Google Scholar]
  73. 73. 
    Tazi S, Salanne M, Simon C, Turq P, Pounds M, Madden PA. 2010. Potential-induced ordering transition of the adsorbed layer at the ionic liquid/electrified metal interface. J. Phys. Chem. B 114:8453–59
    [Google Scholar]
  74. 74. 
    Bedrov D, Piquemal JP, Borodin O, MacKerell ADJr., Roux B, Schröder C 2019. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 119:7940–95
    [Google Scholar]
  75. 75. 
    Park S, McDaniel JG. 2020. Interference of electrical double layers: confinement effects on structure, dynamics, and screening of ionic liquids. J. Chem. Phys. 152:074709
    [Google Scholar]
  76. 76. 
    Le Breton G, Joly L 2020. Molecular modeling of aqueous electrolytes at interfaces: effects of long-range dispersion forces and of ionic charge rescaling. J. Chem. Phys. 152:241102
    [Google Scholar]
  77. 77. 
    Spohr E, Heinzinger K. 1986. Molecular dynamics simulation of a water/metal interface. Chem. Phys. Lett. 123:218–21
    [Google Scholar]
  78. 78. 
    Spohr E. 1989. Computer simulation of the water/platinum interface. J. Phys. Chem. 93:6171–80
    [Google Scholar]
  79. 79. 
    Al-Hamdani YS, Alfè D, Michaelides A 2017. How strongly do hydrogen and water molecules stick to carbon nanomaterials?. J. Chem. Phys. 146:094701
    [Google Scholar]
  80. 80. 
    Heinz H, Vaia RA, Farmer BL, Naik RR. 2008. Accurate simulation of surfaces and interfaces of face–centered cubic metals using 12–6 and 9–6 Lennard–Jones potentials. J. Phys. Chem. C 112:17281–90
    [Google Scholar]
  81. 81. 
    Clabaut P, Fleurat-Lessard P, Michel C, Steinmann SN 2020. Ten facets, one force field: the GAL19 force field for water–noble metal interfaces. J. Chem. Theory Comput. 16:4565–78
    [Google Scholar]
  82. 82. 
    Marin-Laflèche A, Haefele M, Scalfi L, Coretti A, Dufils T et al. 2020. MetalWalls: a classical molecular dynamics software dedicated to the simulation of electrochemical systems. J. Open Source Softw. 5:532373
    [Google Scholar]
  83. 83. 
    Plimpton S. 1995. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117:1–19
    [Google Scholar]
  84. 84. 
    Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y et al. 2017. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol. 13:7e1005659
    [Google Scholar]
  85. 85. 
    Weik F, Weeber R, Szuttor K, Breitsprecher K, de Graaf J et al. 2019. ESPResSo 4.0—an extensible software package for simulating soft matter systems. Eur. Phys. J. Spec. Top. 227:1789–816
    [Google Scholar]
  86. 86. 
    Yeh IC, Berkowitz ML. 1999. Ewald summation for systems with slab geometry. J. Chem. Phys. 111:3155–62
    [Google Scholar]
  87. 87. 
    Dufils T, Jeanmairet G, Rotenberg B, Sprik M, Salanne M. 2019. Simulating electrochemical systems by combining the finite field method with a constant potential electrode. Phys. Rev. Lett. 123:195501
    [Google Scholar]
  88. 88. 
    Stengel M, Spaldin NA, Vanderbilt D. 2009. Electric displacement as the fundamental variable in electronic-structure calculations. Nat. Phys. 5:304–8
    [Google Scholar]
  89. 89. 
    Zhang C, Sprik M. 2016. Finite field methods for the supercell modeling of charged insulator/electrolyte interfaces. Phys. Rev. B 94:245309
    [Google Scholar]
  90. 90. 
    Sayer T, Zhang C, Sprik M. 2017. Charge compensation at the interface between the polar NaCl(111) surface and a NaCl aqueous solution. J. Chem. Phys. 147:104702
    [Google Scholar]
  91. 91. 
    Bonnet N, Morishita T, Sugino O, Otani M. 2012. First-principles molecular dynamics at a constant electrode potential. Phys. Rev. Lett. 109:266101
    [Google Scholar]
  92. 92. 
