1932

Abstract

Chemical manifestations of strong light–matter coupling have recently been a subject of intense experimental and theoretical studies. Here we review the present status of this field. Section 1 is an introduction to molecular polaritonics and to collective response aspects of light–matter interactions. Section 2 provides an overview of the key experimental observations of these effects, while Section 3 describes our current theoretical understanding of the effect of strong light–matter coupling on chemical dynamics. A brief outline of applications to energy conversion processes is given in Section 4. Pending technical issues in the construction of theoretical approaches are briefly described in Section 5. Finally, the summary in Section 6 outlines the paths ahead in this exciting endeavor.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090519-042621
2022-04-20
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-090519-042621.html?itemId=/content/journals/10.1146/annurev-physchem-090519-042621&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Novotny L. 2010. Strong coupling, energy splitting, and level crossings: a classical perspective. Am. J. Phys. 78:1199–202
    [Google Scholar]
  2. 2. 
    Sukharev M, Nitzan A. 2017. Optics of exciton-plasmon nanomaterials. J. Phys. Cond. Mat. 29:443003
    [Google Scholar]
  3. 3. 
    Bricks JL, Slominskii YL, Panas ID, Demchenko AP 2017. Fluorescent J-aggregates of cyanine dyes: basic research and applications review. Methods Appl. Fluoresc. 6:012001
    [Google Scholar]
  4. 4. 
    Dicke RH. 1954. Coherence in spontaneous radiation processes. Phys. Rev. 93:99–110
    [Google Scholar]
  5. 5. 
    Gross M, Haroche S. 1982. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93:301–96
    [Google Scholar]
  6. 6. 
    Lim S-H, Bjorklund TG, Spano FC, Bardeen CJ. 2004. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92:107402
    [Google Scholar]
  7. 7. 
    Tavis M, Cummings FW. 1968. Exact solution for an N-molecule—radiation-field Hamiltonian. Phys. Rev. 170:379–84
    [Google Scholar]
  8. 8. 
    Tavis M, Cummings FW. 1969. Approximate solutions for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 188:692–95
    [Google Scholar]
  9. 9. 
    Jaynes ET, Cummings FW. 1963. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51:89–109
    [Google Scholar]
  10. 10. 
    Shore BW, Knight PL. 1993. The Jaynes-Cummings model. J. Mod. Opt. 40:1195–238
    [Google Scholar]
  11. 11. 
    Flick J, Appel H, Ruggenthaler M, Rubio A 2017. Cavity Born–Oppenheimer approximation for correlated electron–nuclear-photon systems. J. Chem. Theory Comput. 13:1616–25
    [Google Scholar]
  12. 12. 
    Fábri C, Halász GJ, Cederbaum LS, Vibók Á. 2021. Born–Oppenheimer approximation in optical cavities: from success to breakdown. Chem. Sci. 12:1251–58
    [Google Scholar]
  13. 13. 
    Shalabney A, George J, Hutchison J, Pupillo G, Genet C, Ebbesen TW. 2015. Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun. 6:5981
    [Google Scholar]
  14. 14. 
    Long JP, Simpkins BS. 2015. Coherent coupling between a molecular vibration and Fabry-Perot optical cavity to give hybridized states in the strong coupling limit. ACS Photonics 2:130–36
    [Google Scholar]
  15. 15. 
    George J, Shalabney A, Hutchison JA, Genet C, Ebbesen TW. 2015. Liquid-phase vibrational strong coupling. J. Phys. Chem. Lett. 6:1027–31
    [Google Scholar]
  16. 16. 
    George J, Chervy T, Shalabney A, Devaux E, Hiura H et al. 2016. Multiple Rabi splittings under ultrastrong vibrational coupling. Phys. Rev. Lett. 117:153601
    [Google Scholar]
  17. 17. 
    Simpkins BS, Fears KP, Dressick WJ, Spann BT, Dunkelberger AD, Owrutsky JC. 2015. Spanning strong to weak normal mode coupling between vibrational and Fabry-Perot cavity modes through tuning of vibrational absorption strength. ACS Photonics 2:1460–67
    [Google Scholar]
  18. 18. 
    Casey SR, Sparks JR. 2016. Vibrational strong coupling of organometallic complexes. J. Phys. Chem. C 120:28138–43
    [Google Scholar]
  19. 19. 
    Vergauwe RMA, George J, Chervy T, Hutchison JA, Shalabney A et al. 2016. Quantum strong coupling with protein vibrational modes. J. Phys. Chem. Lett. 7:4159–64
    [Google Scholar]
  20. 20. 
    Erwin JD, Smotzer M, Coe JV. 2019. Effect of strongly coupled vibration–cavity polaritons on the bulk vibrational states within a wavelength-scale cavity. J. Phys. Chem. B 123:1302–6
    [Google Scholar]
  21. 21. 
    Dunkelberger AD, Spann BT, Fears KP, Simpkins BS, Owrutsky JC. 2016. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons. Nat. Commun. 7:13504
    [Google Scholar]
  22. 22. 
    Ahn W, Vurgaftman I, Dunkelberger AD, Owrutsky JC, Simpkins BS. 2018. Vibrational strong coupling controlled by spatial distribution of molecules within the optical cavity. ACS Photonics 5:158–66
    [Google Scholar]
  23. 23. 
    Dunkelberger AD, Davidson RB, Ahn W, Simpkins BS, Owrutsky JC. 2018. Ultrafast transmission modulation and recovery via vibrational strong coupling. J. Phys. Chem. A 122:965–71
    [Google Scholar]
  24. 24. 
    Xiang B, Ribeiro RF, Dunkelberger AD, Wang J, Li Y et al. 2018. Two-dimensional infrared spectroscopy of vibrational polaritons. PNAS 115:4845
    [Google Scholar]
  25. 25. 
    Dunkelberger AD, Grafton AB, Vurgaftman I, Soykal OO, Reinecke TL et al. 2019. Saturable absorption in solution-phase and cavity-coupled tungsten hexacarbonyl. ACS Photonics 6:2719–25
    [Google Scholar]
  26. 26. 
    Grafton AB, Dunkelberger AD, Simpkins BS, Triana JF, Hernández FJ et al. 2021. Excited-state vibration-polariton transitions and dynamics in nitroprusside. Nat. Commun. 12:214
    [Google Scholar]
  27. 27. 
    Feist J, Garcia-Vidal FJ. 2015. Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114:196402
    [Google Scholar]
  28. 28. 
