1932

Abstract

This is the story of a career in theoretical chemistry during a time of dramatic changes in the field due to phenomenal growth in the availability of computational power. It is likewise the story of the highly gifted graduate students and postdoctoral fellows that I was fortunate to mentor throughout my career. It includes reminiscences of the great mentors that I had and of the exciting collaborations with both experimentalists and theorists on which I built much of my research.

This is an account of the developments of exciting scientific disciplines in which I was involved: vibrational spectroscopy, molecular reaction mechanisms and dynamics, e.g., in atmospheric chemistry, and the prediction of new, exotic molecules, in particular noble gas molecules.

From my very first project to my current work, my career in science has brought me the excitement and fascination of research. What a wonderful pursuit!

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090519-124238
2021-04-20
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090519-124238.html?itemId=/content/journals/10.1146/annurev-physchem-090519-124238&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Gerber RB, Karplus M. 1970. Determination of the phase of the scattering amplitude from the differential cross section. Phys. Rev. D 1:998–1012
    [Google Scholar]
  2. 2. 
    Newton RG. 1968. Determination of scattering amplitude from differential cross section by unitarity. J. Math. Phys. 9:2050–55
    [Google Scholar]
  3. 3. 
    Newton RG. 1982. Scattering Theory of Waves and Particles New York: Springer-Verlag 2nd ed.
    [Google Scholar]
  4. 4. 
    Buck U. 1974. Inversion of molecular scattering data. Rev. Mod. Phys. 46:369–89
    [Google Scholar]
  5. 5. 
    Gerber RB, Shapiro M. 1976. A numerical method for the determination of atom–atom scattering amplitudes from the measured differential cross sections. Chem. Phys. 13:227–33
    [Google Scholar]
  6. 6. 
    Shapiro M, Gerber RB. 1976. Extraction of interaction potentials from the elastic scattering amplitudes: an accurate quantum-mechanical procedure. Chem. Phys. 13:235–42
    [Google Scholar]
  7. 7. 
    Gerber RB, Shapiro M, Buck U, Schleusener J 1978. Quantum-mechanical inversion of the differential cross section: determination of the He-Ne potential. Phys. Rev. Lett. 41:236–39
    [Google Scholar]
  8. 8. 
    Gerber RB, Buch V, Buck U 1980. Direct inversion method for obtaining anisotropic potentials from rotationally inelastic and elastic cross sections. J. Chem. Phys. 72:3596–603
    [Google Scholar]
  9. 9. 
    Gerber RB, Buch V, Buck U, Maneke G, Schleusener J 1980. Direct inversion of rotationally inelastic cross sections: determination of the anisotropic Ne-D2 potential. Phys. Rev. Lett. 44:1397–400
    [Google Scholar]
  10. 10. 
    Bondybey VE, Brus E. 1975. Interdependence of guest radiationless transitions and localized phonon structure: NH and ND(A3Π) in rare gas lattices. J. Chem. Phys. 63:794–804
    [Google Scholar]
  11. 11. 
    Abouaf-Marguin L, Gauthier-Roy B, Legay F 1978. Vibrational relaxation of CH3F and CD3F in a krypton matrix at low temperatures. Influence of rotation. Phys. Chem. Chem. Phys. 82:125–26
    [Google Scholar]
  12. 12. 
    Berkowitz M, Gerber RB. 1977. Vibrational relaxation of molecules in solids: the role of rotational and of translational modes. Chem. Phys. Lett. 49:260–64
    [Google Scholar]
  13. 13. 
    Gerber RB, Berkowitz M. 1977. Role of rotational and translational local modes in vibrational relaxation in solids: a study of NH and ND in Ar. Phys. Rev. Lett. 39:1000–4
    [Google Scholar]
  14. 14. 
    Berkowitz M, Gerber RB. 1979. Theory of vibrational relaxation in solids: the competition between local phonon and roton receiving modes. Chem. Phys. 37:369–88
    [Google Scholar]
  15. 15. 
    Gerber RB, Ratner MA. 1979. A semiclassical self-consistent field (SC-SCF) approximation for eigenvalues of coupled-vibration systems. Chem. Phys. Lett. 68:195–98
    [Google Scholar]
  16. 16. 
    Bowman JM. 1978. Self-consistent field energies and wavefunctions for coupled oscillators. J. Chem. Phys. 68:608–10
    [Google Scholar]
  17. 17. 
    Gerber RB, Yinnon AT, Murrell JN 1978. Sudden decoupling approximations for atom-surface scattering. Chem. Phys. 31:1–9
    [Google Scholar]
  18. 18. 
