1932

Abstract

Cell membranes are incredibly complex environments containing hundreds of components. Despite substantial advances in the past decade, fundamental questions related to lipid-lipid interactions and heterogeneity persist. This review explores the complexity of lipid membranes, showcasing recent advances in vibrational spectroscopy to characterize the structure, dynamics, and interactions at the membrane interface. We include an overview of modern techniques such as surface-enhanced infrared spectroscopy as a steady-state technique with single-bilayer sensitivity, two-dimensional sum-frequency generation spectroscopy, and two-dimensional infrared spectroscopy to measure time-evolving structures and dynamics with femtosecond time resolution. Furthermore, we discuss the potential of multiscale molecular dynamics (MD) simulations, focusing on recently developed simulation algorithms, which have emerged as a powerful approach to interpret complex spectra. We highlight the ongoing challenges in studying heterogeneous environments in multicomponent membranes via current vibrational spectroscopic techniques and MD simulations. Overall, this review provides an up-to-date comprehensive overview of the powerful combination of vibrational spectroscopy and simulations, which has great potential to illuminate lipid-lipid, lipid-protein, and lipid-water interactions in the intricate conformational landscape of cell membranes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090722-010230
2024-06-28
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-090722-010230.html?itemId=/content/journals/10.1146/annurev-physchem-090722-010230&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Spector AA, Yorek MA. 1985.. Membrane lipid composition and cellular function. . J. Lipid Res. 26:(9):101535
    [Crossref] [Google Scholar]
  2. 2.
    Sackmann E, Tanaka M. 2021.. Critical role of lipid membranes in polarization and migration of cells: a biophysical view. . Biophys. Rev. 13:(1):12338
    [Crossref] [Google Scholar]
  3. 3.
    Yèagle PL. 1989.. Lipid regulation of cell membrane structure and function. . FASEB J. 3:(7):183342
    [Crossref] [Google Scholar]
  4. 4.
    Lombard J, López-García P, Moreira D. 2012.. The early evolution of lipid membranes and the three domains of life. . Nat. Rev. Microbiol. 10:(7):50715
    [Crossref] [Google Scholar]
  5. 5.
    Deamer D. 2017.. The role of lipid membranes in life's origin. . Life 7:(1):5
    [Crossref] [Google Scholar]
  6. 6.
    Gupta S, Ashkar R. 2021.. The dynamic face of lipid membranes. . Soft Matter 17:(29):691028
    [Crossref] [Google Scholar]
  7. 7.
    Gorter E, Grendel F. 1925.. On bimolecular layers of lipoids on the chromocytes of the blood. . J. Exp. Med. 41:(4):43944
    [Crossref] [Google Scholar]
  8. 8.
    Edidin M. 2003.. Lipids on the frontier: a century of cell-membrane bilayers. . Nat. Rev. Mol. Cell Biol. 4::41418
    [Crossref] [Google Scholar]
  9. 9.
    Danielli JF, Davson H. 1935.. A contribution to the theory of permeability of thin films. . J. Cell. Comp. Physiol. 5:(4):495508
    [Crossref] [Google Scholar]
  10. 10.
    Bernal JD, Crowfoot D. 1934.. X-ray photographs of crystalline pepsin. . Nature 133::79495
    [Crossref] [Google Scholar]
  11. 11.
    Chapman D. 1965.. The Structure of Lipids by Spectroscopic and X-Ray Techniques. New York:: Wiley
    [Google Scholar]
  12. 12.
    Chapman D, Williams RM, Ladbrooke BD. 1967.. Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins). . Chem. Phys. Lipids. 1:(5):44575
    [Crossref] [Google Scholar]
  13. 13.
    Singer SJ, Nicolson GL. 1972.. The fluid mosaic model of the structure of cell membranes. . Science 175:(4023):72031
    [Crossref] [Google Scholar]
  14. 14.
    Nicolson GL. 2014.. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. . Biochim. Biophys. Acta 1838:(6):145166
    [Crossref] [Google Scholar]
  15. 15.
    Chapman D. 1975.. Phase transitions and fluidity characteristics of lipids and cell membranes. . Q. Rev. Biophys. 8:(2):185235
    [Crossref] [Google Scholar]
  16. 16.