    Punnathanam SN. 2014. A Gibbs-ensemble based technique for Monte Carlo simulation of electric double layer capacitors (EDLC) at constant voltage. J. Chem. Phys. 140:174110
    [Google Scholar]
  93. 93. 
    Stenberg S, Stenqvist B, Woodward C, Forsman J. 2020. Grand canonical simulations of ions between charged conducting surfaces using exact 3D Ewald summations. Phys. Chem. Chem. Phys. 22:13659–65
    [Google Scholar]
  94. 94. 
    Haskins JB, Lawson JW. 2016. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers. J. Chem. Phys. 144:134701
    [Google Scholar]
  95. 95. 
    Scalfi L, Limmer DT, Coretti A, Bonella S, Madden PA et al. 2020. Charge fluctuations from molecular simulations in the constant-potential ensemble. Phys. Chem. Chem. Phys. 22:10480–89
    [Google Scholar]
  96. 96. 
    Limmer DT, Merlet C, Salanne M, Chandler D, Madden PA et al. 2013. Charge fluctuations in nanoscale capacitors. Phys. Rev. Lett. 111:106102
    [Google Scholar]
  97. 97. 
    Takahashi K, Nakano H, Sato H. 2020. A polarizable molecular dynamics method for electrode–electrolyte interfacial electron transfer under the constant chemical-potential-difference condition on the electrode electrons. J. Chem. Phys. 153:054126
    [Google Scholar]
  98. 98. 
    Kattirtzi JA, Limmer DT, Willard AP 2017. Microscopic dynamics of charge separation at the aqueous electrochemical interface. PNAS 114:13374–79
    [Google Scholar]
  99. 99. 
    Willard AP, Reed SK, Madden PA, Chandler D. 2009. Water at an electrochemical interface—a simulation study. Faraday Discuss 141:423–41
    [Google Scholar]
  100. 100. 
    Bonthuis DJ, Gekle S, Netz RR. 2012. Profile of the static permittivity tensor of water at interfaces: consequences for capacitance, hydration interaction and ion adsorption. Langmuir 28:7679–94
    [Google Scholar]
  101. 101. 
    Jeanmairet G, Rotenberg B, Borgis D, Salanne M. 2019. Study of a water-graphene capacitor with molecular density functional theory. J. Chem. Phys. 151:124111
    [Google Scholar]
  102. 102. 
    Suo L, Hu YS, Li H, Armand M, Chen L 2013. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4:1481
    [Google Scholar]
  103. 103. 
    Wang J, Yamada Y, Sodeyama K, Chiang CH, Tateyama Y, Yamada A. 2016. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7:12032
    [Google Scholar]
  104. 104. 
    Li Z, Jeanmairet G, Mendez-Morales T, Rotenberg B, Salanne M. 2018. Capacitive performance of water-in-salt electrolytes in supercapacitors: a simulation study. J. Phys. Chem. C 122:23917–24
    [Google Scholar]
  105. 105. 
    Rotenberg B, Salanne M. 2015. Structural transitions at ionic liquid interfaces. J. Phys. Chem. Lett. 6:4978–85
    [Google Scholar]
  106. 106. 
    Uralcan B, Aksay IA, Debenedetti PG, Limmer DT. 2016. Concentration fluctuations and capacitive response in dense ionic solutions. J. Phys. Chem. Lett. 7:2333–38
    [Google Scholar]
  107. 107. 
    Péan C, Merlet C, Rotenberg B, Madden PA, Taberna PL et al. 2014. On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS Nano 8:1576–83
    [Google Scholar]
  108. 108. 
    Pean C, Daffos B, Rotenberg B, Levitz P, Haefele M et al. 2015. Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137:12627
    [Google Scholar]
  109. 109. 
    Pean C, Rotenberg B, Simon P, Salanne M. 2016. Multi-scale modelling of supercapacitors: from molecular simulations to a transmission line model. J. Power Sourc. 326:680–85
    [Google Scholar]
  110. 110. 
    Breitsprecher K, Holm C, Kondrat S. 2018. Charge me slowly, I am in a hurry: optimizing charge/discharge cycles in nanoporous supercapacitors. ACS Nano 12:9733–41
    [Google Scholar]
  111. 111. 
    Mullen RG, Shea JE, Peters B. 2014. Transmission coefficients, committors, and solvent coordinates in ion-pair dissociation. J. Chem. Theory Comput. 10:659–67
    [Google Scholar]
  112. 112. 