    Gerber RB, Yinnon AT, Shimoni Y, Kouri DJ 1980. Rotationally inelastic molecule–surface scattering in the sudden approximation. J. Chem. Phys. 73:4397–412
    [Google Scholar]
  19. 19. 
    Gerber RB, Beard LH, Kouri DJ 1981. Vibrational deactivation of diatomic molecules by collisions with solid surfaces. J. Chem. Phys. 74:4709–25
    [Google Scholar]
  20. 20. 
    Proctor TR, Kouri DJ, Gerber RB 1984. ΔMj transitions in homonuclear molecule surface scattering off corrugated surfaces. Square and rectangular lattice symmetry and purely repulsive interaction. J. Chem. Phys. 80:3845–58
    [Google Scholar]
  21. 21. 
    Gerber RB, Elber R. 1984. Centrifugal mechanism for molecular dissociation in high-energy collisions with solid surfaces. Chem. Phys. Lett. 107:141–44
    [Google Scholar]
  22. 22. 
    Kolodney E, Amirav A, Elber R, Gerber RB 1984. Energy transfer and dissociation in collisions of I2 with MgO(100). Chem. Phys. Lett. 111:366–71
    [Google Scholar]
  23. 23. 
    Kolodney E, Amirav A, Elber R, Gerber RB 1985. Large energy transfer in hyperthermal heavy-atom–surface scattering: a study of Hg/MgO(100). Chem. Phys. Lett. 113:303–6
    [Google Scholar]
  24. 24. 
    Elber R, Gerber RB. 1985. Excitation of molecular rotation and of solid vibrations in high-energy collisions of I2 with MgO(100). Chem. Phys. Lett. 119:269–74
    [Google Scholar]
  25. 25. 
    Kolodney E, Amirav A, Elber R, Gerber RB 1984. Dissociation and energy transfer in molecular impact on surfaces: experimental and theoretical studies of I2/MgO(100) and I2/sapphire. Surf. Sci. 148:153–54
    [Google Scholar]
  26. 26. 
    Gerber RB, Buch V, Ratner MA 1982. Time-dependent self-consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules. J. Chem. Phys. 77:3022–30
    [Google Scholar]
  27. 27. 
    Schatz GC, Buch V, Ratner MA, Gerber RB 1983. Dissociation dynamics of vibrationally excited van der Waals clusters: I2XY → I2 + X + Y (X,Y = He, Ne). J. Chem. Phys. 79:1808–22
    [Google Scholar]
  28. 28. 
    Alimi R, Gerber RB, Hammerich AD, Kosloff R, Ratner MA 1990. Validity of time-dependent self-consistent field (TDSCF) approximation for unimolecular dynamics: a test for photodissociation of the Xe–HI cluster. J. Chem. Phys. 93:6484–90
    [Google Scholar]
  29. 29. 
    Makri N, Miller WH. 1987. Time-dependent self-consistent field (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: single and multiple configuration treatments. J. Chem. Phys. 87:5781–87
    [Google Scholar]
  30. 30. 
    Gerber RB, Ratner MA, Buch V 1982. Simplified time-dependent self-consistent field approximation for intramolecular dynamics. Chem. Phys. Lett. 91:173–77
    [Google Scholar]
  31. 31. 
    Meyer HD, Manthe U, Cederbaum LS 1990. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165:73–78
    [Google Scholar]
  32. 32. 
    Manthe U, Meyer HD, Cederbaum LS 1992. Wave-packet dynamics within the multiconfiguration Hartree framework: general aspects and applications to NOCl. J. Chem. Phys. 97:3159–213
    [Google Scholar]
  33. 33. 
    Beck MH, Jäckle A, Worth GA, Meyer HD 2000. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324:1–105
    [Google Scholar]
  34. 34. 
    Gersten JI, Gerber RB, Dacol DK, Rabitz HA 1983. Molecular scattering from disordered surfaces in the sudden approximation. J. Chem. Phys. 78:4277–87
    [Google Scholar]
  35. 35. 
    Yinnon AT, Gerber RB, Dacol DK, Rabitz H 1986. The sudden approximation for scattering from noncrystalline surfaces: applications to models of adsorbed impurities and to mixed overlayers. J. Chem. Phys. 84:5955–60
    [Google Scholar]
  36. 36. 
    Gerber RB, Yinnon AT, Kosloff R 1984. Effects of isolated impurities on atom scattering from crystalline surfaces: exact quantum-mechanical calculations. Chem. Phys. Lett. 105:523–26
    [Google Scholar]
  37. 37. 