    Frisk Kockum A, Miranowicz A, De Liberato S, Savasta S, Nori F. 2019. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1:19–40
    [Google Scholar]
  29. 29. 
    Cohen-Tannoudji C, Dupont-Roc J, Grynberg G. 1997. Photons and Atoms: Introduction to Quantum Electrodynamics New York: John Wiley & Sons
    [Google Scholar]
  30. 30. 
    Vukics A, Grießer T, Domokos P. 2014. Elimination of the A-square problem from cavity QED. Phys. Rev. Lett. 112:073601
    [Google Scholar]
  31. 31. 
    Di Stefano O, Settineri A, Macrì V, Garziano L, Stassi R et al. 2019. Resolution of gauge ambiguities in ultrastrong-coupling cavity quantum electrodynamics. Nat. Phys. 15:803–8
    [Google Scholar]
  32. 32. 
    Stokes A, Nazir A. 2021. Implications of gauge-freedom for nonrelativistic quantum electrodynamics. arXiv:2009.10662 [quant-ph]
  33. 33. 
    Settineri A, Di Stefano O, Zueco D, Hughes S, Savasta S, Nori F 2021. Gauge freedom, quantum measurements, and time-dependent interactions in cavity QED. Phys. Rev. Res. 3:023079
    [Google Scholar]
  34. 34. 
    Schäfer C, Ruggenthaler M, Rokaj V, Rubio A 2020. Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics. ACS Photonics 7:975–90
    [Google Scholar]
  35. 35. 
    Stokes A, Nazir A. 2019. Gauge ambiguities imply Jaynes-Cummings physics remains valid in ultrastrong coupling QED. Nat. Commun. 10:499
    [Google Scholar]
  36. 36. 
    Taylor MAD, Mandal A, Zhou W, Huo P. 2020. Resolution of gauge ambiguities in molecular cavity quantum electrodynamics. Phys. Rev. Lett. 125:123602
    [Google Scholar]
  37. 37. 
    Feist J, Fernández-Domínguez AI, García-Vidal FJ. 2021. Macroscopic QED for quantum nanophotonics: emitter-centered modes as a minimal basis for multiemitter problems. Nanophotonics 10:477–89
    [Google Scholar]
  38. 38. 
    Törmä P, Barnes WL. 2015. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78:013901
    [Google Scholar]
  39. 39. 
    Ruggenthaler M, Tancogne-Dejean N, Flick J, Appel H, Rubio A. 2018. From a quantum-electrodynamical light–matter description to novel spectroscopies. Nat. Rev. Chem. 2:0118
    [Google Scholar]
  40. 40. 
    Herrera F, Owrutsky J. 2020. Molecular polaritons for controlling chemistry with quantum optics. J. Chem. Physics 152:100902
    [Google Scholar]
  41. 41. 
    Pascual JG. 2020. Polaritonic Chemistry: Manipulating Molecular Structure Through Strong LightMatter Coupling Cham., Switz: Springer
    [Google Scholar]
  42. 42. 
    Kéna-Cohen S, Yuen-Zhou J. 2019. Polariton chemistry: action in the dark. ACS Central Sci 5:386–88
    [Google Scholar]
  43. 43. 
    Climent C, Garcia-Vidal FJ, Feist J 2021. Cavity-modified chemistry: towards vacuum-field catalysis. Effects of Electric Fields on Structure and Reactivity: New Horizons in Chemistry S Shaik, T Stuyver 343–93 Theor. Comput. Chem. Ser Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  44. 43a. 
    Dunkelberger AD, Simpkins BS, Vurgaftman I, Owrutsky JC 2022. Vibration-cavity polariton chemistry and dynamics. Annu. Rev. Phys. Chem 73:42951
    [Google Scholar]
  45. 44. 
    Agranovich VM, Litinskaia M, Lidzey DG. 2003. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67:085311
    [Google Scholar]
  46. 45. 
    Deng H, Haug H, Yamamoto Y. 2010. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82:1489–537
    [Google Scholar]
  47. 46. 
    Keeling J, Kéna-Cohen S. 2020. Bose–Einstein condensation of exciton-polaritons in organic microcavities. Annu. Rev. Phys. Chem. 71:435–59
    [Google Scholar]
  48. 47. 
    Hugall JT, Singh A, van Hulst NF. 2018. Plasmonic cavity coupling. ACS Photonics 5:43–53
    [Google Scholar]
  49. 48. 
    Campion A, Kambhampati P. 1998. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27:241–50
    [Google Scholar]
  50. 49. 
    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B et al. 2020. Present and future of surface-enhanced Raman scattering. ACS Nano 14:28–117
    [Google Scholar]
  51. 50. 
    Santhosh K, Bitton O, Chuntonov L, Haran G 2016. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7:ncomms11823
    [Google Scholar]
  52. 51. 
    Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA et al. 2016. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535:127–30
    [Google Scholar]
  53. 52. 
    Groß H, Hamm JM, Tufarelli T, Hess O, Hecht B. 2018. Near-field strong coupling of single quantum dots. Sci. Adv. 4:eaar4906
    [Google Scholar]
  54. 53. 
    Kongsuwan N, Demetriadou A, Chikkaraddy R, Benz F, Turek VA et al. 2018. Suppressed quenching and strong-coupling of Purcell-enhanced single-molecule emission in plasmonic nanocavities. ACS Photonics 5:186–91
    [Google Scholar]
  55. 54. 
    a la Guillaume CB, Bonnot A, Debever JM. 1970. Luminescence from polaritons. Phys. Rev. Lett. 24:1235–38
    [Google Scholar]
  56. 55. 
    Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y. 1992. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69:3314–17
    [Google Scholar]
  57. 56. 
    Khitrova G, Gibbs HM, Jahnke F, Kira M, Koch SW 1999. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 71:1591–639
    [Google Scholar]
  58. 57. 
    Lidzey DG, Bradley DDC, Virgili T, Armitage A, Skolnick MS, Walker S. 1999. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82:3316–19
    [Google Scholar]
  59. 58. 
    Lidzey DG 2003. Strong optical coupling in organic semiconductor microcavities. Thin Films and Nanostructures, Vol. 31 VM Agranovich, GF Bassani 355–402 Cambridge, MA: Academic
    [Google Scholar]
  60. 59. 