    Limmer DT, Willard AP, Madden P, Chandler D 2013. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. PNAS 110:4200–5
    [Google Scholar]
  113. 113. 
    Willard AP, Limmer DT, Madden PA, Chandler D. 2013. Characterizing heterogeneous dynamics at hydrated electrode surfaces. J. Chem. Phys. 138:184702
    [Google Scholar]
  114. 114. 
    Limmer DT, Willard AP, Madden PA, Chandler D. 2015. Water exchange at a hydrated platinum electrode is rare and collective. J. Phys. Chem. C 119:24016–24
    [Google Scholar]
  115. 115. 
    Limmer DT, Willard AP. 2015. Nanoscale heterogeneity at the aqueous electrolyte–electrode interface. Chem. Phys. Lett. 620:144–50
    [Google Scholar]
  116. 116. 
    Zhang Y, Stirnemann G, Hynes JT, Laage D. 2020. Water dynamics at electrified graphene interfaces: a jump model perspective. Phys. Chem. Chem. Phys. 22:10581–91
    [Google Scholar]
  117. 117. 
    Marcus RA. 1956. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24:966–78
    [Google Scholar]
  118. 118. 
    Warshel A. 1982. Dynamics of reactions in polar solvents. semiclassical trajectory studies of electron-transfer and proton-transfer reactions. J. Phys. Chem. 86:2218–24
    [Google Scholar]
  119. 119. 
    Reed SK, Madden PA, Papadopoulos A. 2008. Electrochemical charge transfer at a metallic electrode: a simulation study. J. Chem. Phys. 128:124701
    [Google Scholar]
  120. 120. 
    Pounds MA, Salanne M, Madden PA. 2015. Molecular aspects of the Eu3+/Eu2+ redox reaction at the interface between a molten salt and a metallic electrode. Mol. Phys. 113:2451–62
    [Google Scholar]
  121. 121. 
    Wilhelm F, Schmickler W, Nazmutdinov R, Spohr E. 2011. Modeling proton transfer to charged silver electrodes. Electrochim. Acta 56:10632–44
    [Google Scholar]
  122. 122. 
    Wiebe J, Spohr E. 2017. Water structure and mechanisms of proton discharge on platinum electrodes: empirical valence bond molecular dynamics trajectory studies. Electrocatalysis 8:637–46
    [Google Scholar]
  123. 123. 
    Dwelle KA, Willard AP. 2019. Constant potential, electrochemically active boundary conditions for electrochemical simulation. J. Phys. Chem. C 123:24095–103
    [Google Scholar]
  124. 124. 
    Rose DA, Benjamin I. 1991. Solvation of Na+ and Cl at the water–platinum (100) interface. J. Chem. Phys. 95:6856–65
    [Google Scholar]
  125. 125. 
    Calhoun A, Voth GA. 1996. Electron transfer across the electrode/electrolyte interface: influence of redox ion mobility and counterions. J. Phys. Chem. 100:10746–53
    [Google Scholar]
  126. 126. 
    Scalfi L, Dufils T, Reeves K, Rotenberg B, Salanne M. 2019. A semiclassical Thomas-Fermi model to tune the metallicity of electrodes in molecular simulations. J. Chem. Phys. 153:17174704
    [Google Scholar]
  127. 127. 
    Schlaich A, Jin D, Bocquet L, Coasne B. 2020. Wetting transition of ionic liquids at metal surfaces: a computational approach to electronic screening using a virtual Thomas–Fermi fluid. arXiv:2002.11526 [physics.chem-ph]. https://arxiv.org/abs/2002.11526
  128. 128. 
    Comtet J, Niguès A, Kaiser V, Coasne B, Bocquet L, Siria A 2017. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening. Nat. Mater. 16:634–39
    [Google Scholar]
  129. 129. 
    Jeanmairet G, Rotenberg B, Levesque M, Borgis D, Salanne M. 2019. A molecular density functional theory approach to electron transfer reactions. Chem. Sci. 10:2130–43
    [Google Scholar]
  130. 130. 
    Fajardo OY, Bresme F, Kornyshev AA, Urbakh M. 2015. Electrotunable lubricity with ionic liquid nanoscale films. Sci. Rep. 5:7698
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090519-024042
Loading
/content/journals/10.1146/annurev-physchem-090519-024042
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error