1932

Abstract

The Born–Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later—despite astonishing advances in computational power—the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (HO), with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090519-051837
2021-04-20
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090519-051837.html?itemId=/content/journals/10.1146/annurev-physchem-090519-051837&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Born M, Oppenheimer R. 1927. Zur Quantentheorie der Molekeln. Ann. Phys. 389:457–84
    [Google Scholar]
  2. 2. 
    Eyring H. 1935. The activated complex in chemical reactions. J. Chem. Phys. 3:107–15
    [Google Scholar]
  3. 3. 
    Wigner E. 1938. The transition state method. Trans. Faraday Soc. 34:29–41
    [Google Scholar]
  4. 4. 
    Schatz GC. 1989. The analytical representation of electronic potential energy surfaces. Rev. Mod. Phys. 61:669–88
    [Google Scholar]
  5. 5. 
    Murrell JN, Carter S, Farantos SC, Huxley P, Varandas A. 1984. Molecular Potential Energy Functions Chichester, UK: Wiley Intersci.
    [Google Scholar]
  6. 6. 
    Bunker P, Jensen P. 2006. Molecular Symmetry and Spectroscopy Ottawa, Can: NRC Res.6. Presents an extensive and authoritative treatment of molecular symmetry.
    [Google Scholar]
  7. 7. 
    Domcke W, Yarkony D, Köppel H. 2011. Conical Intersections: Theory, Computation and Experiment Adv. Ser. Phys. Chem 17: Singapore: World Sci.
    [Google Scholar]
  8. 8. 
    Babin V, Leforestier C, Paesani F. 2013. Development of a ``first principles'' water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J. Chem. Theory Comput. 9:5395–403
    [Google Scholar]
  9. 9. 
    Xie W, Liu L, Sun Z, Guo H, Dawes R. 2015. State-to-state reaction dynamics of 18O+32O2 studied by a time-dependent quantum wavepacket method. J. Chem. Phys. 142:064308
    [Google Scholar]
  10. 10. 
    Sun Z, Yu D, Xie W, Hou J, Dawes R, Guo H. 2015. Kinetic isotope effect of the 16O+36O2 and 18O+32O2 isotope exchange reactions: dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study. J. Chem. Phys. 142:174312
    [Google Scholar]
  11. 11. 
    Rajagopala R, Guillon G, Mahapatra S, Honvault P. 2015. Quantum dynamics of 16O+36O2 and 18O+32O2 exchange reactions. J. Chem. Phys. 142:174311
    [Google Scholar]
  12. 12. 
    Dawes R, Lolur P, Ma J, Guo H. 2011. Highly accurate ozone formation potential and implications for kinetics. J. Chem. Phys. 135:081102
    [Google Scholar]
  13. 13. 
    Dawes R, Lolur P, Li A, Jiang B, Guo H. 2013. An accurate global potential energy surface for the ground electronic state of ozone. J. Chem. Phys. 139:201103
    [Google Scholar]
  14. 14. 
    Powell A, Dattani N, Spada R, Machado F, Lischka H, Dawes R. 2017. Investigation of the ozone formation reaction pathway: comparisons of FCIQMC and fixed-node diffusion Monte Carlo with contracted and uncontracted MRCI. J. Chem. Phys. 147:094306
    [Google Scholar]
  15. 15. 
    Frost A, Musulin B. 1954. Semiempirical potential energy functions. I. The H2 and diatomic molecules. J. Chem. Phys. 22:1017–20
    [Google Scholar]
  16. 16. 
    Sato S. 1955. On a new method of drawing the PES. J. Chem. Phys. 23:592–93
    [Google Scholar]
  17. 17. 
    Goodeve CF. 1934. 3D models of the PES of triatomic systems. Trans. Faraday Soc. 30:60–68
    [Google Scholar]
  18. 18. 
    Dye JL. 1957. Model of a potential energy surface. J. Chem. Educ. 34:215–16
    [Google Scholar]
  19. 19. 
    Teller E. 1937. The crossing of potential surfaces. J. Phys. Chem. 41:109–16
    [Google Scholar]
  20. 20. 
    Le Roy RJ, Henderson R 2007. A new potential function form incorporating extended long-range behaviour: application to ground-state Ca2. Mol. Phys. 105:663–77
    [Google Scholar]
  21. 21. 