    Chapman D. 1966.. Liquid crystals and cell membranes. . Ann. N.Y. Acad. Sci. 137:(2):74554
    [Crossref] [Google Scholar]
  17. 17.
    Brügger B. 2014.. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. . Annu. Rev. Biochem. 83::7998
    [Crossref] [Google Scholar]
  18. 18.
    Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, et al. 2010.. Lipidomics reveals a remarkable diversity of lipids in human plasma. . J. Lipid Res. 51:(11):3299305
    [Crossref] [Google Scholar]
  19. 19.
    Yang K, Han X. 2016.. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. . Trends Biochem. Sci. 41:(11):95469
    [Crossref] [Google Scholar]
  20. 20.
    Levental I, Levental KR, Heberle FA. 2020.. Lipid rafts: controversies resolved, mysteries remain. . Trends Cell Biol. 30:(5):34153
    [Crossref] [Google Scholar]
  21. 21.
    Levental I, Veatch SL. 2016.. The continuing mystery of lipid rafts. . J. Mol. Biol. 428:(24):474964
    [Crossref] [Google Scholar]
  22. 22.
    Levental I, Lyman E. 2022.. Regulation of membrane protein structure and function by their lipid nano-environment. . Nat. Rev. Mol. Cell Biol. 24::10722
    [Crossref] [Google Scholar]
  23. 23.
    Tikku S, Epshtein Y, Collins H, Travis AJ, Rothblat GH, Levitan I. 2007.. Relationship between Kir2.1/Kir2.3 activity and their distributions between cholesterol-rich and cholesterol-poor membrane domains. . Am. J. Physiol. Cell Physiol. 293:(1):44050
    [Crossref] [Google Scholar]
  24. 24.
    Huang SK, Almurad O, Pejana RJ, Morrison ZA, Pandey A, et al. 2022.. Allosteric modulation of the adenosine A2A receptor by cholesterol. . eLife 11::73901
    [Crossref] [Google Scholar]
  25. 25.
    Bogdanov M, Heacock PN, Dowhan W. 2002.. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. . EMBO J. 21:(9):210716
    [Crossref] [Google Scholar]
  26. 26.
    Tang Y, Xia H, Li D. 2018.. Membrane phospholipid biosynthesis in bacteria. . In Advances in Membrane Proteins: Part I: Mass Processing and Transportation, ed. Y Cao , pp. 77119. Singapore:: Springer
    [Google Scholar]
  27. 27.
    Mantsch HH, McElhaney RN. 1991.. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. . Chem. Phys. Lipids 57:(2–3):21326
    [Crossref] [Google Scholar]
  28. 28.
    Silvestro L, Axelsen PH. 1998.. Infrared spectroscopy of supported lipid monolayer, bilayer, and multibilayer membranes. . Chem. Phys. Lipids 96:(1–2):6980
    [Crossref] [Google Scholar]
  29. 29.
    Zhao W, Moilanen DE, Fenn EE, Fayer MD. 2008.. Water at the surfaces of aligned phospholipid multibilayer model membranes probed with ultrafast vibrational spectroscopy. . J. Am. Chem. Soc. 130:(42):1392737
    [Crossref] [Google Scholar]
  30. 30.
    Volkov VV, Palmer DJ, Righini R. 2007.. Distinct water species confined at the interface of a phospholipid membrane. . Phys. Rev. Lett. 99:(7):078302
    [Crossref] [Google Scholar]
  31. 31.
    Binder H. 2007.. Water near lipid membranes as seen by infrared spectroscopy. . Eur. Biophys. J. 36:(4–5):26579
    [Crossref] [Google Scholar]
  32. 32.
    Perakis F, De Marco L, Shalit A, Tang F, Kann ZR, et al. 2016.. Vibrational spectroscopy and dynamics of water. . Chem. Rev. 116:(13):7590607
    [Crossref] [Google Scholar]
  33. 33.
    Goñi FM, Arrondo JLR. 1986.. A study of phospholipid phosphate groups in model membranes by Fourier transform infrared spectroscopy. . Faraday Discuss. Chem. Soc. 81::11726
    [Crossref] [Google Scholar]
  34. 34.