    Hobson PA, Barnes WL, Lidzey DG, Gehring GA, Whittaker DM et al. 2002. Strong exciton–photon coupling in a low-Q all-metal mirror microcavity. Appl. Phys. Lett. 81:3519–21
    [Google Scholar]
  61. 60. 
    Schwartz T, Hutchison JA, Genet C, Ebbesen TW. 2011. Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett. 106:196405
    [Google Scholar]
  62. 61. 
    Dintinger J, Klein S, Bustos F, Barnes WL, Ebbesen TW. 2005. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71:035424
    [Google Scholar]
  63. 62. 
    Vasa P, Lienau C. 2018. Strong light–matter interaction in quantum emitter/metal hybrid nanostructures. ACS Photonics 5:2–23
    [Google Scholar]
  64. 63. 
    Beane G, Brown BS, Johns P, Devkota T, Hartland GV 2018. Strong exciton–plasmon coupling in silver nanowire nanocavities. J. Phys. Chem. Lett. 9:1676–81
    [Google Scholar]
  65. 64. 
    Bisht A, Cuadra J, Wersäll M, Canales A, Antosiewicz TJ, Shegai T. 2019. Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems. Nano Lett. 19:189–96
    [Google Scholar]
  66. 65. 
    Melnikau D, Govyadinov AA, Sánchez-Iglesias A, Grzelczak M, Nabiev IR et al. 2019. Double Rabi splitting in a strongly coupled system of core–shell Au@Ag nanorods and J-aggregates of multiple fluorophores. J. Phys. Chem. Lett. 10:6137–43
    [Google Scholar]
  67. 66. 
    Norris TB, Rhee JK, Sung CY, Arakawa Y, Nishioka M, Weisbuch C. 1994. Time-resolved vacuum Rabi oscillations in a semiconductor quantum microcavity. Phys. Rev. B 50:14663–66
    [Google Scholar]
  68. 67. 
    Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E et al. 1996. Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76:1800–3
    [Google Scholar]
  69. 68. 
    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M et al. 2013. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics 7:128–32
    [Google Scholar]
  70. 69. 
    Vasa P. 2020. Exciton-surface plasmon polariton interactions. Adv. Phys. X 5:1749884
    [Google Scholar]
  71. 70. 
    Kéna-Cohen S, Maier SA, Bradley DDC. 2013. Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1:827–33
    [Google Scholar]
  72. 71. 
    Gambino S, Mazzeo M, Genco A, Di Stefano O, Savasta S et al. 2014. Exploring light–matter interaction phenomena under ultrastrong coupling regime. ACS Photonics 1:1042–48
    [Google Scholar]
  73. 72. 
    Thomas PA, Tan WJ, Fernandez HA, Barnes WL. 2020. A new signature for strong light-matter coupling using spectroscopic ellipsometry. Nano Lett. 20:6412–19
    [Google Scholar]
  74. 73. 
    Damari R, Weinberg O, Krotkov D, Demina N, Akulov K et al. 2019. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nat. Commun. 10:3248
    [Google Scholar]
  75. 74. 
    Imran I, Nicolai GE, Stavinski ND, Sparks JR. 2019. Tuning vibrational strong coupling with co-resonators. ACS Photonics 6:2405–12
    [Google Scholar]
  76. 75. 
    Takele WM, Wackenhut F, Piatkowski L, Meixner AJ, Waluk J. 2020. Multimode vibrational strong coupling of methyl salicylate to a Fabry–Pérot microcavity. J. Phys. Chem. B 124:5709–16
    [Google Scholar]
  77. 76. 
    Menghrajani KS, Nash GR, Barnes WL. 2019. Vibrational strong coupling with surface plasmons and the presence of surface plasmon stop bands. ACS Photonics 6:2110–16
    [Google Scholar]
  78. 77. 
    Brawley ZT, Storm SD, Contreras Mora DA, Pelton M, Sheldon M 2021. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films. J. Chem. Phys. 154:104305
    [Google Scholar]
  79. 78. 
    Yoo D, de Léon-Pérez F, Pelton M, Lee I-H, Mohr DA et al. 2021. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photonics 15:125–30
    [Google Scholar]
  80. 79. 
    Dayal G, Morichika I, Ashihara S 2021. Vibrational strong coupling in subwavelength nanogap patch antenna at the single resonator level. J. Phys. Chem. Lett. 12:3171–75
    [Google Scholar]
  81. 80. 
    Zhong X, Chervy T, Wang S, George J, Thomas A et al. 2016. Non-radiative energy transfer mediated by hybrid light-matter states. Angew. Chem. Int. Ed. 55:6202–6
    [Google Scholar]
  82. 81. 
    Zhong X, Chervy T, Zhang L, Thomas A, George J et al. 2017. Energy transfer between spatially separated entangled molecules. Angew. Chem. Int. Ed. 56:9034–38
    [Google Scholar]
  83. 82. 
    Rozenman GG, Akulov K, Golombek A, Schwartz T 2018. Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy. ACS Photonics 5:105–10
    [Google Scholar]
  84. 83. 
    Xiang B, Ribeiro RF, Du M, Chen L, Yang Z et al. 2020. Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling. Science 368:665
    [Google Scholar]
  85. 84. 
    Georgiou K, Jayaprakash R, Othonos A, Lidzey D 2021. Ultralong-range polariton-assisted energy transfer in organic microcavities. Angew. Chem. Int. Ed. 60:16661–67
    [Google Scholar]
  86. 85. 
    Schachenmayer J, Genes C, Tignone E, Pupillo G 2015. Cavity-enhanced transport of excitons. Phys. Rev. Lett. 114:196403
    [Google Scholar]
  87. 86. 
    Schäfer C, Ruggenthaler M, Appel H, Rubio A. 2019. Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry. PNAS 116:4883–92
    [Google Scholar]
  88. 87. 
    Aeschlimann M, Brixner T, Cinchetti M, Frisch B, Hecht B et al. 2017. Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas. Light Sci. Appl. 6:e17111
    [Google Scholar]
  89. 88. 
    Du M, Martínez-Martínez LA, Ribeiro RF, Hu Z, Menon VM, Yuen-Zhou J. 2018. Theory for polariton-assisted remote energy transfer. Chem. Sci. 9:6659–69
    [Google Scholar]
  90. 89. 
    Rustomji K, Dubois M, Kuhlmey B, de Sterke CM, Enoch S et al. 2019. Direct imaging of the energy-transfer enhancement between two dipoles in a photonic cavity. Phys. Rev. X 9:011041
    [Google Scholar]
  91. 90. 