    Szalewicz K. 2012. Symmetry-adapted perturbation theory of intermolecular forces. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2:254–72
    [Google Scholar]
  22. 22. 
    Jansen G. 2014. Symmetry-adapted perturbation theory based on density functional theory for noncovalent interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4:127–44
    [Google Scholar]
  23. 23. 
    McDaniel JG, Schmidt JR. 2013. Physically-motivated force fields from symmetry-adapted perturbation theory. J. Phys. Chem. A 117:2053–66
    [Google Scholar]
  24. 24. 
    Xie C, Zhao B, Malbon C, Yarkony DR, Xie D, Guo H. 2019. Insights into the mechanism of nonadiabatic photodissociation from product vibrational distributions. The remarkable case of phenol. J. Phys. Chem. Lett. 11:191–98
    [Google Scholar]
  25. 25. 
    Zhu X, Yarkony DR. 2014. Fitting coupled PESs for large systems: method and construction of a 3-state representation for phenol photodissociation in the full 33 internal degrees of freedom using multireference configuration interaction determined data. J. Chem. Phys. 140:2411225. Describes fitting three electronic states of phenol in 33 dimensions.
    [Google Scholar]
  26. 26. 
    Werner H, Knowles P, Manby F, Black J, Doll K et al. 2020. The MolPro quantum chemistry package. J. Chem. Phys. 152:144107
    [Google Scholar]
  27. 27. 
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M et al. 2016. Gaussian 16, revis. C.01.. Software Package. https://gaussian.com/relnotes/
    [Google Scholar]
  28. 28. 
    Stanton J, Gauss J, Harding M, Szalay P, Auer A et al. 2009. CFOUR. Software Package. http://www.cfour.de
    [Google Scholar]
  29. 29. 
    Krylov A, Gill P. 2013. Q-Chem: an engine for innovation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3:317–26
    [Google Scholar]
  30. 30. 
    Kállay M, Nagy P, Mester D, Rolik Z, Samu G et al. 2020. The MRCC program system: accurate quantum chemistry from water to proteins. J. Chem. Phys. 152:074107
    [Google Scholar]
  31. 31. 
    Lischka H, Shepard R, Pitzer R, Shavitt I, Dallos M et al. 2001. High-level multireference methods in the quantum-chemistry program system COLUMBUS: analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density. Phys. Chem. Chem. Phys. 3:664–67
    [Google Scholar]
  32. 32. 
    Van Dam H, De Jong W, Bylaska E, Govind N, Kowalski K et al. 2011. NWChem: scalable parallel computational chemistry. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1:888–94
    [Google Scholar]
  33. 33. 
    Dawes R, Ndengué SA. 2016. Single- and multireference electronic structure calculations for constructing potential energy surfaces. Int. Rev. Phys. Chem. 35:441–7833. Presents detailed recommendations for developing electronic structure protocols.
    [Google Scholar]
  34. 34. 
    Smith D, Jankowski P, Slawik M, Witek H, Patkowski K. 2014. Basis set convergence of the post-CCSD(T) contribution to noncovalent interaction energies. J. Chem. Theory Comput. 10:3140–50
    [Google Scholar]
  35. 35. 
    Murphy K, Schaefer H, Agarwal J. 2017. Phosgene at the complete basis set limit of CCSDT(Q): molecular structure and rovibrational analysis. Chem. Phys. Lett. 683:12–17
    [Google Scholar]
  36. 36. 
    Demovičová L, Hobza P, Řezáč J. 2014. Evaluation of composite schemes for CCSDT(Q) calculations of interaction energies of noncovalent complexes. Phys. Chem. Chem. Phys. 16:19115–21
    [Google Scholar]
  37. 37. 
    Matthews D, Stanton J. 2015. Non-orthogonal spin-adaptation of coupled cluster methods: a new implementation of methods including quadruple excitations. J. Chem. Phys. 142:064108
    [Google Scholar]
  38. 38. 
    Kats D, Köhn A. 2019. On the distinguishable cluster approximation for triple excitations. J. Chem. Phys. 150:151101
    [Google Scholar]
  39. 39. 
