1932

Abstract

Because plasmonic metal nanostructures combine strong light absorption with catalytically active surfaces, they have become platforms for the light-assisted catalysis of chemical reactions. The enhancement of reaction rates by plasmonic excitation has been extensively discussed. This review focuses on a less discussed aspect: the induction of new reaction pathways by light excitation. Through commentary on seminal reports, we describe the principles behind the optical modulation of chemical reactivity and selectivity on plasmonic metal nanostructures. Central to these phenomena are excited charge carriers generated by plasmonic excitation, which modify the energy landscape available to surface reactive species and unlock pathways not conventionally available in thermal catalysis. Photogenerated carriers can trigger bond dissociation or desorption in an adsorbate-selective manner, drive charge transfer and multielectron redox reactions, and generate radical intermediates. Through one or more of these mechanisms, a specific pathway becomes favored under light. By improved control over these mechanisms, light-assisted catalysis can be transformational for chemical synthesis and energy conversion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090519-045502
2021-04-20
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090519-045502.html?itemId=/content/journals/10.1146/annurev-physchem-090519-045502&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hagen J. 2015. Industrial Catalysis: A Practical Approach Somerset, UK: Wiley. , 3rd ed..
  2. 2. 
    Christopher P, Xin H, Linic S. 2011. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3:6467–72
    [Google Scholar]
  3. 3. 
    Christopher P, Xin H, Marimuthu A, Linic S. 2012. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11:121044–50
    [Google Scholar]
  4. 4. 
    Marimuthu A, Zhang J, Linic S. 2013. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339:61271590–93
    [Google Scholar]
  5. 5. 
    Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M. 2013. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8:4247–51
    [Google Scholar]
  6. 6. 
    Lee J, Mubeen S, Ji X, Stucky GD, Moskovits M 2012. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett 12:95014–19
    [Google Scholar]
  7. 7. 
    Mukherjee S, Zhou L, Goodman AM, Large N, Ayala-Orozco C et al. 2014. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136:164–67
    [Google Scholar]
  8. 8. 
    Mukherjee S, Libisch F, Large N, Neumann O, Brown LV et al. 2013. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett 13:1240–47
    [Google Scholar]
  9. 9. 
    Cui J, Li Y, Liu L, Chen L, Xu J et al. 2015. Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett 15:106295–301
    [Google Scholar]
  10. 10. 
    Huang X, Li Y, Chen Y, Zhou H, Duan X, Huang Y. 2013. Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. Angew. Chem. Int. Ed. 52:236063–67
    [Google Scholar]
  11. 11. 
    Wang F, Li C, Chen H, Jiang R, Sun L-D et al. 2013. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135:155588–601
    [Google Scholar]
  12. 12. 
    Frischkorn C. 2008. Ultrafast reaction dynamics of the associative hydrogen desorption from Ru(001). J. Phys. Condens. Matter 20:31313002
    [Google Scholar]
  13. 13. 
    Frischkorn C, Wolf M. 2006. Femtochemistry at metal surfaces:nonadiabatic reaction dynamics. Chem. Rev. 106:104207–33
    [Google Scholar]
  14. 14. 
    Jain PK. 2019. Taking the heat off of plasmonic chemistry. J. Phys. Chem. C 123:4024347–51
    [Google Scholar]
  15. 15. 
    Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA 2017. Heterojunction photocatalysts. Adv. Mater. 29:201601694
    [Google Scholar]
  16. 16. 
    Fu J, Jiang K, Qiu X, Yu J, Liu M. 2020. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 32:222–43
    [Google Scholar]
  17. 17. 
    Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:535837–38
    [Google Scholar]
  18. 18. 
    Abe R. 2010. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C Photochem. Rev. 11:4179–209
    [Google Scholar]
  19. 19. 
    Yu S, Jain PK. 2019. Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat. Commun. 10:2022
    [Google Scholar]
  20. 20. 
    DuChene JS, Tagliabue G, Welch AJ, Cheng W-H, Atwater HA. 2018. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett 18:42545–50
    [Google Scholar]
  21. 21. 