    Orgiu E, George J, Hutchison JA, Devaux E, Dayen JF et al. 2015. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14:1123–29
    [Google Scholar]
  92. 91. 
    Krainova N, Grede AJ, Tsokkou D, Banerji N, Giebink NC. 2020. Polaron photoconductivity in the weak and strong light-matter coupling regime. Phys. Rev. Lett. 124:177401
    [Google Scholar]
  93. 92. 
    Halbhuber M, Mornhinweg J, Zeller V, Ciuti C, Bougeard D et al. 2020. Non-adiabatic stripping of a cavity field from electrons in the deep-strong coupling regime. Nat. Photonics 14:675–79
    [Google Scholar]
  94. 93. 
    Hagenmüller D, Schachenmayer J, Schütz S, Genes C, Pupillo G. 2017. Cavity-enhanced transport of charge. Phys. Rev. Lett. 119:223601
    [Google Scholar]
  95. 94. 
    Hagenmüller D, Schütz S, Schachenmayer J, Genes C, Pupillo G. 2018. Cavity-assisted mesoscopic transport of fermions: coherent and dissipative dynamics. Phys. Rev. B 97:205303
    [Google Scholar]
  96. 95. 
    Pang Y, Thomas A, Nagarajan K, Vergauwe RMA, Joseph K et al. 2020. On the role of symmetry in vibrational strong coupling: the case of charge-transfer complexation. Angew. Chem. Int. Ed. 59:10436–40
    [Google Scholar]
  97. 96. 
    Yang C, Wei X, Sheng J, Wu H. 2020. Phonon heat transport in cavity-mediated optomechanical nanoresonators. Nat. Commun. 11:4656
    [Google Scholar]
  98. 97. 
    Persson BNJ, Kato T, Ueba H, Volokitin AI. 2007. Vibrational heating of molecules adsorbed on insulating surfaces using localized photon tunneling. Phys. Rev. B 75:193404
    [Google Scholar]
  99. 98. 
    Kim K, Song B, Fernández-Hurtado V, Lee W, Jeong W et al. 2015. Radiative heat transfer in the extreme near field. Nature 528:387–91
    [Google Scholar]
  100. 99. 
    Delor M, Scattergood PA, Sazanovich IV, Parker AW, Greetham GM et al. 2014. Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation. Science 346:1492–95
    [Google Scholar]
  101. 100. 
    Delor M, Keane T, Scattergood PA, Sazanovich IV, Greetham GM et al. 2015. On the mechanism of vibrational control of light-induced charge transfer in donor-bridge-acceptor assemblies. Nat. Chem. 7:689–95
    [Google Scholar]
  102. 101. 
    Sukegawa J, Schubert C, Zhu X, Tsuji H, Guldi DM, Nakamura E. 2014. Electron transfer through rigid organic molecular wires enhanced by electronic and electron–vibration coupling. Nat. Chem. 6:899–905
    [Google Scholar]
  103. 102. 
    Skourtis SS, Waldeck DH, Beratan DN. 2004. Inelastic electron tunneling erases coupling-pathway interferences. J. Phys. Chem. B 108:15511–18
    [Google Scholar]
  104. 103. 
    Carias H, Beratan DN, Skourtis SS. 2011. Floquet analysis for vibronically modulated electron tunneling. J. Phys. Chem. B 115:5510–18
    [Google Scholar]
  105. 104. 
    Ballmann S, Härtle R, Coto PB, Elbing M, Mayor M et al. 2012. Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions. Phys. Rev. Lett. 109:056801
    [Google Scholar]
  106. 105. 
    Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J et al. 2014. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10:676–82
    [Google Scholar]
  107. 106. 
    Wang T, Kafle TR, Kattel B, Chan W-L. 2016. Observation of an ultrafast exciton hopping channel in organic semiconducting crystals. J. Phys. Chem. C 120:7491–99
    [Google Scholar]
  108. 107. 
    Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB. 2013. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9:113–18
    [Google Scholar]
  109. 108. 
    Tiwari V, Peters WK, Jonas DM. 2013. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. PNAS 110:1203
    [Google Scholar]
  110. 109. 
    O'Reilly EJ, Olaya-Castro A. 2014. Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat. Commun. 5:3012
    [Google Scholar]
  111. 110. 
    Nelson TR, Ondarse-Alvarez D, Oldani N, Rodriguez-Hernandez B, Alfonso-Hernandez L et al. 2018. Coherent exciton-vibrational dynamics and energy transfer in conjugated organics. Nat. Commun. 9:2316
    [Google Scholar]
  112. 111. 
    Goldberg O, Meir Y, Dubi Y 2018. Vibration-assisted and vibration-hampered excitonic quantum transport. J. Phys. Chem. Lett. 9:3143–48
    [Google Scholar]
  113. 112. 
    Abramavicius D, Valkunas L. 2016. Role of coherent vibrations in energy transfer and conversion in photosynthetic pigment–protein complexes. Photosynth. Res. 127:33–47
    [Google Scholar]
  114. 113. 
    Hua XM, Gersten JI, Nitzan A. 1985. Theory of energy transfer between molecules near solid state particles. J. Chem. Phys. 83:3650–59
    [Google Scholar]
  115. 114. 
    Pustovit VN, Shahbazyan TV. 2011. Resonance energy transfer near metal nanostructures mediated by surface plasmons. Phys. Rev. B 83:085427
    [Google Scholar]
  116. 115. 
    Pustovit VN, Urbas AM, Shahbazyan TV. 2014. Energy transfer in plasmonic systems. J. Opt. 16:114015
    [Google Scholar]
  117. 116. 
    Hsu L-Y, Ding W, Schatz GC. 2017. Plasmon-coupled resonance energy transfer. J. Phys. Chem. Lett. 8:2357–67
    [Google Scholar]
  118. 117. 
    Wu JS, Lin YC, Shen YL, Hsu LY. 2018. Characteristic distance of resonance energy transfer coupled with surface plasmon polaritons. J. Phys. Chem. Lett. 9:7032–39
    [Google Scholar]
  119. 118. 
    Hutchison JA, Liscio A, Schwartz T, Canaguier-Durand A, Genet C et al. 2013. Tuning the work-function via strong coupling. Adv. Mater. 25:2481–85
    [Google Scholar]
  120. 119. 