    Parrish R, Zhao Y, Hohenstein E, Martínez TJ. 2019. Rank reduced coupled cluster theory. I. Ground state energies and wavefunctions. J. Chem. Phys. 150:164118
    [Google Scholar]
  40. 40. 
    Rolik Z, Kállay M. 2011. Cost reduction of high-order coupled-cluster methods via active-space and orbital transformation techniques. J. Chem. Phys. 134:124111
    [Google Scholar]
  41. 41. 
    Rolik Z, Kállay M. 2018. Novel strategy to implement active-space coupled-cluster methods. J. Chem. Phys. 148:124108
    [Google Scholar]
  42. 42. 
    Ndengué S, Dawes R, Guo H. 2016. A new set of PESs for HCO: influence of Renner–Teller coupling on the bound and resonance vibrational states. J. Chem. Phys. 144:244301
    [Google Scholar]
  43. 43. 
    Davidson ER, Silver DW. 1977. Size consistency in the dilute helium gas electronic structure. Chem. Phys. Lett. 52:403–6
    [Google Scholar]
  44. 44. 
    Piecuch P, Oliphant N, Adamowicz L. 1993. A state-selective multireference coupled-cluster theory employing the single-reference formalism. J. Chem. Phys. 99:1875–1900
    [Google Scholar]
  45. 45. 
    Hanauer M, Köhn A. 2012. Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory. J. Chem. Phys. 136:204107
    [Google Scholar]
  46. 46. 
    Evangelista F. 2018. Multireference coupled cluster theories of dynamical electron correlation. J. Chem. Phys. 149:030901
    [Google Scholar]
  47. 47. 
    Magoulas I, Bauman N, Shen J, Piecuch P. 2018. Application of the CC(P;Q) hierarchy of coupled-cluster methods to the beryllium dimer. J. Phys. Chem. A 122:1350–68
    [Google Scholar]
  48. 48. 
    Deustua JE, Yuwono S, Shen J, Piecuch P. 2019. Accurate excited-state energetics by a combination of Monte Carlo sampling and equation-of-motion coupled-cluster computations. J. Chem. Phys. 150:111101
    [Google Scholar]
  49. 49. 
    Blunt N, Neuscamman E. 2018. Excited-state diffusion Monte Carlo calculations: a simple and efficient two-determinant ansatz. J. Chem. Theory Comput. 15:178–89
    [Google Scholar]
  50. 50. 
    Zgid D, Nooijen M. 2008. On the spin and symmetry adaptation of the density matrix renormalization group method. J. Chem. Phys. 128:014107
    [Google Scholar]
  51. 51. 
    Yanai T, Kurashige Y, Neuscamman E, Chan G. 2010. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory. J. Chem. Phys. 132:024105
    [Google Scholar]
  52. 52. 
    Phillips J, Zgid D. 2014. The description of strong correlation within self-consistent Green's function second-order perturbation theory. J. Chem. Phys. 140:241101
    [Google Scholar]
  53. 53. 
    Neuhauser D, Baer R, Zgid D. 2017. Stochastic self-consistent 2nd-order Gree's function method for correlation energies of large systems. J. Chem. Theory Comput. 13:5396–403
    [Google Scholar]
  54. 54. 
    Stanton S, Bartlett R. 1993. The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 98:7029–39
    [Google Scholar]
  55. 55. 
    Krylov A. 2008. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the hitchhiker's guide to Fock space. Annu. Rev. Phys. Chem. 59:433–62
    [Google Scholar]
  56. 56. 
    Hill JG, Peterson KA, Knizia G, Werner H-J. 2009. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. J. Chem. Phys. 131:194105
    [Google Scholar]
  57. 57. 
    Feller D, Peterson K. 2013. An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies. J. Chem. Phys. 139:084110
    [Google Scholar]
  58. 58. 
    Sylvetsky N, Peterson K, Karton A, Martin J. 2016. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?. J. Chem. Phys. 144:214101
    [Google Scholar]
  59. 59. 
    Harding M, Vázquez J, Ruscic B, Wilson A, Gauss J, Stanton J. 2008. High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview. J. Chem. Phys. 128:114111
    [Google Scholar]
  60. 60. 