    Yang J, Hao J, Xu S, Wang Q, Dai J et al. 2019. InVO4/β-AgVO3 nanocomposite as a direct Z-scheme photocatalyst toward efficient and selective visible-light-driven CO2 reduction. ACS Appl. Mater. Interfaces 11:3532025–37
    [Google Scholar]
  22. 22. 
    García-García I, Lovell EC, Wong RJ, Barrio VL, Scott J et al. 2020. Silver-based plasmonic catalysts for carbon dioxide reduction. ACS Sustain. Chem. Eng. 8:41879–87
    [Google Scholar]
  23. 23. 
    Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF et al. 2020. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5:61–70
    [Google Scholar]
  24. 24. 
    Kale MJ, Avanesian T, Christopher P. 2014. Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:1116–28
    [Google Scholar]
  25. 25. 
    Naldoni A, Shalaev VM, Brongersma ML. 2017. Applying plasmonics to a sustainable future. Science 356:6341908–9
    [Google Scholar]
  26. 26. 
    Wang C, Astruc D. 2014. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev. 43:207188–216
    [Google Scholar]
  27. 27. 
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA. 2008. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41:121578–86
    [Google Scholar]
  28. 28. 
    Bohren CF. 1983. How can a particle absorb more than the light incident on it?. Am. J. Phys. 51:4323–27
    [Google Scholar]
  29. 29. 
    Yu S, Wilson AJ, Kumari G, Zhang X, Jain PK. 2017. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett 2:92058–70
    [Google Scholar]
  30. 30. 
    Hartland GV. 2011. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111:63858–87
    [Google Scholar]
  31. 31. 
    Khurgin JB. 2015. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10:2–6
    [Google Scholar]
  32. 32. 
    Watanabe K, Menzel D, Nilius N, Freund H-J. 2006. Photochemistry on metal nanoparticles. Chem. Rev. 106:104301–20
    [Google Scholar]
  33. 33. 
    Manjavacas A, Liu JG, Kulkarni V, Nordlander P. 2014. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8:87630–38
    [Google Scholar]
  34. 34. 
    Linic S, Aslam U, Boerigter C, Morabito M. 2015. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14:6567–76
    [Google Scholar]
  35. 35. 
    Swearer DF, Zhao H, Zhou L, Zhang C, Robatjazi H et al. 2016. Heterometallic antenna−reactor complexes for photocatalysis. PNAS 113:328916–20
    [Google Scholar]
  36. 36. 
    Linic S, Christopher P, Xin H, Marimuthu A. 2013. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 46:81890–99
    [Google Scholar]
  37. 37. 
    Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA. 2011. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111:63888–912
    [Google Scholar]
  38. 38. 
    Shi X, Ueno K, Takabayashi N, Misawa H. 2013. Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoisland-loaded titanium dioxide photoelectrode. J. Phys. Chem. C 117:62494–99
    [Google Scholar]
  39. 39. 
    Voisin C, Del Fatti N, Christofilos D, Vallée F. 2001. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 105:122264–80
    [Google Scholar]
  40. 40. 
    Brown AM, Sundararaman R, Narang P, Goddard WA III, Atwater HA. 2016. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10:1957–66
    [Google Scholar]
  41. 41. 
    Sundararaman R, Narang P, Jermyn AS, Goddard WA III, Atwater HA. 2014. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5:5788
    [Google Scholar]
  42. 42. 
    Bernardi M, Mustafa J, Neaton JB, Louie SG. 2015. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6:7044
    [Google Scholar]
  43. 43. 
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. 2006. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:applications in biological imaging and biomedicine. J. Phys. Chem. B 110:147238–48
    [Google Scholar]
  44. 44. 
    Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J et al. 2002. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88:7077402
    [Google Scholar]
  45. 45. 
    Link S, El-Sayed MA. 1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103:408410–26
    [Google Scholar]
  46. 46. 
    Yu S, Mohan V, Jain PK. 2020. Using plasmonically generated carriers as redox equivalents. MRS Bull 45:143–48
    [Google Scholar]
  47. 47. 