    Wang K, Seidel M, Nagarajan K, Chervy T, Genet C, Ebbesen T. 2021. Large optical nonlinearity enhancement under electronic strong coupling. Nat. Commun. 12:1486
    [Google Scholar]
  121. 120. 
    Joseph K, Kushida S, Smarsly E, Ihiawakrim D, Thomas A et al. 2021. Supramolecular assembly of conjugated polymers under vibrational strong coupling. Angew. Chem. Int. Ed. 60:19665–70
    [Google Scholar]
  122. 121. 
    Hirai K, Ishikawa H, Chervy T, Hutchison J, Uji-i H 2021. Selective crystallization via vibrational strong coupling. ChemRxiv. https://doi.org/10.26434/chemrxiv.13191617.v2
    [Crossref]
  123. 122. 
    Pietron JJ, Fears KP, Owrutsky JC, Simpkins BS. 2020. Electrochemical modulation of strong vibration–cavity coupling. ACS Photonics 7:165–73
    [Google Scholar]
  124. 123. 
    Xiang B, Ribeiro RF, Li Y, Dunkelberger AD, Simpkins BB et al. 2019. Manipulating optical nonlinearities of molecular polaritons by delocalization. Sci. Adv. 5:eaax5196
    [Google Scholar]
  125. 124. 
    Xiang B, Ribeiro RF, Chen L, Wang J, Du M et al. 2019. State-selective polariton to dark state relaxation dynamics. J. Phys. Chem. A 123:5918–27
    [Google Scholar]
  126. 125. 
    Ruggenthaler M, Flick J, Pellegrini C, Appel H, Tokatly IV, Rubio A. 2014. Quantum-electrodynamical density-functional theory: bridging quantum optics and electronic-structure theory. Phys. Rev. A 90:012508
    [Google Scholar]
  127. 126. 
    Flick J, Ruggenthaler M, Appel H, Rubio A. 2015. Kohn–Sham approach to quantum electrodynamical density-functional theory: exact time-dependent effective potentials in real space. PNAS 112:15285–90
    [Google Scholar]
  128. 127. 
    Pellegrini C, Flick J, Tokatly IV, Appel H, Rubio A. 2015. Optimized effective potential for quantum electrodynamical time-dependent density functional theory. Phys. Rev. Lett. 115:093001
    [Google Scholar]
  129. 128. 
    Flick J, Ruggenthaler M, Appel H, Rubio A. 2017. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. PNAS 114:3026–34
    [Google Scholar]
  130. 129. 
    Schäfer C, Ruggenthaler M, Rubio A. 2018. Ab initio nonrelativistic quantum electrodynamics: bridging quantum chemistry and quantum optics from weak to strong coupling. Phys. Rev. A 98:043801
    [Google Scholar]
  131. 130. 
    Flick J, Narang P. 2018. Cavity-correlated electron-nuclear dynamics from first principles. Phys. Rev. Lett. 121:113002
    [Google Scholar]
  132. 131. 
    Flick J, Welakuh DM, Ruggenthaler M, Appel H, Rubio A. 2019. Light–matter response in non-relativistic quantum electrodynamics. ACS Photonics 6:2757–78
    [Google Scholar]
  133. 132. 
    Lacombe L, Hoffmann NM, Maitra NT. 2019. Exact potential energy surface for molecules in cavities. Phys. Rev. Lett. 123:083201
    [Google Scholar]
  134. 133. 
    Haugland TS, Ronca E, Kjønstad EF, Rubio A, Koch H. 2020. Coupled cluster theory for molecular polaritons: changing ground and excited states. Phys. Rev. X 10:041043
    [Google Scholar]
  135. 134. 
    Hoffmann NM, Lacombe L, Rubio A, Maitra NT. 2020. Effect of many modes on self-polarization and photochemical suppression in cavities. J. Chem. Phys. 153:104103
    [Google Scholar]
  136. 135. 
    Flick J, Narang P. 2020. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. J. Chem. Phys. 153:094116
    [Google Scholar]
  137. 136. 
    Haugland TS, Schäfer C, Ronca E, Rubio A, Koch H. 2021. Intermolecular interactions in optical cavities: an ab initio QED study. J. Chem. Phys. 154:094113
    [Google Scholar]
  138. 137. 
    Schäfer C, Flick J, Ronca E, Narang P, Rubio A 2021. Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity. arXiv.2104.12429 [quant.ph]
  139. 138. 
    Gersten JI, Nitzan A. 1985. Photophysics and photochemistry near surfaces and small particles. Surf. Sci. 158:165–89
    [Google Scholar]
  140. 139. 
    Clavero C. 2014. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8:95–103
    [Google Scholar]
  141. 140. 
    Shan H, Yu Y, Wang X, Luo Y, Zu S et al. 2019. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci. Appl. 8:9
    [Google Scholar]
  142. 141. 
    Luk HL, Feist J, Toppari JJ, Groenhof G. 2017. Multiscale molecular dynamics simulations of polaritonic chemistry. J. Chem. Theory Comput. 13:4324–35
    [Google Scholar]
  143. 142. 
    Groenhof G, Climent C, Feist J, Morozov D, Toppari JJ 2019. Tracking polariton relaxation with multiscale molecular dynamics simulations. J. Phys. Chem. Lett. 10:5476–83
    [Google Scholar]
  144. 143. 
    Tichauer RH, Feist J, Groenhof G. 2021. Multi-scale dynamics simulations of molecular polaritons: the effect of multiple cavity modes on polariton relaxation. J. Chem. Phys. 154:104112
    [Google Scholar]
  145. 144. 
    Hutchison JA, Schwartz T, Genet C, Devaux E, Ebbesen TW 2012. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51:1592–96
    [Google Scholar]
  146. 145. 
    Peters VN, Faruk MO, Asane J, Alexander R, Peters DA et al. 2019. Effect of strong coupling on photodegradation of the semiconducting polymer P3HT. Optica 6:318–25
    [Google Scholar]
  147. 146. 
    Munkhbat B, Wersäll M, Baranov DG, Antosiewicz TJ, Shegai T. 2018. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. Sci. Adv. 4:eaas9552
    [Google Scholar]
  148. 147. 
    Galego J, Garcia-Vidal FJ, Feist J. 2016. Suppressing photochemical reactions with quantized light fields. Nat. Commun. 7:13841
    [Google Scholar]
  149. 148. 
    Mandal A, Huo P. 2019. Investigating new reactivities enabled by polariton photochemistry. J. Phys. Chem. Lett. 10:5519–29
    [Google Scholar]
  150. 149. 
