1932

Abstract

Aerosols are liquid or solid particles suspended in the atmosphere, typically with diameters on the order of nanometers to microns. These particles impact air quality and the radiative balance of the planet. Dry deposition is a key process for the removal of aerosols from the atmosphere and plays an important role in controlling the lifetime of atmospheric aerosols. Dry deposition is driven by turbulence and shows a strong dependence on particle size. This review summarizes the mechanisms behind aerosol dry deposition, including measurement approaches, field observations, and modeling studies. We identify several gaps in the literature, including deposition over the cryosphere (i.e., snow and ice surfaces) and the ocean; in addition, we highlight new techniques to measure black carbon fluxes. While recent advances in aerosol instrumentation have enhanced our understanding of aerosol sources and chemistry, dry deposition and other loss processes remain poorly investigated.

Keyword(s): aerosoldry depositionfluxparticle
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090519-034936
2021-04-20
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090519-034936.html?itemId=/content/journals/10.1146/annurev-physchem-090519-034936&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    IPCC (Intergov. Panel Clim. Chang.). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  2. 2. 
    Carslaw KS, Lee LA, Reddington CL, Pringle K, Rap A et al. 2013. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503:67–71
    [Google Scholar]
  3. 3. 
    Lee LA, Carslaw KS, Pringle KJ, Mann GW. 2012. Mapping the uncertainty in global CCN using emulation. Atmos. Chem. Phys. 12:9739–51
    [Google Scholar]
  4. 4. 
    Lee LA, Pringle KJ, Reddington CL, Mann GW, Stier P et al. 2013. The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmos. Chem. Phys. 13:8879–914
    [Google Scholar]
  5. 5. 
    Pryor SC, Gallagher M, Sievering H, Larsen SE, Barthelmie RJ et al. 2008. A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus B Chem. Phys. Meteorol. 60:42–75
    [Google Scholar]
  6. 6. 
    Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M et al. 2009. Atmospheric composition change: ecosystems–atmosphere interactions. Atmos. Environ. 43:5193–267
    [Google Scholar]
  7. 7. 
    Wesely ML, Hicks BB. 2000. A review of the current status of knowledge on dry deposition. Atmos. Environ. 34:2261–82
    [Google Scholar]
  8. 8. 
    Ruijrok W, Davidson CI, Nicholson KW. 1995. Dry deposition of particles. Tellus B Chem. Phys. Meteorol. 47:587–601
    [Google Scholar]
  9. 9. 
    Pryor SC, Barthelmie RJ, Hornsby KE. 2013. Size-resolved particle fluxes and vertical gradients over and in a sparse pine forest. Aerosol Sci. Technol. 47:1248–57
    [Google Scholar]
  10. 10. 
    Pryor SC, Barthelmie RJ, Spaulding AM, Larsen SE, Petroff A. 2009. Size-resolved fluxes of sub-100-nm particles over forests. J. Geophys. Res. Atmos. 114:D18212
    [Google Scholar]
  11. 11. 
    Vong RJ, Vong IJ, Vickers D, Covert DS. 2010. Size-dependent aerosol deposition velocities during BEARPEX'07. Atmos. Chem. Phys. 10:5749–58
    [Google Scholar]
  12. 12. 
    Petroff A, Murphy J, Thomas S, Geddes J. 2018. Size-resolved aerosol fluxes above a temperate broadleaf forest. Atmos. Environ. 190:359–75
    [Google Scholar]
  13. 13. 
    Saylor RD, Baker BD, Lee P, Tong D, Pan L, Hicks BB. 2019. The particle dry deposition component of total deposition from air quality models: right, wrong or uncertain?. Tellus B Chem. Phys. Meteorol. 71:1550324
    [Google Scholar]
  14. 14. 
    Emerson EW, Hodshire AL, DeBolt HM, Bilsback KR, Pierce JR et al. 2020. Revisiting particle dry deposition and its role in radiative effect estimates. PNAS 117:26076–82
    [Google Scholar]
  15. 15. 
    Goldstein AH, Galbally IE. 2007. Known and unexplored organic constituents in the Earth's atmosphere. Environ. Sci. Technol. 41:1514–21
    [Google Scholar]
  16. 16. 