    Ganyecz Á, Kállay M, Csontos J. 2017. Moderate-cost ab initio thermochemistry with chemical accuracy. J. Chem. Theory Comput. 13:4193–204
    [Google Scholar]
  61. 61. 
    Le Roy R, Huang Y, Jary C 2006. An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data. J. Chem. Phys. 125:164310
    [Google Scholar]
  62. 62. 
    Le Roy R, Haugen CC, Tao J, Li H 2011. Long-range damping functions improve the short-range behaviour of ‘MLR’ potential energy functions. Mol. Phys. 109:435–46
    [Google Scholar]
  63. 63. 
    Li H, Le Roy R 2008. Analytic three-dimensional MLR potential energy surface for CO2-He, and its predicted microwave and infrared spectra. Phys. Chem. Chem. Phys. 10:4128–37
    [Google Scholar]
  64. 64. 
    Stone AJ. 2013. The Theory of Intermolecular Forces Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  65. 65. 
    Stone AJ. 2005. Distributed multipole analysis: stability for large basis sets. J. Chem. Theory Comput. 1:1128–32
    [Google Scholar]
  66. 66. 
    Hapka M, Zuchowski P, Szcześniak M, Chałasiński G. 2012. Symmetry-adapted perturbation theory based on unrestricted Kohn–Sham orbitals for high-spin open-shell van der Waals complexes. J. Chem. Phys. 137:164104
    [Google Scholar]
  67. 67. 
    Garcia J, Podeszwa R, Szalewicz K. 2020. SAPT codes for calculations of intermolecular interaction energies. J. Chem. Phys. 152:184109
    [Google Scholar]
  68. 68. 
    Xu C, Jiang B, Xie D, Farantos S, Lin S, Guo H. 2007. Analysis of the HO2 vibrational spectrum on an accurate ab initio potential energy surface. J. Phys. Chem. A 111:10353–61
    [Google Scholar]
  69. 69. 
    Ishida T, Schatz G. 1999. A local interpolation scheme using no derivatives in quantum-chemical calculations. Chem. Phys. Lett. 314:369–75
    [Google Scholar]
  70. 70. 
    Maisuradze G, Thompson D. 2003. Interpolating moving least-squares methods for fitting potential energy surfaces: illustrative approaches and applications. J. Phys. Chem. A 107:7118–24
    [Google Scholar]
  71. 71. 
    Dawes R, Thompson D, Guo Y, Wagner A, Minkoff M. 2007. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points. J. Chem. Phys. 126:184108
    [Google Scholar]
  72. 72. 
    Ischtwan J, Collins M. 1994. Molecular PESs by interpolation. J. Chem. Phys. 100:8080–88
    [Google Scholar]
  73. 73. 
    Ho TS, Rabitz H. 2003. Reproducing kernel Hilbert space interpolation methods as a paradigm of HDMR: application to multidimensional PES construction. J. Chem. Phys. 119:6433–42
    [Google Scholar]
  74. 74. 
    Christianen A, Karman T, Vargas-Hernández R, Groenenboom G, Krems R. 2019. Six-dimensional potential energy surface for NaK–NaK collisions: Gaussian process representation with correct asymptotic form. J. Chem. Phys. 150:064106
    [Google Scholar]
  75. 75. 
    Uteva E, Graham R, Wilkinson R, Wheatley R. 2018. Active learning in Gaussian process interpolation of potential energy surfaces. J. Chem. Phys. 149:174114
    [Google Scholar]
  76. 76. 
    Nguyen T, Székely E, Imbalzano G, Behler J, Csányi G et al. 2018. Comparison of PIPs, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions. J. Chem. Phys. 148:241725
    [Google Scholar]
  77. 77. 
    Manzhos S, Wang X-G, Dawes R, Carrington T. 2006. A nested molecule-independent neural network approach for high-quality potential fits. J. Phys. Chem. A 110:5295–304
    [Google Scholar]
  78. 78. 
    Manzhos S, Dawes R, Carrington T Jr. 2015. Neural network-based approaches for building high dimensional and quantum dynamics–friendly PESs. Int. J. Quantum Chem. 115:1012–20
    [Google Scholar]
  79. 79. 