    Mandal A, Krauss TD, Huo PF. 2020. Polariton-mediated electron transfer via cavity quantum electrodynamics. J. Phys. Chem. B 124:6321–40
    [Google Scholar]
  151. 150. 
    Herrera F, Spano FC. 2016. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 116:238301
    [Google Scholar]
  152. 151. 
    Galego J, Garcia-Vidal FJ, Feist J. 2017. Many-molecule reaction triggered by a single photon in polaritonic chemistry. Phys. Rev. Lett. 119:136001
    [Google Scholar]
  153. 152. 
    Mauro L, Caicedo K, Jonusauskas G, Avriller R 2021. Charge-transfer chemical reactions in nanofluidic Fabry-Pérot cavities. Phys. Rev. B 103:165412
    [Google Scholar]
  154. 153. 
    Thomas A, George J, Shalabney A, Dryzhakov M, Varma SJ et al. 2016. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew. Chem. Int. Ed. 55:11462–66
    [Google Scholar]
  155. 154. 
    Thomas A, Lethuillier-Karl L, Nagarajan K, Vergauwe RMA, George J et al. 2019. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363:615
    [Google Scholar]
  156. 155. 
    Lather J, Bhatt P, Thomas A, Ebbesen TW, George J 2019. Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules. Angew. Chem. Int. Ed. 58:10635–38
    [Google Scholar]
  157. 156. 
    Vergauwe RMA, Thomas A, Nagarajan K, Shalabney A, George J et al. 2019. Modification of enzyme activity by vibrational strong coupling of water. Angew. Chem. Int. Ed. 58:15324–28
    [Google Scholar]
  158. 157. 
    Thomas A, Jayachandran A, Lethuillier-Karl L, Vergauwe RMA, Nagarajan K et al. 2020. Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics 9:249–55
    [Google Scholar]
  159. 158. 
    Sau A, Nagarajan K, Patrahau B, Lethuillier-Karl L, Vergauwe R et al. 2020. Modifying Woodward-Hoffmann stereoselectivity under vibrational strong coupling. Angew. Chem. Int. Ed. 133:5776–81
    [Google Scholar]
  160. 159. 
    Lather J, George J. 2021. Improving enzyme catalytic efficiency by co-operative vibrational strong coupling of water. J. Phys. Chem. Lett. 12:379–84
    [Google Scholar]
  161. 160. 
    Hidefumi H, Atef S, Jino G. 2019. Vacuum-field catalysis: accelerated reactions by vibrational ultra strong coupling. ChemRxiv. http://doi.org/10.26434/chemrxiv.7234721.v5
    [Crossref]
  162. 161. 
    Imperatore MV, Asbury JB, Giebink NC. 2021. Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime. J. Chem. Phys. 154:191103
    [Google Scholar]
  163. 162. 
    Hirai K, Hutchison JA, Uji-i H. 2020. Recent progress in vibropolaritonic chemistry. ChemPlusChem 85:1981–88
    [Google Scholar]
  164. 163. 
    Galego J, Garcia-Vidal FJ, Feist J. 2015. Cavity-induced modifications of molecular structure in the strong-coupling regime. Phys. Rev. X 5:041022
    [Google Scholar]
  165. 164. 
    Wu N, Feist J, Garcia-Vidal FJ. 2016. When polarons meet polaritons: exciton-vibration interactions in organic molecules strongly coupled to confined light fields. Phys. Rev. B 94:195409
    [Google Scholar]
  166. 165. 
    Spano FC. 2015. Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates. J. Chem. Phys. 142:184707
    [Google Scholar]
  167. 166. 
    Zeb MA, Kirton PG, Keeling J. 2018. Exact states and spectra of vibrationally dressed polaritons. ACS Photonics 5:249–57
    [Google Scholar]
  168. 167. 
    Holstein T. 1959. Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8:325–42
    [Google Scholar]
  169. 168. 
    Holstein T. 1959. Studies of polaron motion: Part II. The “small” polaron. Ann. Phys. 8:343–89
    [Google Scholar]
  170. 169. 
    Spano FC. 2010. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43:429–39
    [Google Scholar]
  171. 170. 
    Herrera F, Spano FC. 2017. Dark vibronic polaritons and the spectroscopy of organic microcavities. Phys. Rev. Lett. 118:223601
    [Google Scholar]
  172. 171. 
    Herrera F, Spano FC. 2017. Absorption and photoluminescence in organic cavity QED. Phys. Rev. A 95:053867
    [Google Scholar]
  173. 172. 
    Avramenko AG, Rury AS. 2020. Quantum control of ultrafast internal conversion using nanoconfined virtual photons. J. Phys. Chem. Lett. 11:1013–21
    [Google Scholar]
  174. 173. 
    Senitzky IR. 1960. Induced and spontaneous emission in a coherent field. III. Phys. Rev. 119:1807–15
    [Google Scholar]
  175. 174. 
    Senitzky IR. 1961. Onset of correlation in initially uncorrelated system. Phys. Rev. 121:171–81
    [Google Scholar]
  176. 175. 
    Shahbazyan TV, Raikh ME, Vardeny ZV. 2000. Mesoscopic cooperative emission from a disordered system. Phys. Rev. B 61:13266–76
    [Google Scholar]
  177. 176. 
    Celardo GL, Biella A, Kaplan L, Borgonovi F. 2013. Interplay of superradiance and disorder in the Anderson Model. Fortschr. Phys. 61:250–60
    [Google Scholar]
  178. 177. 
    Celardo GL, Giusteri GG, Borgonovi F. 2014. Cooperative robustness to static disorder: superradiance and localization in a nanoscale ring to model light-harvesting systems found in nature. Phys. Rev. B 90:075113
    [Google Scholar]
  179. 178. 
    Sun C, Chernyak VY, Piryatinski A, Sinitsyn NA 2019. Cooperative light emission in the presence of strong inhomogeneous broadening. Phys. Rev. Lett. 123:123605
    [Google Scholar]
  180. 179. 
    Manceau JM, Biasiol G, Tran NL, Carusotto I, Colombelli R 2017. Immunity of intersubband polaritons to inhomogeneous broadening. Phys. Rev. B 96:235301
    [Google Scholar]
  181. 180. 
    Houdré R, Stanley RP, Ilegems M. 1996. Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: resolution of a homogeneous linewidth in an inhomogeneously broadened system. Phys. Rev. A 53:2711–15
    [Google Scholar]
  182. 181. 