    Arrondo JLR, Goñi FM, Macarulla JM. 1984.. Infrared spectroscopy of phosphatidylcholines in aqueous suspension a study of the phosphate group vibrations. . Biochim. Biophys. Acta 794:(1):16568
    [Crossref] [Google Scholar]
  35. 35.
    Hübner W, Blume A. 1998.. Interactions at the lipid-water interface. . Chem. Phys. Lipids 96:(1–2):99123
    [Crossref] [Google Scholar]
  36. 36.
    Flanagan JC, Valentine ML, Baiz CR. 2020.. Ultrafast dynamics at lipid-water interfaces. . Acc. Chem. Res. 53:(9):186068
    [Crossref] [Google Scholar]
  37. 37.
    Mendelsohn R, Davies MA, Brauner JW, Schuster HF, Dluhy RA. 1989.. Quantitative determination of conformational disorder in the acyl chains of phospholipid bilayers by infrared spectroscopy. . Biochemistry 28:(22):893439
    [Crossref] [Google Scholar]
  38. 38.
    Tumbic GW, Hossan MY, Thielges MC. 2021.. Protein dynamics by infrared spectroscopy. . Annu. Rev. Anal. Chem. 14::229321
    [Crossref] [Google Scholar]
  39. 39.
    Mukherjee P, Kass I, Arkin I, Zanni MT. 2006.. Picosecond dynamics of a membrane protein revealed by 2D IR. . PNAS 103:(10):352833
    [Crossref] [Google Scholar]
  40. 40.
    Arsov Z, Quaroni L. 2007.. Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy. . Chem. Phys. Lipids 150:(1):3548
    [Crossref] [Google Scholar]
  41. 41.
    Ludlam CFC, Arkin IT, Liu XM, Rothman MS, Rath P, et al. 1996.. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. . Biophys. J. 70:(4):172836
    [Crossref] [Google Scholar]
  42. 42.
    Arsov Z. 2015.. Long-range lipid-water interaction as observed by ATR-FTIR spectroscopy. . In Membrane Hydration: The Role of Water in the Structure and Function of Biological Membranes, ed. EA Disalvo , pp. 12759. Cham, Switz:.: Springer
    [Google Scholar]
  43. 43.
    Edington SC, Flanagan JC, Baiz CR. 2016.. An empirical IR frequency map for ester C=O stretching vibrations. . J. Phys. Chem. A 120:(22):388896
    [Crossref] [Google Scholar]
  44. 44.
    Valentine ML, Waterland MK, Fathizadeh A, Elber R, Baiz CR. 2021.. Interfacial dynamics in lipid membranes: the effects of headgroup structures. . J. Phys. Chem. B 125:(5):134350
    [Crossref] [Google Scholar]
  45. 45.
    Guerin AC, Riley K, Rupnik K, Kuroda DG. 2016.. Determining the energetics of the hydrogen bond through FTIR: a hands-on physical chemistry lab experiment. . J. Chem. Educ. 93:(6):112429
    [Crossref] [Google Scholar]
  46. 46.
    Lewis RNAH, McElhaney RN. 2013.. Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy. . Biochim. Biophys. Acta Biomembr. 1828:(10):234758
    [Crossref] [Google Scholar]
  47. 47.
    Valentine ML, Cardenas AE, Elber R, Baiz CR. 2020.. Calcium-lipid interactions observed with isotope-edited infrared spectroscopy. . Biophys. J. 118:(11):2694702
    [Crossref] [Google Scholar]
  48. 48.
    Hamm P, Zanni M. 2011.. Concepts and Methods of 2D Infrared Spectroscopy. New York:: Cambridge Univ. Press
    [Google Scholar]
  49. 49.
    Flanagan JC, Valentine ML, Baiz CR. 2020.. Ultrafast dynamics at lipid−water interfaces. . Acc. Chem. Res. 53:(9):186068
    [Crossref] [Google Scholar]
  50. 50.
    Fayer MD. 2009.. Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy. . Annu. Rev. Phys. Chem. 60::2138
    [Crossref] [Google Scholar]
  51. 51.
    Fayer MD. 2013.. Ultrafast Infrared Vibrational Spectroscopy. Boca Raton, FL:: Taylor & Francis
    [Google Scholar]
  52. 52.
    Kwak K, Park S, Finkelstein IJ, Fayer MD. 2007.. Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: a new approach. . J. Chem. Phys. 127:(12):124503
    [Crossref] [Google Scholar]
  53. 53.