    Yinnon AT, Kosloff R, Gerber RB 1988. Atom scattering from isolated absorbates on surfaces: rainbows, diffraction interferences and trapping resonances. J. Chem. Phys. 88:7209–20
    [Google Scholar]
  38. 38. 
    Yinnon AT, Kosloff R, Gerber RB, Poelsema B, Comsa G 1988. Cross sections for He scattering from surface imperfections: vacancies and CO adsorbates on Pt(111). J. Chem. Phys. 88:3722–31
    [Google Scholar]
  39. 39. 
    Kirson Z, Gerber RB, Nitzan A 1983. Excitation and emission of metal electrons in atom-surface collisions. Surf. Sci. 124:279–96
    [Google Scholar]
  40. 40. 
    Kirson Z, Gerber RB, Nitzan A, Ratner MA 1984. Dynamics of metal electron excitation in atom–surface collisions: a quantum wave packet approach. Surf. Sci. 137:527–50
    [Google Scholar]
  41. 41. 
    Kirson Z, Gerber RB, Nitzan A, Ratner MA 1985. Dynamics of metal electron excitation in molecular dipole–surface collisions. Surf. Sci. 151:531–42
    [Google Scholar]
  42. 42. 
    Whaley KB, Nitzan A, Gerber RB 1986. Quantum diffusion of hydrogen on metal surfaces. J. Chem. Phys. 84:5181–95
    [Google Scholar]
  43. 43. 
    Alimi R, Gerber RB, Apkarian VA 1988. Dynamics of molecular reactions in solids: photodissociation of HI in crystalline Xe. J. Chem. Phys. 89:174–83
    [Google Scholar]
  44. 44. 
    Alimi R, Brokman A, Gerber RB 1989. Molecular dynamics simulations of reactions in solids: photodissociation of Cl2 in crystalline Xe. J. Chem. Phys. 91:1611–17
    [Google Scholar]
  45. 45. 
    Alimi R, Gerber RB, Apkarian VA 1990. Dynamics of molecular reactions in solids: photodissociation of F2 in crystalline Ar. J. Chem. Phys. 92:3551–58
    [Google Scholar]
  46. 46. 
    Alimi R, Gerber RB, Apkarian VA 1991. Photodissociation dynamics of F2 in solid Kr: theory versus experiment. Phys. Rev. Lett. 66:1295–97
    [Google Scholar]
  47. 47. 
    Alimi R, Gerber RB, McCaffrey JG, Kunz H, Schwentner N 1992. Delayed and direct cage exit in photodissociation of Cl2 in solid Ar. Phys. Rev. Lett. 69:856–59
    [Google Scholar]
  48. 48. 
    Alimi R, Apkarian VA, Gerber RB 1993. Effect of pressure on molecular photodissociation in matrices: molecular dynamics simulations of Cl2 in Xe. J. Chem. Phys. 98:331–35
    [Google Scholar]
  49. 49. 
    Krylov AI, Gerber RB. 1994. Photodissociation of ICN in solid and liquid Ar: dynamics of the cage effect and of excited-state isomerization. J. Chem. Phys. 100:4242–52
    [Google Scholar]
  50. 50. 
    Gerber RB, Alimi R. 1990. Quantum effects in molecular reaction dynamics in solids: photodissociation of HI in solid Xe. Chem. Phys. Lett. 173:393–96
    [Google Scholar]
  51. 51. 
    Ellison FO. 1963. A method of diatomics in molecules. I. General formulation and application to H2O. J. Am. Chem. Soc. 85:3540–44
    [Google Scholar]
  52. 52. 
    Krylov AI, Gerber RB, Coalson RD 1996. Nonadiabatic dynamics and electronic energy relaxation of Cl2 atoms in solid Ar. J. Chem. Phys. 105:4626–35
    [Google Scholar]
  53. 53. 
    Tully JC. 1990. Molecular dynamics with electronic transitions. J. Chem. Phys. 93:1061–71
    [Google Scholar]
  54. 54. 
    Krylov AI, Gerber RB. 1997. Photodissociation dynamics of HCl in solid Ar: cage exit, nonadiabatic transitions and recombination. J. Chem. Phys. 106:6574–87
    [Google Scholar]
  55. 55. 
    Niv MY, Bargheer M, Gerber RB 2000. Photodissociation and recombination of F2 molecules in Ar54 clusters: nonadiabatic molecular dynamics simulations. J. Chem. Phys. 113:6660–72
    [Google Scholar]
  56. 56. 
    Bargheer M, Niv MY, Gerber RB, Schwentner N 2002. Ultrafast solvent-induced spin-flip and non-adiabatic coupling: ClF in argon solids. Phys. Rev. Lett. 89:108301
    [Google Scholar]
  57. 57. 