    Brown A, Pradhan E. 2017. Fitting potential energy surfaces to sum-of-products form with neural networks using exponential neurons. J. Theor. Comput. Chem. 16:1730001
    [Google Scholar]
  80. 80. 
    Dral PO, Owens A, Yurchenko SN, Thiel W. 2017. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels. J. Chem. Phys. 146:244108
    [Google Scholar]
  81. 81. 
    Qu C, Yu Q, Bowman J. 2018. Permutationally invariant potential energy surfaces. Annu. Rev. Phys. Chem. 69:151–75
    [Google Scholar]
  82. 82. 
    Li J, Jiang B, Guo H. 2013. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems. J. Chem. Phys. 139:204103
    [Google Scholar]
  83. 83. 
    Shao K, Chen J, Zhao Z, Zhang D. 2016. Fitting potential energy surfaces with fundamental invariant neural network. J. Chem. Phys. 145:071101
    [Google Scholar]
  84. 84. 
    Bender J, Doraiswamy S, Truhlar D, Candler G. 2014. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: method and application to N4. J. Chem. Phys. 140:054302
    [Google Scholar]
  85. 85. 
    Majumder M, Hegger SE, Dawes R, Manzhos S, Wang XG, Carrington T Jr. 2015. Explicitly correlated MRCI-F12 potential energy surfaces for methane fit with several permutation invariant schemes and full-dimensional vibrational calculations. Mol. Phys. 113:1823–33
    [Google Scholar]
  86. 86. 
    Noé F, Tkatchenko A, Müller K-R, Clementi C. 2020. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71:361–90
    [Google Scholar]
  87. 87. 
    Abbott A, Turney J, Zhang B, Smith D, Altarawy D, Schaefer H III 2019. PES-Learn: an open-source software package for the automated generation of machine learning models of molecular potential energy surfaces. J. Chem. Theory Comput. 15:4386–98
    [Google Scholar]
  88. 88. 
    Dawes R, Quintas-Sánchez E. 2018. The construction of ab initio–based potential energy surfaces. Reviews in Computational ChemistryVol. 31:ed. AL Parrill, KB Lipkowitz, pp. 199–263 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  89. 89. 
    Kamath A, Vargas-Hernández R, Krems R, Carrington T Jr., Manzhos S. 2018. Neural networks versus Gaussian process regression for representing potential energy surfaces: a comparative study of fit quality and vibrational spectrum accuracy. J. Chem. Phys. 148:241702
    [Google Scholar]
  90. 90. 
    Dawes R, Wagner A, Thompson D. 2009. Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces. J. Phys. Chem. A 113:4709–21
    [Google Scholar]
  91. 91. 
    Dawes R, Wang X-G, Jasper A, Carrington T Jr. 2010. Nitrous oxide dimer: a new potential energy surface and rovibrational spectrum of the nonpolar isomer. J. Chem. Phys. 133:134304
    [Google Scholar]
  92. 92. 
    Brown J, Wang X-G, Carrington T Jr., Grubbs GS, Dawes R. 2014. Computational study of the rovibrational spectrum of CO2–CS2. J. Chem. Phys. 140:114303
    [Google Scholar]
  93. 93. 
    Pandey A, Poirier B. 2020. An algorithm to find (and plug) ``holes'' in multi-dimensional surfaces. J. Chem. Phys. 152:214102
    [Google Scholar]
  94. 94. 
    Quintas-Sánchez E, Dawes R. 2019. AUTOSURF: a freely available program to construct potential energy surfaces. J. Chem. Inf. Model. 59:262–71
    [Google Scholar]
  95. 95. 
    Metz M, Szalewicz K, Sarka J, Tóbiás R, Császár A, Mátyus E. 2019. Molecular dimers of methane clathrates: ab initio potential energy surfaces and variational vibrational states. Phys. Chem. Chem. Phys. 21:13504–25
    [Google Scholar]
  96. 96. 
    Győri T, Czako G. 2019. Automating the development of high-dimensional reactive potential energy surfaces with the ROBOSURFER program system. J. Chem. Theory Comput. 16:51–66
    [Google Scholar]
  97. 97. 
    Brown J, Wang X-G, Dawes R, Carrington T Jr. 2012. Computational study of the rovibrational spectrum of (OCS)2. J. Chem. Phys. 136:134306
    [Google Scholar]
  98. 98. 