    Kwac K, Cho M. 2003.. Molecular dynamics simulation study of N-methylacetamide in water. II. Two-dimensional infrared pump-probe spectra. . J. Chem. Phys. 119:(4):225663
    [Crossref] [Google Scholar]
  54. 54.
    Eaves JD, Loparo JJ, Fecko CJ, Roberts ST, Tokmakoff A, Geissler PL. 2005.. Hydrogen bonds in liquid water are broken only fleetingly. . PNAS 102:(37):1301922
    [Crossref] [Google Scholar]
  55. 55.
    Lazonder K, Pshenichnikov MS, Wiersma DA. 2006.. Easy interpretation of optical two-dimensional correlation spectra. . Opt. Lett. 31:(22):335456
    [Crossref] [Google Scholar]
  56. 56.
    Hamm P, Zanni M. 2011.. Concepts and Methods of 2D Infrared Spectroscopy. New York:: Cambridge Univ. Press
    [Google Scholar]
  57. 57.
    Valentine ML, Waterland MK, Fathizadeh A, Elber R, Baiz CR. 2021.. Interfacial dynamics in lipid membranes: the effects of headgroup structures. . J. Phys. Chem. B 125:(5):134350
    [Crossref] [Google Scholar]
  58. 58.
    Stevenson P, Tokmakoff A. 2017.. Ultrafast fluctuations of high amplitude electric fields in lipid membranes. . J. Am. Chem. Soc. 139:(13):474352
    [Crossref] [Google Scholar]
  59. 59.
    Kel O, Tamimi A, Thielges MC, Fayer MD. 2013.. Ultrafast structural dynamics inside planar phospholipid multibilayer model cell membranes measured with 2D IR spectroscopy. . J. Am. Chem. Soc. 135:(30):1106374
    [Crossref] [Google Scholar]
  60. 60.
    Edington SC, Halling DB, Bennett SM, Middendorf TR, Aldrich RW, Baiz CR. 2019.. Non-additive effects of binding site mutations in calmodulin. . Biochemistry 58:(24):273039
    [Crossref] [Google Scholar]
  61. 61.
    Liu S, Featherston ER, Cotruvo JA, Baiz CR. 2021.. Lanthanide-dependent coordination interactions in lanmodulin: a 2D IR and molecular dynamics simulations study. . Phys. Chem. Chem. Phys. 23:(38):21690700
    [Crossref] [Google Scholar]
  62. 62.
    Valentine ML, Al-Mualem ZA, Baiz CR. 2021.. Pump slice amplitudes: a simple and robust method for connecting two-dimensional infrared and Fourier transform infrared spectra. . J. Phys. Chem. A 125:(29):6498504
    [Crossref] [Google Scholar]
  63. 63.
    Kwak K, Park S, Finkelstein IJ, Fayer MD. 2007.. Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: a new approach. . J. Chem. Phys. 127:(12):124503
    [Crossref] [Google Scholar]
  64. 64.
    Nandi N, Bhattacharyya K, Bagchi B. 2000.. Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. . Chem. Rev. 100:(6):201345
    [Crossref] [Google Scholar]
  65. 65.
    Lopez CF, Nielsen SO, Klein ML, Moore PB. 2004.. Hydrogen bonding structure and dynamics of water at the dimyristoylphosphatidylcholine lipid bilayer surface from a molecular dynamics simulation. . J. Phys. Chem. B 108:(21):660310
    [Crossref] [Google Scholar]
  66. 66.
    Valentine ML, Cardenas AE, Elber R, Baiz CR. 2018.. Physiological calcium concentrations slow dynamics at the lipid-water interface. . Biophys. J. 115:(8):154151
    [Crossref] [Google Scholar]
  67. 67.
    Flanagan JC, Cardenas AE, Baiz CR. 2020.. Ultrafast spectroscopy of lipid-water interfaces: Transmembrane crowding drives H-bond dynamics. . J. Phys. Chem. Lett. 11:(10):409398
    [Crossref] [Google Scholar]
  68. 68.
    Nihonyanagi S, Yamaguchi S, Tahara T. 2017.. Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. . Chem. Rev. 117:(16):1066593
    [Crossref] [Google Scholar]
  69. 69.