    Slinn WGN. 1982. Predictions for particle deposition to vegetative canopies. Atmos. Environ. 16:1785–94
    [Google Scholar]
  17. 17. 
    Farmer DK, Cappa CD, Kreidenweis SM. 2015. Atmospheric processes and their controlling influence on cloud condensation nuclei activity. Chem. Rev. 115:4199–217
    [Google Scholar]
  18. 18. 
    Pöschl U. 2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44:7520–40
    [Google Scholar]
  19. 19. 
    Zhang LM, Gong SL, Padro J, Barrie L. 2001. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 35:549–60
    [Google Scholar]
  20. 20. 
    Ruijgrok W, Tieben H, Eisinga P. 1997. The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmos. Environ. 31:399–415
    [Google Scholar]
  21. 21. 
    Stevens CJ, Dise NB, Mountford JO, Gowing DJ. 2004. Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–79
    [Google Scholar]
  22. 22. 
    Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN et al. 2013. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368:20130164
    [Google Scholar]
  23. 23. 
    Schiferl LD, Heald CL, Kelly D. 2018. Resource and physiological constraints on global crop production enhancements from atmospheric particulate matter and nitrogen deposition. Biogeosciences 15:4301–15
    [Google Scholar]
  24. 24. 
    Erisman JW, Draaijers G, Duyzer J, Hofschreuder P, Van Leeuwen N et al. 1997. Particle deposition to forests—summary of results and application. Atmos. Environ. 31:321–32
    [Google Scholar]
  25. 25. 
    Vicars WC, Sickman JO, Ziemann PJ. 2010. Atmospheric phosphorus deposition at a montane site: size distribution, effects of wildfire, and ecological implications. Atmos. Environ. 44:2813–21
    [Google Scholar]
  26. 26. 
    Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R et al. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20:30–59
    [Google Scholar]
  27. 27. 
    Casal P, Zhang Y, Martin JW, Pizarro M, Jiménez B, Dachs J. 2017. Role of snow deposition of perfluoroalkylated substances at coastal Livingston Island (maritime Antarctica). Environ. Sci. Technol. 51:8460–70
    [Google Scholar]
  28. 28. 
    Hageman KJ, Hafner WD, Campbell DH, Jaffe DA, Landers DH, Simonich SLM. 2010. Variability in pesticide deposition and source contributions to snowpack in western US national parks. Environ. Sci. Technol. 44:4452–58
    [Google Scholar]
  29. 29. 
    Rose NL, Rippey B. 2002. The historical record of PAH, PCB, trace metal and fly-ash particle deposition at a remote lake in north-west Scotland. Environ. Pollut. 117:121–32
    [Google Scholar]
  30. 30. 
    McMurry PH. 2000. A review of atmospheric aerosol measurements. Atmos. Environ. 34:1959–99
    [Google Scholar]
  31. 31. 
    Zufall MJ, Dai WP, Davidson CI. 1999. Dry deposition of particles to wave surfaces: II. Wind tunnel experiments. Atmos. Environ. 33:4283–90
    [Google Scholar]
  32. 32. 
    Baldocchi DD, Hicks BB, Meyers TP. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69:1331–40
    [Google Scholar]
  33. 33. 
    Pryor S, Larsen SE, Sørensen LL, Barthelmie RJ, Grönholm T et al. 2007. Particle fluxes over forests: analyses of flux methods and functional dependencies. J. Geophys. Res. Atmos. 112:D07205
    [Google Scholar]
  34. 34. 
    Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Chang. Biol. 9:479–92
    [Google Scholar]
  35. 35. 
    Rizzo LV, Artaxo P, Karl T, Guenther AB, Greenberg J. 2010. Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia. Atmos. Environ. 44:503–11
    [Google Scholar]
  36. 36. 
    Ahlm L, Krejci R, Nilsson ED, Martensson EM, Vogt M, Artaxo P. 2010. Emission and dry deposition of accumulation mode particles in the Amazon Basin. Atmos. Chem. Phys. 10:10237–53
    [Google Scholar]
  37. 37. 