    Bargheer M, Cohen A, Gerber RB, Gühr M, Korolkov MV et al. 2007. Dynamics of electronic states and spin-flip for photodissociation of dihalogens in matrices: experiment, semiclassical surface-hopping and quantum model simulations for F2 and ClF in solid Ar. J. Phys. Chem. A 111:9573–85
    [Google Scholar]
  58. 58. 
    Segall J, Wen Y, Singer R, Wittig C, García-Vela A, Gerber RB 1993. Evidence for a cage effect in the UV photolysis of HBr in Ar·HBr. Theoretical and experimental results. Chem. Phys. Lett. 207:504–9
    [Google Scholar]
  59. 59. 
    García-Vela A, Gerber RB, Imre DG 1992. Mixed quantum wavepacket/classical trajectory treatment of the photodissociation process Ar·HCl → Ar+H+Cl. J. Chem. Phys. 97:7242–50
    [Google Scholar]
  60. 60. 
    García-Vela A, Gerber RB. 1993. Hybrid quantum/semiclassical wavepacket method for molecular dynamics: applications to photolysis of Ar·HCl. J. Chem. Phys. 98:427–36
    [Google Scholar]
  61. 61. 
    García-Vela A, Gerber RB, Imre DG, Valentini JJ 1993. Resonances in the photolysis of HCl in Ar·HCl: imaging of a resonance wavefunction in the photofragment angular distribution. Phys. Rev. Lett. 71:931–34
    [Google Scholar]
  62. 62. 
    Alimi R, Gerber RB. 1990. Solvation effects on chemical reaction dynamics in clusters: photodissociation of HI in XeNHI. Phys. Rev. Lett. 64:1453–56
    [Google Scholar]
  63. 63. 
    Niv MY, Krylov AI, Gerber RB, Buck U 1999. Photodissociation of HCl adsorbed on the surface of a cluster: nonadiabatic molecular dynamics simulations. J. Chem. Phys. 110:11047–53
    [Google Scholar]
  64. 64. 
    Baumfalk R, Nahler NH, Buck U, Niv MY, Gerber RB 2000. Photodissociation of HBr adsorbed on the surface and embedded in large clusters. J. Chem. Phys. 113:329–38
    [Google Scholar]
  65. 65. 
    Gerber RB, McCoy AB, García-Vela A 1994. Photochemical reactions in weakly bound clusters. Ann. Rev. Phys. Chem. 45:275–314
    [Google Scholar]
  66. 66. 
    McCoy AB, Hurwitz Y, Gerber RB 1993. Dynamics of photo-induced reactions in hydrogen-bonded clusters: classical studies of the photodissociation of (HCl)2. J. Phys. Chem. 97:12516–22
    [Google Scholar]
  67. 67. 
    McCoy AB, Gerber RB, Ratner MA 1994. A quantitative approximation for the quantum dynamics of hydrogen transfer: transition state dynamics and decay in ClHCl. J. Chem. Phys. 101:1975–87
    [Google Scholar]
  68. 68. 
    Shahi A, McCaslin LM, Albeck Y, Continetti RE, Gerber RB, Strasser D 2018. Double photodetachment of F(H2O): experimental and theoretical studies. J. Phys. Chem. Lett. 9:6808–13
    [Google Scholar]
  69. 69. 
    Gerber RB, Ratner MA. 1988. Self-consistent field methods for vibrational excitation in polyatomic systems. Adv. Chem. Phys. 70:97–132
    [Google Scholar]
  70. 70. 
    Bacic Z, Gerber RB, Ratner MA 1986. Vibrational levels and tunneling dynamics by the optimal coordinates, self-consistent field (OC-SCF) method: a study of HCN ↔ HNC. J. Phys. Chem. 90:3606–12
    [Google Scholar]
  71. 71. 
    Horn TR, Gerber RB, Ratner MA 1989. Vibrational states of very floppy clusters: approximate separability and the choice of good curvilinear coordinates for XeHe2, I2He. J. Chem. Phys. 91:1813–23
    [Google Scholar]
  72. 72. 
    Horn TR, Gerber RB, Valentini JJ, Ratner MA 1991. Vibrational states and structure of Ar3: the role of 3-body forces. J. Chem. Phys. 94:6728–36
    [Google Scholar]
  73. 73. 
    Jung JO, Gerber RB. 1996. Vibrational wavefunctions and energy levels of large anharmonic clusters: a vibrational SCF study of Ar13. J. Chem. Phys. 105:10682–90
    [Google Scholar]
  74. 74. 