    Inoue KI, Nihonyanagi S, Singh PC, Yamaguchi S, Tahara T. 2015.. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H2O and HOD water at charged interfaces. . J. Chem. Phys. 142:(21):212431
    [Crossref] [Google Scholar]
  70. 70.
    Xiong W, Laaser JE, Mehlenbacher RD, Zanni MT. 2011.. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy. . PNAS 108:(52):209027
    [Crossref] [Google Scholar]
  71. 71.
    Ghosh A, Smits M, Bredenbeck J, Bonn M. 2007.. Membrane-bound water is energetically decoupled from nearby bulk water: an ultrafast surface-specific investigation. . J. Am. Chem. Soc. 129:(31):96089
    [Crossref] [Google Scholar]
  72. 72.
    Singh PC, Inoue KI, Nihonyanagi S, Yamaguchi S, Tahara T. 2016.. Femtosecond hydrogen bond dynamics of bulk-like and bound water at positively and negatively charged lipid interfaces revealed by 2D HD-VSFG spectroscopy. . Angew. Chem. Int. Ed. 55:(36):1062125
    [Crossref] [Google Scholar]
  73. 73.
    Singh PC, Ahmed M, Nihonyanagi S, Yamaguchi S, Tahara T. 2022.. DNA-induced reorganization of water at model membrane interfaces investigated by heterodyne-detected vibrational sum frequency generation spectroscopy. . J. Phys. Chem. B 126:(4):84046
    [Crossref] [Google Scholar]
  74. 74.
    Sarkar S, Singh PC. 2023.. Selective action of antimalarial hydroxychloroquine on the packing of phospholipids and interfacial water associated with lysosomal model membranes: a vibrational sum frequency generation study. . Langmuir 39:(6):243543
    [Crossref] [Google Scholar]
  75. 75.
    Kundu A, Yamaguchi S, Tahara T. 2014.. Evaluation of pH at charged lipid/water interfaces by heterodyne-detected electronic sum frequency generation. . J. Phys. Chem. Lett. 5:(4):76266
    [Crossref] [Google Scholar]
  76. 76.
    Hua W, Verreault D, Allen HC. 2015.. Solvation of calcium-phosphate headgroup complexes at the DPPC/aqueous interface. . ChemPhysChem 16:(18):391015
    [Crossref] [Google Scholar]
  77. 77.
    Ataka K, Kottke T, Heberle J. 2010.. Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems. . Angew. Chem. Int. Ed. 49:(32):541624
    [Crossref] [Google Scholar]
  78. 78.
    Chuntonov L, Rubtsov IV. 2020.. Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas. . J. Chem. Phys. 153::050902
    [Crossref] [Google Scholar]
  79. 79.
    Kusa F, Morichika I, Takegami A, Ashihara S. 2017.. Enhanced ultrafast infrared spectroscopy using coupled nanoantenna arrays. . Opt. Express 25:(11):12896907
    [Crossref] [Google Scholar]
  80. 80.
    Huck C, Neubrech F, Vogt J, Toma A, Gerbert D, et al. 2014.. Surface-enhanced infrared spectroscopy using nanometer-sized gaps. . ACS Nano 8:(5):490814
    [Crossref] [Google Scholar]
  81. 81.
    Neubrech F, Huck C, Weber K, Pucci A, Giessen H. 2017.. Surface-enhanced infrared spectroscopy using resonant nanoantennas. . Chem. Rev. 117:(7):511045
    [Crossref] [Google Scholar]
  82. 82.
    Osawa M, Ataka KI, Ikeda M, Uchihara H, Nanba R. 1991.. Surface enhanced infrared absorption spectroscopy: mechanism and application to trace analysis. . Anal. Sci. 7::5036
    [Crossref] [Google Scholar]
  83. 83.
    Osawa M, Ataka K, Yoshii K, Yotsuyanagi T. 1993.. Surface-enhanced infrared ATR spectroscopy for in situ studies of electrode/electrolyte interfaces. . J. Electron Spectros. Relat. Phenom. 64–65::37179
    [Crossref] [Google Scholar]
  84. 84.
    Osawa M. 1997.. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). . Bull. Chem. Soc. Jpn. 70:(12):286180
    [Crossref] [Google Scholar]
  85. 85.