    Farmer DK, Kimmel JR, Phillips G, Docherty KS, Worsnop DR et al. 2011. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes. Atmos. Meas. Tech. 4:1275–89
    [Google Scholar]
  38. 38. 
    Nemitz E, Jimenez JL, Huffman JA, Ulbrich IM, Canagaratna MR et al. 2008. An eddy-covariance system for the measurement of surface/atmosphere exchange fluxes of submicron aerosol chemical species—first application above an urban area. Aerosol Sci. Technol. 42:636–57
    [Google Scholar]
  39. 39. 
    Lavi A, Farmer DK, Segre E, Moise T, Rotenberg E et al. 2013. Fluxes of fine particles over a semi-arid pine forest: possible effects of a complex terrain. Aerosol Sci. Technol. 47:906–15
    [Google Scholar]
  40. 40. 
    Gaman A, Rannik Ü, Aalto P, Pohja T, Siivola E et al. 2004. Relaxed eddy accumulation system for size-resolved aerosol particle flux measurements. J. Atmos. Ocean. Technol. 21:933–43
    [Google Scholar]
  41. 41. 
    Schery SD, Wasiolek PT, Nemetz BM, Yarger FD, Whittlestone S. 1998. Relaxed eddy accumulator for flux measurement of nanometer-size particles. Aerosol Sci. Technol. 28:159–72
    [Google Scholar]
  42. 42. 
    Pryor SC, Larsen SE, Sørensen LL, Barthelmie RJ. 2008. Particle fluxes above forests: observations, methodological considerations and method comparisons. Environ. Pollut. 152:667–78
    [Google Scholar]
  43. 43. 
    Held A, Niessner R, Bosveld F, Wrzesinsky T, Klemm O. 2007. Evaluation and application of an electrical low pressure impactor in disjunct eddy covariance aerosol flux measurements. Aerosol Sci. Technol. 41:510–19
    [Google Scholar]
  44. 44. 
    Held A, Hinz K-P, Trimborn A, Spengler B, Klemm O. 2003. Towards direct measurement of turbulent vertical fluxes of compounds in atmospheric aerosol particles. Geophys. Res. Lett. 30:2016
    [Google Scholar]
  45. 45. 
    Pryor S, Barthelmie RJ, Sørensen LL, Larsen SE, Sempreviva AM et al. 2008. Upward fluxes of particles over forests: when, where, why?. Tellus B Chem. Phys. Meteorol. 60:372–80
    [Google Scholar]
  46. 46. 
    Buzorius G, Rannik U, Makela JM, Vesala T, Kulmala M. 1998. Vertical aerosol particle fluxes measured by eddy covariance technique using condensational particle counter. J. Aerosol Sci. 29:157–71
    [Google Scholar]
  47. 47. 
    Märtensson EM, Nilsson ED, Buzorius G, Johansson C. 2006. Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment. Atmos. Chem. Phys. 6:769–85
    [Google Scholar]
  48. 48. 
    Nemitz E, Sutton MA. 2004. Gas-particle interactions above a Dutch heathland: III. Modelling the influence of the NH3-HNO3-NH4NO3 equilibrium on size-segregated particle fluxes. Atmos. Chem. Phys. 4:1025–45
    [Google Scholar]
  49. 49. 
    Trebs I, Lara LL, Zeri LMM, Gatti LV, Artaxo P et al. 2006. Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondonia, Brazil). Atmos. Chem. Phys. 6:447–69
    [Google Scholar]
  50. 50. 
    Farmer DK, Chen Q, Kimmel JR, Docherty KS, Nemitz E et al. 2013. Chemically resolved particle fluxes over tropical and temperate forests. Aerosol Sci. Technol. 47:818–30
    [Google Scholar]
  51. 51. 
    Pryor SC, Binkowski FS. 2004. An analysis of the time scales associated with aerosol processes during dry deposition. Aerosol Sci. Technol. 38:1091–98
    [Google Scholar]
  52. 52. 
    Petroff A, Mailliat A, Amielh M, Anselmet F. 2008. Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmos. Environ. 42:3625–53
    [Google Scholar]
  53. 53. 