    Jung JO, Gerber RB. 1996. Vibrational wavefunctions and spectroscopy of (H2O)n, n = 2,3,4,5: vibrational self-consistent field with correlation corrections. J. Chem. Phys. 105.10332–47
    [Google Scholar]
  75. 75. 
    Ratner MA, Buch V, Gerber RB 1980. The semiclassical self-consistent-field approach to energy levels of coupled vibrational modes. II. The semiclassical state-interaction procedure. Chem. Phys. 53:345–56
    [Google Scholar]
  76. 76. 
    Bowman JM, Christoffel KM. 1982. Investigation of self-consistent field, SDF-SI and virtual state configuration interaction vibrational energies for a model 3 mode system. Chem. Phys. Lett. 85:220–24
    [Google Scholar]
  77. 77. 
    Christiansen O. 2004. Vibrational coupled cluster theory. J. Chem. Phys. 120:2149–59
    [Google Scholar]
  78. 78. 
    Christiansen O. 2007. Vibrational structure theory: new vibrational wave function methods for calculations of anharmonic vibrational energies and vibrational contributions to molecular properties. Phys. Chem. Chem. Phys. 23:2942–53
    [Google Scholar]
  79. 79. 
    Norris LS, Ratner MA, Roitberg AE, Gerber RB 1996. Moller-Plesset perturbation theory applied to vibrational problems. J. Chem. Phys. 106:11261–67
    [Google Scholar]
  80. 80. 
    Chaban GM, Jung JO, Gerber RB 1999. Ab initio calculation of anharmonic vibrational states of polyatomic systems: electronic structure combined with vibrational self-consistent field. J. Chem. Phys. 111:1823–29
    [Google Scholar]
  81. 81. 
    Chaban GM, Jung JO, Gerber RB 2000. Anharmonic vibrational spectroscopy of hydrogen-bonded systems directly computed from ab initio potential surfaces: (H2O)n, n = 2,3; Cl(H2O)n, n = 1,2; H+(H2O)n, n = 1,2; H2O-CH3OH. J. Phys. Chem. A 104:2772–79
    [Google Scholar]
  82. 82. 
    Lundell J, Chaban GM, Gerber RB 2000. Combined ab initio and anharmonic vibrational spectroscopy calculations for rare-gas containing fluorohydrides, HRgF. Chem. Phys. Lett. 331:308–16
    [Google Scholar]
  83. 83. 
    Gregurick SK, Chaban GM, Gerber RB 2002. Ab initio and improved empirical potentials for the calculation of the anharmonic vibrational states and intramolecular mode coupling of N-methylacetamide. J. Phys. Chem. A 106:8696–707
    [Google Scholar]
  84. 84. 
    Nejgic B, Gordon MS. 2006. Exploring the effect of anharmonicity of molecular vibrations on thermodynamic properties. J. Chem. Phys. 125:224102
    [Google Scholar]
  85. 85. 
    Matsunaga N, Chaban GM, Gerber RB 2002. Degenerate perturbation theory corrections for the vibrational self-consistent field approximations: method and applications. J. Chem. Phys. 117:3541–47
    [Google Scholar]
  86. 86. 
    Roitberg A, Gerber RB, Elber R, Ratner MA 1995. Anharmonic wave functions of proteins: quantum self-consistent field calculations of BPTI. Science 268:1319–22
    [Google Scholar]
  87. 87. 
    Chaban GM, Jung JO, Gerber RB 2000. The anharmonic vibrational spectroscopy of glycine: testing of ab initio and empirical potentials. J. Phys. Chem. A 104:10035–44
    [Google Scholar]
  88. 88. 
    Chaban GM, Gerber RB. 2001. Anharmonic vibrational spectroscopy of the glycine–water complex: calculations for ab initio, empirical, and hybrid quantum mechanics/molecular mechanics potentials. J. Chem. Phys. 115:1340–48
    [Google Scholar]
  89. 89. 
    Brauer B, Gerber RB, Kabeláč M, Hobza P, Bakker JM et al. 2005. Vibrational spectroscopy of the G·C base pair: experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings. J. Phys. Chem. A 109:6974–84
    [Google Scholar]
  90. 90. 
    Chaban GM, Xantheas SS, Gerber RB 2003. Anharmonic vibrational spectroscopy of the F(H2O)n complexes, n = 1,2. J. Phys. Chem. A 107:4952–56
    [Google Scholar]
  91. 91. 
    Pele L, Gerber RB. 2008. On the number of significant mode-mode anharmonic couplings in vibrational calculations: correlation-corrected vibrational self-consistent field treatment of di-, tri-, and tetrapeptides. J. Chem. Phys. 128:16165105
    [Google Scholar]
  92. 92. 