    Tseng C, Pennathur AK, Blauth D, Salazar N, Dawlaty JM. 2023.. Direct determination of plasmon enhancement factor and penetration depths in surface enhanced IR absorption spectroscopy. . Langmuir 39:(9):317984
    [Crossref] [Google Scholar]
  86. 86.
    Maroun F, Ozanam F, Chazalviel JN, Theiß W. 1999.. In situ infrared investigation of metals electrodeposited for SEIRAS. . Vib. Spectrosc. 19:(2):19398
    [Crossref] [Google Scholar]
  87. 87.
    Prokopec V, Dendisová-Vyškovská M, Kokaislová A, Čejková J, Člupek M, Matějka P. 2011.. Spectroscopic study of SERS- and SEIRA-activity of copper large-scaled surface substrates prepared by electrochemical deposition: What is the role of oxidation-reduction cycle treatment?. J. Mol. Struct. 993:(1–3):41019
    [Crossref] [Google Scholar]
  88. 88.
    Osawa M, Ikeda M. 1991.. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms. . J. Phys. Chem. 95:(24):991419
    [Crossref] [Google Scholar]
  89. 89.
    Hartstein A, Kirtley JR, Tsang JC. 1980.. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. . Phys. Rev. Lett. 45:(3):2014
    [Crossref] [Google Scholar]
  90. 90.
    Jensen TR, Van Duyne RP, Johnson SA, Maroni VA. 2000.. Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. . Appl. Spectrosc. 54:(3):37177
    [Crossref] [Google Scholar]
  91. 91.
    Killian M, Villa-Aleman E, Sun Z, Crittenden S, Leverette C. 2011.. Dependence of surface-enhanced infrared absorption (SEIRA) enhancement and spectral quality on the choice of underlying substrate: a closer look at silver (Ag) films prepared by physical vapor deposition (PVD). . Appl. Spectrosc. 65:(3):27283
    [Crossref] [Google Scholar]
  92. 92.
    Hatta A, Suzuki Y, Suëtaka W. 1984.. Infrared absorption enhancement of monolayer species on thin evaporated Ag films by use of a Kretschmann configuration: evidence for two types of enhanced surface electric fields. . Appl. Phys. A 35:(3):13540
    [Crossref] [Google Scholar]
  93. 93.
    Bao W-J, Li J, Li J, Zhang Q-W, Liu Y, et al. 2018.. Au/ZnSe-based surface enhanced infrared absorption spectroscopy as a universal platform for bioanalysis. . Anal. Chem. 90:(6):384248
    [Crossref] [Google Scholar]
  94. 94.
    Pennathur AK, Tseng C, Salazar N, Dawlaty JM. 2022.. Controlling water delivery to an electrochemical interface with surfactants. . J. Am. Chem. Soc. 145:(4):242129
    [Crossref] [Google Scholar]
  95. 95.
    Wu L, Zeng L, Jiang X. 2015.. Revealing the nature of interaction between graphene oxide and lipid membrane by surface-enhanced infrared absorption spectroscopy. . J. Am. Chem. Soc. 137:(32):1005255
    [Crossref] [Google Scholar]
  96. 96.
    Burdach K, Dziubak D, Sek S. 2022.. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe interfacial water in floating bilayer lipid membranes (fBLMs). . In Membrane Lipids: Methods and Protocols, ed. CG Cranfield , pp. 199207. New York:: Springer US
    [Google Scholar]
  97. 97.
    Uchida T, Osawa M, Lipkowski J. 2014.. SEIRAS studies of water structure at the gold electrode surface in the presence of supported lipid bilayer. . J. Electroanal. Chem. 716::11219
    [Crossref] [Google Scholar]
  98. 98.
    Ataka K, Baumann A, Chen JL, Redlich A, Heberle J, Schlesinger R. 2022.. Monitoring the progression of cell-free expression of microbial rhodopsins by surface enhanced IR spectroscopy: resolving a branch point for successful/unsuccessful folding. . Front. Mol. Biosci. 9::929285
    [Crossref] [Google Scholar]
  99. 99.