    Petroff A, Zhang L. 2010. Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models. Geosci. Model Dev. 3:753–69
    [Google Scholar]
  54. 54. 
    Petroff A, Mailliat A, Amielh M, Anselmet F. 2008. Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications. Atmos. Environ. 42:3654–83
    [Google Scholar]
  55. 55. 
    Sievering H. 1987. Small-particle dry deposition under high wind speed conditions: eddy flux measurements at the Boulder atmospheric observatory. Atmos. Environ. 1967 21:2179–85
    [Google Scholar]
  56. 56. 
    Grönholm T, Aalto PP, Hiltunen VJ, Rannik Ü, Rinne J et al. 2007. Measurements of aerosol particle dry deposition velocity using the relaxed eddy accumulation technique. Tellus B Chem. Phys. Meteorol. 59:381–86
    [Google Scholar]
  57. 57. 
    Wesely ML. 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 23:1293–304
    [Google Scholar]
  58. 58. 
    Peters K, Eiden R. 1992. Modeling the dry deposition velocity of aerosol particles to a spruce forest. Atmos. Environ. A 26:2555–64
    [Google Scholar]
  59. 59. 
    Giardina M, Buffa P. 2018. A new approach for modeling dry deposition velocity of particles. Atmos. Environ. 180:11–22
    [Google Scholar]
  60. 60. 
    Giorgi F. 1986. A particle dry-deposition parameterization scheme for use in tracer transport models. J. Geophys. Res. Atmos. 91:9794–806
    [Google Scholar]
  61. 61. 
    Giorgi F. 1988. Dry deposition velocities of atmospheric aerosols as inferred by applying a particle dry deposition parameterization to a general circulation model. Tellus B Chem. Phys. Meteorol. 40B:23–41
    [Google Scholar]
  62. 62. 
    Pleim J, Ran L. 2011. Surface flux modeling for air quality applications. Atmosphere 2:271–302
    [Google Scholar]
  63. 63. 
    Fairall CW, Hare JE, Edson JB, McGillis W. 2000. Parameterization and micrometeorological measurement of air–sea gas transfer. Bound. Layer Meteorol. 96:63–106
    [Google Scholar]
  64. 64. 
    Sievering H. 1984. Small-particle dry deposition on natural waters: modeling uncertainty. J. Geophys. Res. Atmos. 89:9679–81
    [Google Scholar]
  65. 65. 
    Slinn SA, Slinn WGN. 1980. Predictions for particle deposition on natural waters. Atmos. Environ. 14:1013–16
    [Google Scholar]
  66. 66. 
    Williams RM. 1982. A model for the dry deposition of particles to natural water surfaces. Atmos. Environ. 16:1933–38
    [Google Scholar]
  67. 67. 
    Pryor SC, Barthelmie RJ. 2000. Particle dry deposition to water surfaces: processes and consequences. Mar. Pollut. Bull. 41:220–31
    [Google Scholar]
  68. 68. 
    Emerson EW, Katich JM, Schwarz JP, McMeeking GR, Farmer DK. 2018. Direct measurements of dry and wet deposition of black carbon over a grassland. J. Geophys. Res. Atmos. 123:12277–90
    [Google Scholar]
  69. 69. 
    Warren SG, Wiscombe WJ. 1980. A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci. 37:2734–45
    [Google Scholar]
  70. 70. 
    Flanner MG, Zender CS, Randerson JT, Rasch PJ. 2007. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. Atmos. 112:D11202
    [Google Scholar]
  71. 71. 
    Koch D, Del Genio A. 2010. Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos. Chem. Phys. 10:7685–96
    [Google Scholar]
  72. 72. 
    Hansen J, Nazarenko L 2004. Soot climate forcing via snow and ice albedos. PNAS 101:423–28
    [Google Scholar]
  73. 73. 
    Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z. 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109:D14203
    [Google Scholar]
  74. 74. 
    Hadley OL, Corrigan CE, Kirchstetter TW, Cliff SS, Ramanathan V. 2010. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat. Atmos. Chem. Phys. 10:7505–13
    [Google Scholar]
  75. 75. 