    Nitzan A. 2006. Chemical Dynamics in Condensed Phases Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  183. 182. 
    Galego J, Climent C, Garcia-Vidal FJ, Feist J. 2019. Cavity Casimir-Polder forces and their effects in ground-state chemical reactivity. Phys. Rev. X 9:021057
    [Google Scholar]
  184. 183. 
    Li TE, Nitzan A, Subotnik JE 2020. On the origin of ground-state vacuum-field catalysis: equilibrium consideration. J. Chem. Phys. 152:234107
    [Google Scholar]
  185. 184. 
    Campos-Gonzalez-Angulo JA, Yuen-Zhou J. 2020. Polaritonic normal modes in transition state theory. J. Chem. Phys. 152:161101
    [Google Scholar]
  186. 185. 
    Zhdanov VP. 2020. Vacuum field in a cavity, light-mediated vibrational coupling, and chemical reactivity. Chem. Phys. 535:110767
    [Google Scholar]
  187. 186. 
    Fischer EW, Saalfrank P. 2021. Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities. J. Chem. Phys. 154:104311
    [Google Scholar]
  188. 187. 
    Climent C, Feist J. 2020. On the SN2 reactions modified in vibrational strong coupling experiments: reaction mechanisms and vibrational mode assignments. Phys. Chem. Chem. Phys. 22:23545–52
    [Google Scholar]
  189. 188. 
    Triana J, Herrera F. 2020. Self-dissociation of polar molecules in a confined infrared vacuum. ChemRxiv. https://doi.org/10.26434/chemrxiv.12702419.v1
    [Crossref]
  190. 189. 
    Li X, Mandal A, Huo P. 2021. Cavity frequency-dependent theory for vibrational polariton chemistry. Nat. Commun. 12:1315
    [Google Scholar]
  191. 190. 
    Semenov A, Nitzan A. 2019. Electron transfer in confined electromagnetic fields. J. Chem. Phys. 150:174122
    [Google Scholar]
  192. 191. 
    Phuc NT, Trung PQ, Ishizaki A. 2020. Controlling the nonadiabatic electron-transfer reaction rate through molecular-vibration polaritons in the ultrastrong coupling regime. Sci. Rep. 10:7318
    [Google Scholar]
  193. 192. 
    Campos-Gonzalez-Angulo JA, Ribeiro RF, Yuen-Zhou J. 2019. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat. Commun. 10:4685
    [Google Scholar]
  194. 193. 
    Vurgaftman I, Simpkins BS, Dunkelberger AD, Owrutsky JC. 2020. Negligible effect of vibrational polaritons on chemical reaction rates via the density of states pathway. J. Phys. Chem. Lett. 11:3557–62
    [Google Scholar]
  195. 194. 
    Wellnitz D, Schütz S, Whitlock S, Schachenmayer J, Pupillo G. 2020. Collective dissipative molecule formation in a cavity. Phys. Rev. Lett. 125:193201
    [Google Scholar]
  196. 195. 
    Saurabh P, Mukamel S. 2016. Two-dimensional infrared spectroscopy of vibrational polaritons of molecules in an optical cavity. J. Chem. Phys. 144:124115
    [Google Scholar]
  197. 196. 
    Ribeiro RF, Dunkelberger AD, Xiang B, Xiong W, Simpkins BS et al. 2018. Theory for nonlinear spectroscopy of vibrational polaritons. J. Phys. Chem. Lett. 9:3766–71
    [Google Scholar]
  198. 197. 
    Hernández FJ, Herrera F. 2019. Multi-level quantum Rabi model for anharmonic vibrational polaritons. J. Chem. Phys. 151:144116
    [Google Scholar]
  199. 198. 
    del Pino J, Feist J, Garcia-Vidal FJ. 2015. Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J. Phys. 17:053040
    [Google Scholar]
  200. 199. 
    Gonzalez-Ballestero C, Feist J, Gonzalo Badía E, Moreno E, Garcia-Vidal FJ 2016. Uncoupled dark states can inherit polaritonic properties. Phys. Rev. Lett. 117:156402
    [Google Scholar]
  201. 200. 
    Li TE, Nitzan A, Subotnik JE 2021. Collective vibrational strong coupling effects on molecular vibrational relaxation and energy transfer: numerical insights via cavity molecular dynamics simulations. Angew. Chem. Int. Ed. 60:15533–40
    [Google Scholar]
  202. 201. 
    Du M, Yuen-Zhou J. 2021. Can dark states explain vibropolaritonic chemistry?. arXiv:2104.07214v1 [quant-ph]
  203. 202. 
    Sidler D, Schäfer C, Ruggenthaler M, Rubio A 2021. Polaritonic chemistry: collective strong coupling implies strong local modification of chemical properties. J. Phys. Chem. Lett. 12:508–16
    [Google Scholar]
  204. 203. 
    Li TE, Nitzan A, Subotnik JE 2021. Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping. arXiv:2104.15121 [physics.chem-ph]
  205. 204. 
    Davidsson E, Kowalewski M 2020. Atom assisted photochemistry in optical cavities. J. Phys. Chem. A 124:4672–77
    [Google Scholar]
  206. 205. 
    Groenhof G, Toppari JJ. 2018. Coherent light harvesting through strong coupling to confined light. J. Phys. Chem. Lett. 9:4848–51
    [Google Scholar]
  207. 206. 
    Li TE, Subotnik JE, Nitzan A. 2020. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling. PNAS 117:18324
    [Google Scholar]
  208. 207. 
    Li TE, Nitzan A, Subotnik JE 2021. Cavity molecular dynamics simulations of vibrational polariton-enhanced molecular nonlinear absorption. J. Chem. Phys. 154:094124
    [Google Scholar]
  209. 208. 
    Shalabney A, George J, Hiura H, Hutchison JA, Genet C et al. 2015. Enhanced Raman scattering from vibro-polariton hybrid states. Angew. Chem. Int. Ed. 54:7971–75
    [Google Scholar]
  210. 209. 
    del Pino J, Feist J, Garcia-Vidal FJ. 2015. Signatures of vibrational strong coupling in Raman scattering. J. Phys. Chem. C 119:29132–37
    [Google Scholar]
  211. 210. 
    Ahn W, Simpkins BS. 2020. Raman scattering under strong vibration-cavity coupling. J. Phys. Chem. C 125:830–35
    [Google Scholar]
  212. 211. 