    Lipkowski J. 2014.. Biomimetic membrane supported at a metal electrode surface: a molecular view. . In Advances in Planar Lipid Bilayers and Liposomes, Vol. 20, ed. A Iglič, CV Kulkarni , pp. 149. Amsterdam:: Elsevier
    [Google Scholar]
  100. 100.
    Ferhan AR, Yoon BK, Park S, Sut TN, Chin H, et al. 2019.. Solvent-assisted preparation of supported lipid bilayers. . Nat. Protoc. 14:(7):2091118
    [Crossref] [Google Scholar]
  101. 101.
    Ataka K, Drauschke J, Stulberg V, Koksch B, Heberle J. 2022.. pH-induced insertion of pHLIP into a lipid bilayer: in-situ SEIRAS characterization of a folding intermediate at neutral pH. . Biochim. Biophys. Acta Biomembr. 1864:(6):183873
    [Crossref] [Google Scholar]
  102. 102.
    Birdsall ER, Petti MK, Saraswat V, Ostrander JS, Arnold MS, Zanni MT. 2021.. Structure changes of a membrane polypeptide under an applied voltage observed with surface-enhanced 2D IR spectroscopy. . J. Phys. Chem. Lett. 12:(7):178692
    [Crossref] [Google Scholar]
  103. 103.
    Yamakata A, Uchida T, Kubota J, Osawa M. 2006.. Laser-induced potential jump at the electrochemical interface probed by picosecond time-resolved surface-enhanced infrared absorption spectroscopy. . J. Phys. Chem. B 110:(13):642327
    [Crossref] [Google Scholar]
  104. 104.
    Paleček D, Tek G, Lan J, Iannuzzi M, Hamm P. 2018.. Characterization of the platinum-hydrogen bond by surface-sensitive time-resolved infrared spectroscopy. . J. Phys. Chem. Lett. 9:(6):125459
    [Crossref] [Google Scholar]
  105. 105.
    Kraack JP, Hamm P. 2016.. Vibrational ladder-climbing in surface-enhanced, ultrafast infrared spectroscopy. . Phys. Chem. Chem. Phys. 18:(24):1608893
    [Crossref] [Google Scholar]
  106. 106.
    Lotti D, Hamm P, Kraack JP. 2016.. Surface-sensitive spectro-electrochemistry using ultrafast 2D ATR IR spectroscopy. . J. Phys. Chem. C 120:(5):288392
    [Crossref] [Google Scholar]
  107. 107.
    Yang N, Ryan MJ, Son M, Mavric A, Zanni MT. 2023.. Voltage-dependent FTIR and 2D infrared spectroscopies within the electric double layer using a plasmonic and conductive electrode. . J. Phys. Chem. B 127::208391
    [Crossref] [Google Scholar]
  108. 108.
    Kraack JP, Hamm P. 2017.. Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy. . Chem. Rev. 117:(16):1062364
    [Crossref] [Google Scholar]
  109. 109.
    Kraack JP, Lotti D, Hamm P. 2015.. Surface-enhanced, multi-dimensional attenuated total reflectance spectroscopy. . Proc. SPIE 9549::95490S
    [Crossref] [Google Scholar]
  110. 110.
    Sponholtz MR, Senning EN. 2021.. The pleckstrin homology domain of PLCδ1 exhibits complex dissociation properties at the inner leaflet of plasma membrane sheets. . ACS Chem. Neurosci. 12:(12):207278
    [Crossref] [Google Scholar]
  111. 111.
    Lee E, You X, Baiz CR. 2022.. Interfacial dynamics in inverted-headgroup lipid membranes. . J. Chem. Phys. 156:(7):075102
    [Crossref] [Google Scholar]
  112. 112.
    Hsieh CS, Okuno M, Hunger J, Backus EHG, Nagata Y, Bonn M. 2014.. Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy. . Angew. Chem. Int. Ed. 53:(31):814649
    [Crossref] [Google Scholar]
  113. 113.
    Cerbón J, Calderón V. 1991.. Changes of the compositional asymmetry of phospholipids associated to the increment in the membrane surface potential. . Biochim. Biophys. Acta Biomembr. 1067:(2):13944
    [Crossref] [Google Scholar]
  114. 114.
    Cherniavskyi YK, Fathizadeh A, Elber R, Tieleman DP. 2020.. Computer simulations of a heterogeneous membrane with enhanced sampling techniques. . J. Chem. Phys. 153:(14):144110
    [Crossref] [Google Scholar]
  115. 115.