    Roy TK, Gerber RB. 2013. Vibrational self-consistent field calculations for spectroscopy of biological molecules: new algorithmic developments and applications. Phys. Chem. Chem. Phys. 15:9462–68
    [Google Scholar]
  93. 93. 
    Roy TK, Kopysov V, Nagonova NS, Rizzo TR, Boyarkin OV, Gerber RB 2015. Conformational structures of a decapeptide validated by first-principles calculations and cold ion spectroscopy. Chem. Phys. Chem. 16:1374–78
    [Google Scholar]
  94. 94. 
    Roy TK, Nagornova N, Boyarkin OV, Gerber RB 2017. A decapeptide hydrated by two waters: conformers determined by theory and validated by cold ion spectroscopy. J. Phys. Chem. A 121:9401–7
    [Google Scholar]
  95. 95. 
    Roy TK, Kopysou V, Pereverzev A, Šebek J, Gerber RB, Boyarkin OV 2018. Intrinsic structure of pentapeptide Leu-enkephalin: geometry optimization and validation by comparison of VSCF-PT2 calculations with cold ion spectroscopy. Phys. Chem. Chem. Phys. 20:24894–901
    [Google Scholar]
  96. 96. 
    Roy TK, Sharma R, Gerber RB 2016. First-principles anharmonic quantum calculations for peptide spectroscopy: VSCF calculations and comparisons with experiment. Phys. Chem. Chem. Phys. 18:1607–14
    [Google Scholar]
  97. 97. 
    Gaigeot M-P. 2010. Theoretical spectroscopy of floppy peptides at room temperature. A DFTMD perspective: gas and aqueous phase. Phys. Chem. Chem. Phys. 12:3336–59
    [Google Scholar]
  98. 98. 
    Bakels S, Gaigeot M-P, Rijs AM 2020. Gas-phase spectroscopy of neutral peptides: insights from the far-IR and THz domain. Chem. Rev. 120:3233–60
    [Google Scholar]
  99. 99. 
    Simons JP, Jockusch RA, Çarçabal P, Hünig I, Kroemer RT et al. 2005. Sugars in the gas phase. Spectroscopy, conformation, hydration, co-operativity and selectivity. Int. Rev. Phys. Chem. 24:489–531
    [Google Scholar]
  100. 100. 
    Pincu M, Cocinero EJ, Mayorkas N, Brauer B, Davis BG et al. 2011. Isotopic hydration of cellobiose: vibrational spectroscopy and dynamics simulation. J. Phys. Chem. A 115:9498–509
    [Google Scholar]
  101. 101. 
    Jin L, Simons JP, Gerber RB 2012. Monosaccharide-water complexes: vibrational spectroscopy and anharmonic potentials. J. Phys. Chem. A 116:11088–94
    [Google Scholar]
  102. 102. 
    Brauer B, Pincu M, Buch V, Bar I, Simons JP, Gerber RB 2011. Vibrational spectra of α-glucose, β-glucose and sucrose: anharmonic calculations and experiment. J. Phys. Chem. A 115:5859–72
    [Google Scholar]
  103. 103. 
    Rudić S, Xie H-B, Gerber RB, Simons JP 2012. Protonated sugars: vibrational spectroscopy and conformational structure of protonated O-methyl α-D-galactopyranoside. Mol. Phys. 110:609–15
    [Google Scholar]
  104. 104. 
    Xie H-B, Jin L, Rudić S, Simons JP, Gerber RB 2012. Computational studies of protonated β-d-galactose and its hydrated complex: structures, interactions, proton transfer dynamics, and spectroscopy. J. Phys. Chem. B 116:4851–59
    [Google Scholar]
  105. 105. 
    Dvores MP, Çarçabal P, Maître P, Simons JP, Gerber RB 2020. Gas phase dynamics, conformational transitions and spectroscopy of charged saccharides: the oxocarbenium ion, protonated anhydrogalactose and protonated methyl galactopyranoside. Phys. Chem. Chem. Phys. 22:4144–57
    [Google Scholar]
  106. 106. 
    Riikonen S, Parkkinen P, Halonen L, Gerber RB 2013. Ionization of nitric acid on crystalline ice: the role of defects and collective proton movement. J. Phys. Chem. Lett. 4:1850–55
    [Google Scholar]
  107. 107. 
    Murdachaew G, Gaigeot M-P, Halonen L, Gerber RB 2013. Dissociation of HCl into ions on wet hydroxylated (0001) α-quartz. J. Phys. Chem. Lett. 4:3500–07
    [Google Scholar]
  108. 108. 