    Yu S, Jain PK. 2019. Selective branching of plasmonic photosynthesis into hydrocarbon production and hydrogen generation. ACS Energy Lett 4:92295–300
    [Google Scholar]
  48. 48. 
    Kim Y, Smith JG, Jain PK. 2018. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem. 10:7763–69
    [Google Scholar]
  49. 49. 
    Kumari G, Zhang X, Devasia D, Heo J, Jain PK. 2018. Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano 12:88330–40
    [Google Scholar]
  50. 50. 
    Yu S, Wilson AJ, Heo J, Jain PK. 2018. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett 18:42189–94
    [Google Scholar]
  51. 51. 
    Smith JG, Faucheaux JA, Jain PK. 2015. Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 10:167–80
    [Google Scholar]
  52. 52. 
    Brongersma ML, Halas NJ, Nordlander P. 2015. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10:25–34
    [Google Scholar]
  53. 53. 
    Zhang Y, He S, Guo W, Hu Y, Huang J et al. 2018. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118:62927–54
    [Google Scholar]
  54. 54. 
    Cortés E. 2017. Efficiency and bond selectivity in plasmon-induced photochemistry. Adv. Opt. Mater. 5:151700191
    [Google Scholar]
  55. 55. 
    Cortés E, Xie W, Cambiasso J, Jermyn AS, Sundararaman R et al. 2017. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8:14880
    [Google Scholar]
  56. 56. 
    Gadzuk JW. 1983. Vibrational excitation in molecule-surface collisions due to temporary negative molecular ion formation. J. Chem. Phys. 79:126341–48
    [Google Scholar]
  57. 57. 
    Zhu X-Y. 2002. Electron transfer at molecule-metal interfaces: a two-photon photoemission study. Annu. Rev. Phys. Chem. 53:221–47
    [Google Scholar]
  58. 58. 
    Ageev VN. 1994. Desorption induced by electronic transitions. Prog. Surf. Sci. 47:1–255–203
    [Google Scholar]
  59. 59. 
    Jain PK, Qian W, El-Sayed MA. 2006. Ultrafast cooling of photoexcited electrons in gold nanoparticle−thiolated DNA conjugates involves the dissociation of the gold−thiol bond. J. Am. Chem. Soc. 128:72426–33
    [Google Scholar]
  60. 60. 
    Misewich JA, Heinz TF, Newns DM. 1992. Desorption induced by multiple electronic transitions. Phys. Rev. Lett. 68:253737–40
    [Google Scholar]
  61. 61. 
    Kazuma E, Jung J, Ueba H, Trenary M, Kim Y. 2018. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360:6388521–26
    [Google Scholar]
  62. 62. 
    Boerigter C, Aslam U, Linic S. 2016. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10:66108–15
    [Google Scholar]
  63. 63. 
    Christopher P, Moskovits M. 2017. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 68:379–98
    [Google Scholar]
  64. 64. 
    Govorov AO, Zhang H, Gun'ko YK 2013. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 117:3216616–31
    [Google Scholar]
  65. 65. 
    Boerigter C, Campana R, Morabito M, Linic S. 2016. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7:10545
    [Google Scholar]
  66. 66. 
    Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M. 1993. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48:2418178–88
    [Google Scholar]
  67. 67. 
    Foerster B, Joplin A, Kaefer K, Celiksoy S, Link S, Sönnichsen C. 2017. Chemical interface damping depends on electrons reaching the surface. ACS Nano 11:32886–93
    [Google Scholar]
  68. 68. 
    Douglas-Gallardo OA, Berdakin M, Sánchez CG. 2016. Atomistic insights into chemical interface damping of surface plasmon excitations in silver nanoclusters. J. Phys. Chem. C 120:4224389–99
    [Google Scholar]
  69. 69. 
    Yang H, Wang Z-H, Zheng Y-Y, He L-Q, Zhan C et al. 2016. Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance. J. Am. Chem. Soc. 138:5016204–7
    [Google Scholar]
  70. 70. 
    Liu L, Ouyang S, Ye J. 2013. Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance. Angew. Chem. Int. Ed. 52:266689–93
    [Google Scholar]
  71. 71. 