    Kaspari S, Skiles SM, Delaney I, Dixon D, Painter TH. 2015. Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire. J. Geophys. Res. Atmos. 120:2793–807
    [Google Scholar]
  76. 76. 
    Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D. 2010. Black carbon aerosols and the third polar ice cap. Atmos. Chem. Phys. 10:4559–71
    [Google Scholar]
  77. 77. 
    Yasunari TJ, Tan Q, Lau KM, Bonasoni P, Marinoni A et al. 2013. Estimated range of black carbon dry deposition and the related snow albedo reduction over Himalayan glaciers during dry pre-monsoon periods. Atmos. Environ. 78:259–67
    [Google Scholar]
  78. 78. 
    Mahmood R, von Salzen K, Flanner M, Sand M, Langner J et al. 2016. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models. J. Geophys. Res. Atmos. 121:7100–16
    [Google Scholar]
  79. 79. 
    Schwarz JP, Gao RS, Fahey DW, Thomson DS, Watts LA et al. 2006. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res. Atmos. 111:D16207
    [Google Scholar]
  80. 80. 
    Stephens M, Turner N, Sandberg J. 2003. Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl. Opt. 42:3726–36
    [Google Scholar]
  81. 81. 
    Joshi R, Liu D, Nemitz E, Langford B, Mullinger N et al. 2021. Direct measurements of black carbon fluxes in central Beijing using the eddy covariance method. Atmos. Chem. Phys 21:147–62
    [Google Scholar]
  82. 82. 
    Andrews T, Gregory JM, Webb MJ, Taylor KE. 2012. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 39:L09712
    [Google Scholar]
  83. 83. 
    Bony S, Dufresne JL. 2005. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32:L20806
    [Google Scholar]
  84. 84. 
    Twomey S. 1974. Pollution and planetary albedo. Atmos. Environ. 8:1251–56
    [Google Scholar]
  85. 85. 
    Ackerman AS, Toon OB, Taylor JP, Johnson DW, Hobbs PV, Ferek RJ. 2000. Effects of aerosols on cloud albedo: evaluation of Twomey's parameterization of cloud susceptibility using measurements of ship tracks. J. Atmos. Sci. 57:2684–95
    [Google Scholar]
  86. 86. 
    Contini D, Donateo A, Belosi F, Grasso F, Santachiara G, Prodi F. 2010. Deposition velocity of ultrafine particles measured with the Eddy-Correlation Method over the Nansen Ice Sheet (Antarctica). J. Geophys. Res. Atmos. 115:D16202
    [Google Scholar]
  87. 87. 
    Duan B, Fairall C, Thomson D. 1988. Eddy correlation measurements of the dry deposition of particles in wintertime. J. Appl. Meteorol. 27:642–52
    [Google Scholar]
  88. 88. 
    Ibrahim M, Barrie L, Fanaki F. 1983. An experimental and theoretical investigation of the dry deposition of particles to snow, pine trees and artificial collectors. Atmos. Environ. 17:781–88
    [Google Scholar]
  89. 89. 
    Nilsson ED, Rannik Ü. 2001. Turbulent aerosol fluxes over the Arctic Ocean: 1. Dry deposition over sea and pack ice. J. Geophys. Res. Atmos. 106:32125–37
    [Google Scholar]
  90. 90. 
    Grönlund A, Nilsson D, Koponen IK, Virkkula A, Hansson ME. 2002. Aerosol dry deposition measured with eddy-covariance technique at Wasa and Aboa, Dronning Maud Land, Antarctica. Ann. Glaciol. 35:355–61
    [Google Scholar]
  91. 91. 
    Gallagher M, Beswick K, Choularton T. 1992. Measurement and modelling of cloudwater deposition to a snow-covered forest canopy. Atmos. Environ. A. 26:2893–903
    [Google Scholar]
  92. 92. 
    Macdonald KM, Sharma S, Toom D, Chivulescu A, Hanna S et al. 2017. Observations of atmospheric chemical deposition to high Arctic snow. Atmos. Chem. Phys. 17:5775–88
    [Google Scholar]
  93. 93. 