    Kalinowski J, Gerber RB, Räsänen M, Lignell A, Khriachtchev L 2014. Matrix effect on vibrational frequencies: experiments and simulations for HCl and HNgCl (Ng = Kr and Xe). J. Chem. Phys. 140:094303
    [Google Scholar]
  109. 109. 
    Kalinowski J, Räsänen M, Heinonen P, Kilpeläinen I, Gerber RB 2014. Isomerization and decomposition of a Criegee intermediate in the ozonolysis of alkenes: dynamics using a multireference potential. Angew. Chem. Int. Ed. 53:265–68
    [Google Scholar]
  110. 110. 
    Bartlett N. 1962. Xenon hexafluoroplatinate Xe+[PtF6]. Proc. Chem. Soc. 6:97–132
    [Google Scholar]
  111. 111. 
    Pettersson M, Lundell J, Räsänen M 1995. Neutral rare-gas containing charge-transfer molecules in solid matrices. I. HXeCl, HXeBr, HXeI, and HKrCl in Kr and Xe. J. Chem. Phys. 102:6423–31
    [Google Scholar]
  112. 112. 
    Lundell J, Chaban GM, Gerber RB 2000. Anharmonic vibrational spectroscopy calculations for novel rare-gas containing compounds: HXeH, HXeCl, HXeBr and HXeOH. J. Phys. Chem. A 104:7944–52
    [Google Scholar]
  113. 113. 
    Bihary Z, Chaban GM, Gerber RB 2002. Vibrational spectroscopy and matrix-site geometries of HArF, HKrF, HXeCl and HXeI in rare-gas solids. J. Chem. Phys. 116:5521–29
    [Google Scholar]
  114. 114. 
    Pettersson M, Khriachtchev L, Lignell A, Räsänen M, Bihary Z, Gerber RB 2002. HKrF in solid krypton. J. Chem. Phys. 116:2508–15
    [Google Scholar]
  115. 115. 
    Lundell J, Cohen A, Gerber RB 2002. Quantum chemical calculations on novel molecules from xenon insertion into hydrocarbons. J. Phys. Chem. A 106:11950–55
    [Google Scholar]
  116. 116. 
    Khriachtchev L, Tanskanen H, Lundell J, Pettersson M, Kiljunen H, Räsänen M 2003. Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. J. Am. Chem. Soc. 125:4696–97
    [Google Scholar]
  117. 117. 
    Feldman VI, Sukhov FF, Orlov AY, Tyulpina IV 2003. Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. J. Am. Chem. Soc. 125:4698–99
    [Google Scholar]
  118. 118. 
    Khriachtchev L, Tanskanen H, Cohen A, Gerber RB, Lundell J et al. 2003. A gate for organokrypton chemistry: HKrCCH. J. Am. Chem. Soc. 125:6876–77
    [Google Scholar]
  119. 119. 
    Khriachtchev L, Isokaski K, Cohen A, Räsänen M, Gerber RB 2008. A small neutral molecule with two noble gas atoms: HXeOXeOH. J. Am. Chem. Soc. 130:6114–18
    [Google Scholar]
  120. 120. 
    Cohen A, Lundell J, Gerber RB 2003. First compounds with argon-carbon and argon-silicon chemical bonds. J. Chem. Phys. 119:6415–18
    [Google Scholar]
  121. 121. 
    Tsivion U, Gerber RB. 2009. Lifetimes of compounds made of noble-gas atoms with water. Chem. Phys. Lett. 482:30–33
    [Google Scholar]
  122. 122. 
    Tsivion E, Gerber RB. 2011. Stability of noble-gas hydrocarbons in an organic liquid-like environment: HXeCCH acetylene. Phys. Chem. Chem. Phys. 13:19601–6
    [Google Scholar]
  123. 123. 
    Cohen A, Tsuge M, Krichtchev L, Räsänen JM, Gerber RB 2014. Modeling of HXeBr in CO2 and Xe environments: structure, energetics and vibrational spectra. Chem. Phys. Lett. 594:18–22
    [Google Scholar]
  124. 124. 
    Knipping EM, Lakin MJ, Foster KL, Jungwirth P, Tobias DJ et al. 2000. Experiments and molecular dynamics kinetics simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science 288:301–6
    [Google Scholar]
  125. 125. 
    Ramazan KA, Wingen LM, Miller Y, Chaban GM, Gerber RB et al. 2006. A new experimental and theoretical approach to the heterogeneous hydrolysis of NO2: the key role of molecular nitric acid and its complexes with water. J. Phys. Chem. A 110:6886–97
    [Google Scholar]
  126. 126. 