    Meng X, Liu L, Ouyang S, Xu H, Wang D et al. 2016. Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 28:326781–803
    [Google Scholar]
  72. 72. 
    Pu Y-C, Wang G, Chang K-D, Ling Y, Lin Y-K et al. 2013. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 13:83817–23
    [Google Scholar]
  73. 73. 
    Teranishi M, Wada M, Naya S, Tada H. 2016. Size-dependence of the activity of gold nanoparticle-loaded titanium(IV) oxide plasmonic photocatalyst for water oxidation. Chem. Phys. Chem. 17:182813–17
    [Google Scholar]
  74. 74. 
    Bastús NG, Comenge J, Puntes V. 2011. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:1711098–105
    [Google Scholar]
  75. 75. 
    Zhou M, Zeng C, Chen Y, Zhao S, Sfeir MY et al. 2016. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 7:13240
    [Google Scholar]
  76. 76. 
    Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M. 2010. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327:5963319–22
    [Google Scholar]
  77. 77. 
    Hammer B, Norskov JK. 1995. Why gold is the noblest of all the metals. Nature 376:6537238–40
    [Google Scholar]
  78. 78. 
    Kazuma E, Jung J, Ueba H, Trenary M, Kim Y. 2017. Direct pathway to molecular photodissociation on metal surfaces using visible light. J. Am. Chem. Soc. 139:83115–21
    [Google Scholar]
  79. 79. 
    Zhou L, Zhang C, McClain MJ, Manjavacas A, Krauter CM et al. 2016. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett 16:21478–84
    [Google Scholar]
  80. 80. 
    Zhang C, Zhao H, Zhou L, Schlather AE, Dong L et al. 2016. Al-Pd nanodisk heterodimers as antenna-reactor photocatalysts. Nano Lett 16:106677–82
    [Google Scholar]
  81. 81. 
    Huang Y-F, Zhang M, Zhao L-B, Feng J-M, Wu D-Y et al. 2014. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 53:92353–57
    [Google Scholar]
  82. 82. 
    Zhang X, Kumari G, Heo J, Jain PK. 2018. In situ formation of catalytically active graphene in ethylene photo-epoxidation. Nat. Commun. 9:3056
    [Google Scholar]
  83. 83. 
    Kale MJ, Avanesian T, Xin H, Yan J, Christopher P. 2014. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett 14:95405–12
    [Google Scholar]
  84. 84. 
    Kim Y, Dumett Torres D, Jain PK 2016. Activation energies of plasmonic catalysts. Nano Lett 16:53399–407
    [Google Scholar]
  85. 85. 
    Kim Y, Wilson AJ, Jain PK. 2017. The nature of plasmonically assisted hot-electron transfer in a donor-bridge-acceptor complex. ACS Catal 7:74360–65
    [Google Scholar]
  86. 86. 
    Yu S, Jain PK. 2020. The chemical potential of plasmonic excitations. Angew. Chem. Int. Ed. 59:52085–88
    [Google Scholar]
  87. 87. 
    Lin S-C, Hsu C-S, Chiu S-Y, Liao T-Y, Chen HM. 2017. Edgeless Ag–Pt bimetallic nanocages: in situ monitor plasmon-induced suppression of hydrogen peroxide formation. J. Am. Chem. Soc. 139:62224–33
    [Google Scholar]
  88. 88. 
    Creel EB, Corson ER, Eichhorn J, Kostecki R, Urban JJ, McCloskey BD. 2019. Directing selectivity of electrochemical carbon dioxide reduction using plasmonics. ACS Energy Lett 4:51098–105
    [Google Scholar]
  89. 89. 
    Wilson AJ, Mohan V, Jain PK. 2019. Mechanistic understanding of plasmon-enhanced electrochemistry. J. Phys. Chem. C 123:4829360–69
    [Google Scholar]
  90. 90. 
    Xiao Q, Sarina S, Bo A, Jia J, Liu H et al. 2014. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal 4:61725–34
    [Google Scholar]
  91. 91. 
    Zhang X, Li X, Zhang D, Su NQ, Yang W et al. 2017. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8:14542
    [Google Scholar]
  92. 92. 