    Huang L, Gong SL, Jia CQ, Lavoue D. 2010. Importance of deposition processes in simulating the seasonality of the Arctic black carbon aerosol. J. Geophys. Res. Atmos. 115:D17207
    [Google Scholar]
  94. 94. 
    Tammet H, Kimmel V, Israelsson S. 2001. Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere. Atmos. Environ. 35:3413–19
    [Google Scholar]
  95. 95. 
    Pryor SC, Barthelmie RJ, Larsen SE, Sørensen LL. 2017. Ultrafine particle number fluxes over and in a deciduous forest. J. Geophys. Res. Atmos. 122:405–22
    [Google Scholar]
  96. 96. 
    Rannik Ü, Mammarella I, Aalto P, Keronen P, Vesala T, Kulmala M. 2009. Long-term aerosol particle flux observations part I: uncertainties and time-average statistics. Atmos. Environ. 43:3431–39
    [Google Scholar]
  97. 97. 
    Mammarella I, Rannik Ü, Aalto P, Keronen P, Vesala T, Kulmala M. 2011. Long-term aerosol particle flux observations. Part II: Particle size statistics and deposition velocities. Atmos. Environ. 45:3794–805
    [Google Scholar]
  98. 98. 
    Deventer MJ, von der Heyden L, Lamprecht C, Graus M, Karl T, Held A. 2018. Aerosol particles during the Innsbruck Air Quality Study (INNAQS): fluxes of nucleation to accumulation mode particles in relation to selective urban tracers. Atmos. Environ. 190:376–88
    [Google Scholar]
  99. 99. 
    Jarvi L, Rannik Ü, Mammarella I, Sogachev A, Aalto PP et al. 2009. Annual particle flux observations over a heterogeneous urban area. Atmos. Chem. Phys. 9:7847–56
    [Google Scholar]
  100. 100. 
    Conte M, Contini D. 2019. Size-resolved particle emission factors of vehicular traffic derived from urban eddy covariance measurements. Environ. Pollut. 251:830–38
    [Google Scholar]
  101. 101. 
    Pallozzi E, Guidolotti G, Mattioni M, Calfapietra C. 2020. Particulate matter concentrations and fluxes within an urban park in Naples. Environ. Pollut. 266:115134
    [Google Scholar]
  102. 102. 
    Fares S, Savi F, Fusaro L, Conte A, Salvatori E et al. 2016. Particle deposition in a peri-urban Mediterranean forest. Environ. Pollut. 218:1278–86
    [Google Scholar]
  103. 103. 
    Ahlm L, Nilsson ED, Krejci R, Martensson EM, Vogt M, Artaxo P. 2009. Aerosol number fluxes over the Amazon rain forest during the wet season. Atmos. Chem. Phys. 9:9381–400
    [Google Scholar]
  104. 104. 
    Chamberlain A. 1967. Transport of Lycopodium spores and other small particles to rough surfaces. Proc. R. Soc. A Math. Phys. Eng. Sci. 296:45–70
    [Google Scholar]
  105. 105. 
    Clough W. 1975. The deposition of particles on moss and grass surfaces. Atmos. Environ. 9:1113–19
    [Google Scholar]
  106. 106. 
    Wesely M, Hicks B, Dannevik W, Frisella S, Husar R. 1977. An eddy-correlation measurement of particulate deposition from the atmosphere. Atmos. Environ. 11:561–63
    [Google Scholar]
  107. 107. 
    Garland J, Cox L. 1982. Deposition of small particles to grass. Atmos. Environ. 16:2699–702
    [Google Scholar]
  108. 108. 
    Dollard G, Unsworth M. 1983. Field measurements of turbulent fluxes of wind-driven fog drops to a grass surface. Atmos. Environ. 17:775–80
    [Google Scholar]
  109. 109. 
    Katen PC, Hubbe JM. 1985. An evaluation of optical particle counter measurements of the dry deposition of atmospheric aerosol particles. J. Geophys. Res. Atmos. 90:2145–60
    [Google Scholar]
  110. 110. 
    Wesely M, Cook D, Hart R, Speer R. 1985. Measurements and parameterization of particulate sulfur dry deposition over grass. J. Geophys. Res. Atmos. 90:2131–43
    [Google Scholar]
  111. 111. 