    Baieva S, Ihalainen JA, Toppari JJ. 2013. Strong coupling between surface plasmon polaritons and β-carotene in nanolayered system. J. Chem. Phys. 138:044707
    [Google Scholar]
  213. 212. 
    Nagasawa F, Takase M, Murakoshi K 2014. Raman enhancement via polariton states produced by strong coupling between a localized surface plasmon and dye excitons at metal nanogaps. J. Phys. Chem. Lett. 5:14–19
    [Google Scholar]
  214. 213. 
    Avramenko AG, Rury AS. 2019. Interrogating the structure of molecular cavity polaritons with resonance Raman scattering: an experimentally motivated theoretical description. J. Phys. Chem. C 123:30551–61
    [Google Scholar]
  215. 214. 
    Neuman T, Aizpurua J, Esteban R 2020. Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon-exciton systems. Nanophotonics 9:295–308
    [Google Scholar]
  216. 215. 
    Golombek A, Balasubrahmaniyam M, Kaeek M, Hadar K, Schwartz T. 2020. Collective Rayleigh scattering from molecular ensembles under strong coupling. J. Phys. Chem. Lett. 11:3803–8
    [Google Scholar]
  217. 216. 
    Nagarajan K, Thomas A, Ebbesen T. 2021. Chemistry under vibrational strong coupling. J. Am. Chem. Soc. 143:16877–89
    [Google Scholar]
  218. 217. 
    Takele WM, Piatkowski L, Wackenhut F, Gawinkowski S, Meixner A et al. 2021. Scouting for strong light-matter coupling signatures in Raman spectra. Phys. Chem. Chem. Phys. 23:16837–46
    [Google Scholar]
  219. 218. 
    Aspelmeyer M, Kippenberg TJ, Marquardt F. 2014. Cavity optomechanics. Rev. Mod. Phys. 86:1391–452
    [Google Scholar]
  220. 219. 
    Olaimat MM, Yousefi L, Ramahi OM 2021. Using plasmonics and nanoparticles to enhance the efficiency of solar cells: review of latest technologies. J. Opt. Soc. Am. B 38:638–51
    [Google Scholar]
  221. 220. 
    Coccia E, Fregoni J, Guido CA, Marsili M, Pipolo S, Corni S 2020. Hybrid theoretical models for molecular nanoplasmonics. J. Chem. Phys. 153:200901
    [Google Scholar]
  222. 221. 
    Martínez-Martínez LA, Du M, Ribeiro RF, Kéna-Cohen S, Yuen-Zhou J. 2018. Polariton-assisted singlet fission in acene aggregates. J. Phys. Chem. Lett. 9:1951–57
    [Google Scholar]
  223. 222. 
    Martínez-Martínez LA, Eizner E, Kéna-Cohen S, Yuen-Zhou J. 2019. Triplet harvesting in the polaritonic regime: a variational polaron approach. J. Chem. Phys. 151:054106
    [Google Scholar]
  224. 223. 
    Polak D, Jayaprakash R, Lyons TP, Martínez-Martínez , Leventis A et al. 2020. Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities. Chem. Sci. 11:343–54
    [Google Scholar]
  225. 224. 
    Ye C, Mallick S, Hertzog M, Kowalewski M, Börjesson K 2021. Direct transition from triplet excitons to hybrid light–matter states via triplet–triplet annihilation. J. Am. Chem. Soc. 143:7501–8
    [Google Scholar]
  226. 225. 
    Bera ML, Julià-Farré S, Lewenstein M, Bera MN 2021. Quantum heat engines with Carnot efficiency at maximum power. arXiv:2106.01193v1 [quant-ph]
  227. 226. 
    Campaioli F, Pollock FA, Vinjanampathy S. 2018. Quantum batteries. arXiv:1805.05507 [quant-ph]
  228. 227. 
    Alicki R, Fannes M 2013. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87:042123
    [Google Scholar]
  229. 228. 
    Hovhannisyan KV, Perarnau-Llobet M, Huber M, Acín A. 2013. Entanglement generation is notary for optimal work extraction. Phys. Rev. Lett. 111:240401
    [Google Scholar]
  230. 229. 
    Campaioli F, Pollock FA, Binder FC, Céleri L, Goold J et al. 2017. Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118:150601
    [Google Scholar]
  231. 230. 
    Le TP, Levinsen J, Modi K, Parish MM, Pollock FA. 2018. Spin-chain model of a many-body quantum battery. Phys. Rev. A 97:022106
    [Google Scholar]
  232. 231. 
    Ferraro D, Campisi M, Andolina GM, Pellegrini V, Polini M. 2018. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 120:117702
    [Google Scholar]
  233. 232. 
    Andolina GM, Keck M, Mari A, Campisi M, Giovannetti V, Polini M 2019. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett. 122:047702
    [Google Scholar]
  234. 233. 
    Pirmoradian F, Mølmer K. 2019. Aging of a quantum battery. Phys. Rev. A 100:043833
    [Google Scholar]
  235. 234. 
    Tabesh FT, Kamin FH, Salimi S. 2020. Environment-mediated charging process of quantum batteries. Phys. Rev. A 102:052223
    [Google Scholar]
  236. 235. 
    Santos AC. 2021. Quantum advantage of two-level batteries in the self-discharging process. Phys. Rev. E 103:042118
    [Google Scholar]
  237. 236. 
    Niedenzu W, Kurizki G. 2018. Cooperative many-body enhancement of quantum thermal machine power. New J. Phys. 20:113038
    [Google Scholar]
  238. 237. 
    Kloc M, Cejnar P, Schaller G 2019. Collective performance of a finite-time quantum Otto cycle. Phys. Rev. E 100:042126
    [Google Scholar]
  239. 238. 
    Xiang B, Wang J, Yang Z, Xiong W 2021. Nonlinear infrared polaritonic interaction between cavities mediated by molecular vibrations at ultrafast time scale. Sci. Adv. 7:eabf6397
    [Google Scholar]
  240. 239. 
    Stensitzki T, Yang Y, Kozich V, Ahmed AA, Kössl F et al. 2018. Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation. Nat. Chem. 10:126–31
    [Google Scholar]
  241. 240. 
    Heyne K, Kühn O. 2019. Infrared laser excitation controlled reaction acceleration in the electronic ground state. J. Am. Chem. Soc. 141:11730–38
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090519-042621
Loading
/content/journals/10.1146/annurev-physchem-090519-042621
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error