    Miller Y, Finlayson-Pitts BJ, Gerber RB 2009. Ionization of N2O4 in contact with water: mechanism, timescales and atmospheric implications. J. Am. Chem. Soc. 131:12180–85
    [Google Scholar]
  127. 127. 
    Miller Y, Thomas JL, Kemp DD, Finlayson-Pitts BJ, Gordon MS et al. 2009. Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields, with implications for atmospheric chemistry. J. Phys. Chem. A 113:12805–14
    [Google Scholar]
  128. 128. 
    Miller Y, Gerber RB, Vaida V 2007. Photodissociation yields for vibrationally excited states of sulfuric acid under atmospheric conditions. Geophys. Res. Lett. 34:L16829
    [Google Scholar]
  129. 129. 
    Dawson ML, Varner ME, Perraud V, Ezell MJ, Gerber RB, Finlayson-Pitts BJ 2012. Simplified mechanism for new particle formation from methanesulfonic acid, amines and water via experiments and ab initio calculations. PNAS 109:18719–24
    [Google Scholar]
  130. 130. 
    Chen H, Varner ME, Gerber RB, Finlayson-Pitts BJ 2016. Reactions of methanesulfonic acid with amines and ammonia as a source of new particles in the air. J. Phys. Chem. B 120:1526–36
    [Google Scholar]
  131. 131. 
    Xu J, Finlayson-Pitts BJ, Gerber RB 2017. Proton transfer in mixed clusters of methanesulfonic acid, methylamine and oxalic acid: implications for atmospheric particle formation. J. Phys. Chem. A 121:2377–85
    [Google Scholar]
  132. 132. 
    Arquero KD, Xu J, Gerber RB, Finlayson-Pitts BJ 2017. Particle formation and growth from oxalic acid, methanesulfonic acid, trimethylamine and water: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 41:28286–301
    [Google Scholar]
  133. 133. 
    Aregahegn K, Shemesh D, Gerber RB, Finlayson-Pitts BJ 2017. Photochemistry of thin solid films of the neonicotinoid imidacloprid on surfaces. Environ. Sci. Technol. 51:2660–68
    [Google Scholar]
  134. 134. 
    Shemesh D, Blair SL, Nizkorodov SA, Gerber RB 2014. Photochemistry of aldehyde clusters: cross-molecular versus unimolecular reaction dynamics. Phys. Chem. Chem. Phys. 16:23861–68
    [Google Scholar]
  135. 135. 
    McCaslin LM, Johnson MA, Gerber RB 2019. Mechanisms and competition of halide substitution and hydrolysis in reactions of N2O5 with seawater. Sci. Adv. 5:eaav6503
    [Google Scholar]
  136. 136. 
    Molina ER, Gerber RB. 2019. Microscopic mechanisms of N2O5 hydrolysis on the surface of water droplets. J. Phys. Chem. A 124:224–28
    [Google Scholar]
  137. 137. 
    Karimova NV, Chen J, Gord JR, Staudt S, Bertram TH et al. 2020. SN2 reactions of N2O5 with ions in water: microscopic mechanism, intermediates and products. J. Phys. Chem. A 124:711–20
    [Google Scholar]
  138. 138. 
    Shemesh D, Gerber RB. 2018. Molecular dynamics of photoinduced reactions of acrylic acid: products, mechanisms and comparison with experiment. J. Phys. Chem. Lett. 9:527–33
    [Google Scholar]
  139. 139. 
    Hirshberg B, Gerber RB, Krylov AI 2014. Calculations predict a stable molecular crystal of N8. Nat. Chem. 6:52–56
    [Google Scholar]
  140. 140. 
    Duwal S, Ryu YJ, Kim M, Yoo CS, Bang S et al. 2018. Transformation of hydrazinium azide to molecular N8 at 40 GPa. J. Chem. Phys. 148:134310
    [Google Scholar]
  141. 141. 
    Zakai I, Grinstein D, Welner S, Gerber RB 2019. Structures, stability, and decomposition dynamics of the polynitrogen molecules N5+B(N3)4 and its dimer [N5+]2[B(N3)4]2. J. Phys. Chem. A 123:7384–93
    [Google Scholar]
  142. 142. 
    Jungwirth P, Gerber RB. 1995. Quantum dynamics of large polyatomic systems using a classically based separable potential method. J. Chem. Phys. 102:6046–56
    [Google Scholar]
  143. 143. 
    Hirshberg B, Sagiv L, Gerber RB 2017. Approximate quantum dynamics using ab initio classical separable potentials: spectroscopic applications. J. Chem. Theory Comput. 13:982–91
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090519-124238
Loading
/content/journals/10.1146/annurev-physchem-090519-124238
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error