    Hicks B, Wesely M, Coulter R, Hart R, Durham J et al. 1986. An experimental study of sulfur and NOX fluxes over grassland. Bound. Layer Meteorol. 34:103–21
    [Google Scholar]
  112. 112. 
    Gallagher M, Choularton T, Morse A, Fowler D. 1988. Measurements of the size dependence of cloud droplet deposition at a hill site. Q. J. R. Meteorol. Soc. 114:1291–303
    [Google Scholar]
  113. 113. 
    Fowler D, Morse A, Gallagher M, Choularton T. 1990. Measurements of cloud water deposition on vegetation using a lysimeter and a flux gradient technique. Tellus B Chem. Phys. Meteorol. 42:285–93
    [Google Scholar]
  114. 114. 
    Allen A, Harrison R, Nicholson K. 1991. Dry deposition of fine aerosol to a short grass surface. Atmos. Environ. A. 25:2671–76
    [Google Scholar]
  115. 115. 
    Nemitz E, Gallagher MW, Duyzer JH, Fowler D. 2002. Micrometeorological measurements of particle deposition velocities to moorland vegetation. Q. J. R. Meteorol. Soc. 128:2281–300
    [Google Scholar]
  116. 116. 
    Vong RJ, Vickers D, Covert DS. 2004. Eddy correlation measurements of aerosol deposition to grass. Tellus B Chem. Phys. Meteorol. 56:105–17
    [Google Scholar]
  117. 117. 
    Connan O, Pellerin G, Maro D, Damay P, Hébert D et al. 2018. Dry deposition velocities of particles on grass: field experimental data and comparison with models. J. Aerosol Sci. 126:58–67
    [Google Scholar]
  118. 118. 
    Höfken KD, Gravenhorst G. 1982. Deposition of atmospheric aerosol particles to beech- and spruce forest. Deposition of Atmospheric Pollutants: Proceedings of a Colloquium Held at Oberursel/Taunus, West Germany, November 9–11, 1981 H-W Georgii, J Pankrath 191–94 Dordrecht, Neth.: Springer
    [Google Scholar]
  119. 119. 
    Grosch S, Schmitt G. 1988. Experimental investigations on the deposition of trace elements in forest areas. Environmental Meteorology: Proceedings of an International Symposium Held in Wurzburg, F.R.G., September 29–October 1, 1987 K Grafen 201–16 Dordrecht, Neth: D. Reidel Publ.
    [Google Scholar]
  120. 120. 
    Waraghai A, Gravenhorst G. 1989. Dry deposition of atmospheric particles to an old spruce stand. Proceedings of the Meeting on Mechanisms and Effects of Pollutant-Transfer into Forests, Held in Oberurse/Taunus, F.R.G., November 24–25, 1988 H-W Georgii 77–86 Dordrecht, Neth: Kluwer Acad. Publ.
    [Google Scholar]
  121. 121. 
    Lorenz R, Murphy C. 1989. Dry deposition of particles to a pine plantation. Bound. Layer Meteorol. 46:355–66
    [Google Scholar]
  122. 122. 
    Gallagher M, Beswick K, Duyzer J, Westrate H, Choularton T, Hummelshøj P. 1997. Measurements of aerosol fluxes to Speulder forest using a micrometeorological technique. Atmos. Environ. 31:359–73
    [Google Scholar]
  123. 123. 
    Held A, Nowak A, Wiedensohler A, Klemm O. 2006. Field measurements and size-resolved model simulations of turbulent particle transport to a forest canopy. J. Aerosol Sci. 37:786–98
    [Google Scholar]
  124. 124. 
    Pryor S. 2006. Size-resolved particle deposition velocities of sub-100 nm diameter particles over a forest. Atmos. Environ. 40:6192–200
    [Google Scholar]
  125. 125. 
    Grönholm T, Launiainen S, Ahlm L, Mårtensson E, Kulmala M et al. 2009. Aerosol particle dry deposition to canopy and forest floor measured by two-layer eddy covariance system. J. Geophys. Res. Atmos. 114:D04202
    [Google Scholar]
  126. 126. 