    Wang X-G, Carrington T Jr., Dawes R. 2016. Computational study of the rovibrational spectrum of (CO2)2. J. Mol. Spectrosc. 330:179–87
    [Google Scholar]
  99. 99. 
    Donoghue G, Wang X-G, Dawes R, Carrington T Jr. 2016. Computational study of the rovibrational spectra of CO2–C2H2 and CO2–C2D2. J. Mol. Spectrosc. 330:170–78
    [Google Scholar]
  100. 100. 
    Dawes R, Wang X-G, Carrington T Jr. 2013. CO dimer: new potential energy surface and rovibrational calculations. J. Phys. Chem. A 117:7612–30
    [Google Scholar]
  101. 101. 
    Walker K, Dumouchel F, Lique F, Dawes R. 2016. The first PESs for the C6H–H2 and C6H–He collisional systems and their corresponding inelastic cross sections. J. Chem. Phys. 145:024314
    [Google Scholar]
  102. 102. 
    Barton EJ, Yurchenko SN, Tennyson J, Clausen S, Fateev A. 2015. High-resolution absorption measurements of NH3 at high temperatures: 500–2100 cm−1. J. Quant. Spectrosc. Radiat. Transf. 167:126–34
    [Google Scholar]
  103. 103. 
    Barton EJ, Polyansky OL, Yurchenko SN, Tennyson J, Civiš S et al. 2017. Absorption spectra of ammonia near 1 μm. J. Quant. Spectrosc. Radiat. Transf. 203:392–97
    [Google Scholar]
  104. 104. 
    Barton EJ, Yurchenko SN, Tennyson J, Clausen S, Fateev A. 2017. High-resolution absorption measurements of NH3 at high temperatures: 2100–5500 cm−1. J. Quant. Spectrosc. Radiat. Transf. 189:60–65
    [Google Scholar]
  105. 105. 
    Gordon IE, Rothman L, Hill C, Kochanov R, Tan Y et al. 2017. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203:3–69105. HITRAN is an extensive spectroscopic database combining data from both theoretical predictions and experimental measurements.
    [Google Scholar]
  106. 106. 
    Ayouz M, Babikov D. 2013. Global permutationally invariant potential energy surface for ozone forming reaction. J. Chem. Phys. 138:164311
    [Google Scholar]
  107. 107. 
    Mikhailenko S, Barbe A. 2020. High resolution infrared spectrum of 16O3: the 3600–4300 cm−1 range reinvestigated. J. Quant. Spectrosc. Radiat. Transf. 244:106823
    [Google Scholar]
  108. 108. 
    Coles P, Yurchenko S, Tennyson J. 2019. ExoMol molecular line lists. XXXV. A rotation-vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490:4638–47
    [Google Scholar]
  109. 109. 
    Darby-Lewis D, Shah H, Joshi D, Khan F, Kauwo M et al. 2019. MARVEL analysis of the measured high-resolution spectra of 14NH. J. Mol. Spectrosc. 362:69–76
    [Google Scholar]
  110. 110. 
    Furtenbacher T, Coles P, Tennyson J, Yurchenko SN, Yu S et al. 2020. Empirical rovibrational energy levels of ammonia up to 7500 cm−1. J. Quant. Spectrosc. Radiat. Transf. 251:107027
    [Google Scholar]
  111. 111. 
    Ndengué S, Dawes R, Wang X-G, Carrington T Jr., Sun Z, Guo H. 2016. Calculated vibrational states of ozone up to dissociation. J. Chem. Phys. 144:074302
    [Google Scholar]
  112. 112. 
    Wang X-G, Carrington T Jr. 2020. A variational calculation of vibrational levels of vinyl radical. J. Chem. Phys. 152:204311
    [Google Scholar]
  113. 113. 
    Yu H-G. 2016. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion. J. Chem. Phys. 145:084109
    [Google Scholar]
  114. 114. 
    Zhao Z, Chen J, Zhang Z, Zhang DH, Lauvergnat D, Gatti F. 2016. Full-dimensional vibrational calculations of five-atom molecules using a combination of Radau and Jacobi coordinates: applications to methane and fluoromethane. J. Chem. Phys. 144:204302
    [Google Scholar]
  115. 115. 