    Zhou L, Swearer DF, Zhang C, Robatjazi H, Zhao H et al. 2018. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362:641069–72
    [Google Scholar]
  93. 93. 
    Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. 2020. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 120:2986–1041
    [Google Scholar]
  94. 94. 
    Sarina S, Zhu H, Jaatinen E, Xiao Q, Liu H et al. 2013. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 135:155793–801
    [Google Scholar]
  95. 95. 
    Aslam U, Chavez S, Linic S. 2017. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12:101000–5
    [Google Scholar]
  96. 96. 
    Li H, Qin F, Yang Z, Cui X, Wang J, Zhang L. 2017. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 139:93513–21
    [Google Scholar]
  97. 97. 
    Hallett-Tapley GL, Silvero MJ, González-Béjar M, Grenier M, Netto-Ferreira JC, Scaiano JC. 2011. Plasmon-mediated catalytic oxidation of sec-phenethyl and benzyl alcohols. J. Phys. Chem. C 115:2110784–90
    [Google Scholar]
  98. 98. 
    Fox MA, Dulay MT. 1993. Heterogeneous photocatalysis. Chem. Rev. 93:1341–57
    [Google Scholar]
  99. 99. 
    Linsebigler AL, Lu G, Yates JT. 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95:3735–58
    [Google Scholar]
  100. 100. 
    Le Formal F, Pendlebury SR, Cornuz M, Tilley SD, Grätzel M, Durrant JR 2014. Back electron-hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc. 136:62564–74
    [Google Scholar]
  101. 101. 
    Cowan AJ, Tang J, Leng W, Durrant JR, Klug DR. 2010. Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C 114:94208–14
    [Google Scholar]
  102. 102. 
    Kudo A, Miseki Y. 2008. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38:253–78
    [Google Scholar]
  103. 103. 
    Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA et al. 2011. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 3:6489–92
    [Google Scholar]
  104. 104. 
    Wang S, Gao Y, Miao S, Liu T, Mu L et al. 2017. Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 139:3411771–78
    [Google Scholar]
  105. 105. 
    Huang J, Guo W, Hu Y, Wei WD. 2020. Plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry. MRS Bull 45:37–42
    [Google Scholar]
  106. 106. 
    Shaik F, Peer I, Jain PK, Amirav L. 2018. Plasmon-enhanced multicarrier photocatalysis. Nano Lett 18:74370–76
    [Google Scholar]
  107. 107. 
    Warren SC, Thimsen E. 2012. Plasmonic solar water splitting. Energy Environ. Sci. 5:5133–46
    [Google Scholar]
  108. 108. 
    Cushing SK, Wu N. 2016. Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett. 7:4666–75
    [Google Scholar]
  109. 109. 
    Knight MW, Sobhani H, Nordlander P, Halas NJ. 2011. Photodetection with active optical antennas. Science 332:6030702–4
    [Google Scholar]
  110. 110. 
    Qian K, Sweeny BC, Johnston-Peck AC, Niu W, Graham JO et al. 2014. Surface plasmon-driven water reduction: gold nanoparticle size matters. J. Am. Chem. Soc. 136:289842–45
    [Google Scholar]
  111. 111. 
    Tian Y, Tatsuma T. 2005. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127:207632–37
    [Google Scholar]
  112. 112. 
    Wu K, Chen J, McBride JR, Lian T. 2015. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349:6248632–35
    [Google Scholar]
  113. 113. 
    Furube A, Du L, Hara K, Katoh R, Tachiya M. 2007. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129:4814852–53
    [Google Scholar]
  114. 114. 
    DuChene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD. 2014. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem. Int. Ed. 53:307887–91
    [Google Scholar]
  115. 115. 
    Neaţu Ş, Maciá-Agulló JA, Concepción P, Garcia H. 2014. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 136:4515969–76
    [Google Scholar]
  116. 116. 
    Gomes Silva C, Juárez R, Marino T, Molinari R, García H 2011. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133:3595–602
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090519-045502
Loading
/content/journals/10.1146/annurev-physchem-090519-045502
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error