    Gordon M, Staebler RM, Liggio J, Vlasenko A, Li SM, Hayden K. 2011. Aerosol flux measurements above a mixed forest at Borden, Ontario. Atmos. Chem. Phys. 11:6773–86
    [Google Scholar]
  127. 127. 
    Zhang J, Shao Y, Huang N. 2014. Measurements of dust deposition velocity in a wind-tunnel experiment. Atmos. Chem. Phys. 14:8869–82
    [Google Scholar]
  128. 128. 
    Deventer MJ, Held A, El-Madany TS, Klemm O. 2015. Size-resolved eddy covariance fluxes of nucleation to accumulation mode aerosol particles over a coniferous forest. Agric. Forest Meteorol. 214–215:328–40
    [Google Scholar]
  129. 129. 
    Möller U, Schumann G. 1970. Mechanisms of transport from the atmosphere to the Earth's surface. J. Geophys. Res. 75:3013–19
    [Google Scholar]
  130. 130. 
    Sehmel G, Sutter S. 1974. Particle deposition rates on a water surface as a function of particle diameter and air velocity Rep. BNWL-1850, Battelle Pac. Northwest Labs, Richland, WA
    [Google Scholar]
  131. 131. 
    Larsen SE, Edson J, Hummelshøj P, Jensen NO, De Leeuw G, Mestayer P. 1995. Dry deposition of particles to ocean surfaces. Ophelia 42:193–204
    [Google Scholar]
  132. 132. 
    Gustafsson MER, Franzén LG. 1996. Dry deposition and concentration of marine aerosols in a coastal area, SW Sweden. Atmos. Environ. 30:977–89
    [Google Scholar]
  133. 133. 
    Zufall MJ, Davidson CI, Caffrey PF, Ondov JM. 1998. Airborne concentrations and dry deposition fluxes of particulate species to surrogate surfaces deployed in southern Lake Michigan. Environ. Sci. Technol. 32:1623–28
    [Google Scholar]
  134. 134. 
    Caffrey PF, Ondov JM, Zufall MJ, Davidson CI. 1998. Determination of size-dependent dry particle deposition velocities with multiple intrinsic elemental tracers. Environ. Sci. Technol. 32:1615–22
    [Google Scholar]
  135. 135. 
    Petelski T. 2003. Marine aerosol fluxes over open sea calculated from vertical concentration gradients. J. Aerosol Sci. 34:359–71
    [Google Scholar]
  136. 136. 
    Pryor S, Gallagher M, Sievering H, Larsen SE, Barthelmie RJ et al. 2008. A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus B Chem. Phys. Meteorol. 60:42–75
    [Google Scholar]
  137. 137. 
    Zhang G, Zhang J, Liu S. 2007. Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over Yellow Sea and East China Sea. J. Atmos. Chem. 57:41–57
    [Google Scholar]
  138. 138. 
    Shi J-H, Zhang J, Gao H-W, Tan S-C, Yao X-H, Ren J-L. 2013. Concentration, solubility and deposition flux of atmospheric particulate nutrients over the Yellow Sea. Deep Sea Res. II Top. Stud. Oceanogr. 97:43–50
    [Google Scholar]
  139. 139. 
    Calec N, Boyer P, Anselmet F, Amielh M, Branger H, Mailliat A. 2017. Dry deposition velocities of submicron aerosols on water surfaces: laboratory experimental data and modelling approach. J. Aerosol Sci. 105:179–92
    [Google Scholar]
  140. 140. 
    Qi J, Yu Y, Yao X, Gang Y, Gao H. 2020. Dry deposition fluxes of inorganic nitrogen and phosphorus in atmospheric aerosols over the Marginal Seas and Northwest Pacific. Atmos. Res. 245:105076
    [Google Scholar]
  141. 141. 
    Sehmel GA. 1973. Particle eddy diffusivities and deposition velocities for isothermal flow and smooth surfaces. J. Aerosol Sci. 4:2125–38
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090519-034936
Loading
/content/journals/10.1146/annurev-physchem-090519-034936
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error