    Carrington T Jr. 2017. Computing (ro-)vibrational spectra of molecules with more than four atoms. J. Chem. Phys. 146:120902
    [Google Scholar]
  116. 116. 
    Yurchenko S, Yachmenev A, Ovsyannikov R. 2017. Symmetry-adapted ro-vibrational basis functions for variational nuclear motion calculations: TROVE approach. J. Chem. Theory Comput. 13:4368–81
    [Google Scholar]
  117. 117. 
    Pandey A, Poirier B. 2019. Using phase-space Gaussians to compute the vibrational states of OCHCO+. J. Chem. Phys. 151:014114
    [Google Scholar]
  118. 118. 
    Avila G, Mátyus E. 2019. Toward breaking the curse of dimensionality in (ro)vibrational computations of molecular systems with multiple large-amplitude motions. J. Chem. Phys. 150:174107
    [Google Scholar]
  119. 119. 
    Avila G, Matyus E. 2019. Full-dimensional (12D) variational vibrational states of CH4·F: interplay of anharmonicity and tunneling. J. Chem. Phys. 151:154301
    [Google Scholar]
  120. 120. 
    Rey M, Nikitin A, Campargue A, Kassi S, Mondelain D, Tyuterev V. 2016. Ab initio variational predictions for understanding highly congested spectra: rovibrational assignment of 108 new methane subbands in the icosad range. Phys. Chem. Chem. Phys. 18:176–89
    [Google Scholar]
  121. 121. 
    Kumar P, Poirier B. 2019. The J-dependent rotational Hamiltonian method for analyzing rovibrational spectra: application to HO2, H2O, and O3. Chem. Phys. Lett. 733:136700
    [Google Scholar]
  122. 122. 
    Csaszar A, Furtenbacher T, Arendas P. 2016. Small molecules and big data. J. Phys. Chem. A 120:8949–69
    [Google Scholar]
  123. 123. 
    Castro-Juárez E, Wang X-G, Carrington T Jr., Quintas-Sánchez E, Dawes R. 2019. Computational study of the ro-vibrational spectrum of CO–CO2. J. Chem. Phys. 151:084307
    [Google Scholar]
  124. 124. 
    Cybulski H, Henriksen C, Dawes R, Wang X-G, Bora N et al. 2018. Ab initio study of the CO–N2 complex: a new highly accurate intermolecular potential energy surface and rovibrational spectrum. Phys. Chem. Chem. Phys. 20:12624–36
    [Google Scholar]
  125. 125. 
    Walker KM, Lique F, Dawes R. 2018. Fine and hyperfine collisional excitation of C6H by He. Mon. Not. R. Astron. Soc. 473:1407–15
    [Google Scholar]
  126. 126. 
    Barclay AJ, McKellar ARW, Moazzen-Ahmadi N, Dawes R, Wang X-G, Carrington T Jr. 2018. Infrared spectrum and intermolecular potential energy surface of the CO–O2 dimer. Phys. Chem. Chem. Phys. 20:14431–40
    [Google Scholar]
  127. 127. 
    Sur S, Quintas-Sánchez E, Ndengué S, Dawes R. 2019. Development of a PES for the O3–Ar system: rovibrational states of the complex. Phys. Chem. Chem. Phys. 21:9168–80
    [Google Scholar]
  128. 128. 
    Quintas-Sánchez E, Dawes R, Lee K, McCarthy M. 2020. Automated construction of potential energy surfaces suitable to describe van der Waals complexes with highly-excited nascent molecules: the rotational spectra of Ar–CS(v) and Ar–SiS(v). J. Phys. Chem. A 124:4445–54
    [Google Scholar]
  129. 129. 
    Levine R. 2009. Molecular Reaction Dynamics Cambridge, UK: Cambridge Univ. Press129. Presents a thought-provoking, in-depth treatment of gas-phase reaction dynamics.
    [Google Scholar]
  130. 130. 
    Brouard M, Chadwick H, Eyles CJ, Aoiz FJ, Kłos J. 2011. The k-j-j′ vector correlation in inelastic and reactive scattering. J. Chem. Phys. 135:084305
    [Google Scholar]
  131. 131. 
    Truhlar D, Wyatt R. 1977. H + H2: potential-energy surfaces and elastic and inelastic scattering. In Advances in Chemical PhysicsVol. 36:, ed. I Prigogine, SA Rice, pp. 141–204 New York: John Wiley & Sons
    [Google Scholar]
  132. 132. 
    Zhou B, Yang B, Balakrishnan N, Kendrick B, Stancil P. 2020. Prediction of a Feshbach resonance in the below-the-barrier reactive scattering of vibrational excited HD with H. J. Phys. Chem. Lett. 11:4970–75
    [Google Scholar]
  133. 133. 
    Neumark D, Wodtke A, Robinson G, Hayden C, Lee Y. 1985. Molecular beam studies of the F+H2 reaction. J. Chem. Phys. 82:3045–66
    [Google Scholar]
  134. 134. 
    Alexander M, Werner H-J, Manolopoulos D. 1998. Spin-orbit effects in the reaction of F(2P) with H2. J. Chem. Phys. 109:5710–13
    [Google Scholar]
  135. 135. 
    Qiu M, Ren Z, Che L, Dai D, Harich S et al. 2006. Observation of Feshbach resonances in the F+H2→HF+H reaction. Science 311:1440–43
    [Google Scholar]
  136. 136. 
    Fu B, Shan X, Zhang D, Clary DC. 2017. Recent advances in quantum scattering calculations on polyatomic bimolecular reactions. Chem. Soc. Rev. 46:7625–49
    [Google Scholar]
  137. 137. 
    Maiti B, Schatz G. 2003. Theoretical studies of intersystem crossing effects in the O(3P, 1D)+H2 reaction. J. Chem. Phys. 119:12360–71
    [Google Scholar]
  138. 138. 
    Lendvay G, Schatz G. 2019. Quantum scattering theory for collisional energy transfer. Comp. Chem. Kinet. 43:63–107
    [Google Scholar]
  139. 139. 
    Ndengué S, Dawes R, Gatti F, Meyer H. 2017. Atom-triatom rigid rotor inelastic scattering with the multiconfiguration time dependent Hartree approach. Chem. Phys. Lett. 668:42–46
    [Google Scholar]
  140. 140. 
    Ndengué S, Scribano Y, Gatti F, Dawes R. 2019. State-to-state inelastic rotational cross sections in five-atom systems with the MCTDH method. J. Chem. Phys. 151:134301
    [Google Scholar]
  141. 141. 
    Sur S, Ndengué S, Quintas-Sánchez E, Bop B, Lique F, Dawes R. 2020. Rotationally inelastic scattering of O3-Ar: state-to-state rates with the multiconfigurational time dependent Hartree method. Phys. Chem. Chem. Phys. 22:1869–80
    [Google Scholar]
  142. 142. 
    Babikov D, Semenov A. 2016. Recent advances in development and applications of the mixed quantum/classical theory for inelastic scattering. J. Phys. Chem. A 120:319–31
    [Google Scholar]
  143. 143. 
    Desrousseaux B, Quintas-Sánchez E, Dawes R, Lique F. 2019. Collisional excitation of CF+ by H2: potential energy surface and rotational cross sections. J. Phys. Chem. A 123:9637–43
    [Google Scholar]
  144. 144. 
    Faure A, Dagdigian P, Rist C, Dawes R, Quintas-Sánchez E et al. 2019. Interaction of chiral propylene oxide (CH3CHCH2O) with helium: potential energy surface and scattering calculations. ACS Earth Space Chem 3:964–72
    [Google Scholar]
  145. 145. 
    Bop B, Batista-Romero F, Faure A, Quintas-Sánchez E, Dawes R, Lique F. 2019. Isomerism effects in the collisional excitation of cyanoacetylene by molecular hydrogen. ACS Earth Space Chem 3:1151–57
    [Google Scholar]
  146. 146. 
    Plomp V, Gao Z, Cremers T, Besemer M, van de Meerakker S. 2020. High-resolution imaging of molecular collisions using a Zeeman decelerator. J. Chem. Phys. 152:091103
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090519-051837
Loading
/content/journals/10.1146/annurev-physchem-090519-051837
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error