    Bennett WFD, Tieleman DP. 2013.. Computer simulations of lipid membrane domains. . Biochim. Biophys. Acta Biomembr. 1828:(8):176576
    [Crossref] [Google Scholar]
  116. 116.
    Fábián B, Vattulainen I, Javanainen M. 2023.. Protein crowding and cholesterol increase cell membrane viscosity in a temperature dependent manner. . J. Chem. Theory Comput. 19:(9):263043
    [Crossref] [Google Scholar]
  117. 117.
    Dickson CJ, Walker RC, Gould IR. 2022.. Lipid21: complex lipid membrane simulations with AMBER. . J. Chem. Theory Comput. 18:(3):172636
    [Crossref] [Google Scholar]
  118. 118.
    Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, et al. 2020.. Vibrational spectroscopic map, vibrational spectroscopy, and intermolecular interaction. . Chem. Rev. 120:(15):7152218
    [Crossref] [Google Scholar]
  119. 119.
    Baiz CR, Reppert M, Tokmakoff A. 2013.. Amide I two-dimensional infrared spectroscopy: methods for visualizing the vibrational structure of large proteins. . J. Phys. Chem. A 117:(29):595561
    [Crossref] [Google Scholar]
  120. 120.
    You X, Lee E, Xu C, Baiz CR. 2021.. Molecular mechanism of cell membrane protection by sugars: a study of interfacial H-bond networks. . J. Phys. Chem. Lett. 12:(39):96027
    [Crossref] [Google Scholar]
  121. 121.
    Tang F, Ohto T, Sun S, Rouxel JR, Imoto S, et al. 2020.. Molecular structure and modeling of water-air and ice-air interfaces monitored by sum-frequency generation. . Chem. Rev. 120:(8):363367
    [Crossref] [Google Scholar]
  122. 122.
    Fathizadeh A, Elber R. 2018.. A mixed alchemical and equilibrium dynamics to simulate heterogeneous dense fluids: illustrations for Lennard-Jones mixtures and phospholipid membranes. . J. Chem. Phys. 149:(7):72325
    [Crossref] [Google Scholar]
  123. 123.
    Mori T, Miyashita N, Im W, Feig M, Sugita Y. 2016.. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. . Biochim. Biophys. Acta Biomembr. 1858:(7):163551
    [Crossref] [Google Scholar]
  124. 124.
    Marrink SJ, Corradi V, Souza PCT, Ingólfsson HI, Tieleman DP, Sansom MSP. 2019.. Computational modeling of realistic cell membranes. . Chem. Rev. 119:(9):6184226
    [Crossref] [Google Scholar]
  125. 125.
    Antila HS, Kav B, Miettinen MS, Martinez-Seara H, Jungwirth P, Ollila OHS. 2022.. Emerging era of biomolecular membrane simulations: automated physically-justified force field development and quality-evaluated databanks. . J. Phys. Chem. B 2022::416983
    [Crossref] [Google Scholar]
  126. 126.
    Lyubartsev AP, Rabinovich AL. 2016.. Force field development for lipid membrane simulations. . Biochim. Biophys. Acta Biomembr. 1858:(10):248397
    [Crossref] [Google Scholar]
  127. 127.
    Yu Y, Venable RM, Thirman J, Chatterjee P, Kumar A, et al. 2023.. Drude polarizable lipid force field with explicit treatment of long-range dispersion: parametrization and validation for saturated and monounsaturated zwitterionic lipids. . J. Chem. Theory Comput. 19:(9):2590605
    [Crossref] [Google Scholar]
  128. 128.
    Tempra C, Ollila OHS, Javanainen M. 2022.. Accurate simulations of lipid monolayers require a water model with correct surface tension. . J. Chem. Theory Comput. 18:(3):186269
    [Crossref] [Google Scholar]
  129. 129.
    Melcr J, Ferreira TM, Jungwirth P, Ollila OHS. 2020.. Improved cation binding to lipid bilayers with negatively charged POPS by effective inclusion of electronic polarization. . J. Chem. Theory Comput. 16:(1):73848
    [Crossref] [Google Scholar]
  130. 130.
    Mohammad-Aghaie D, Bresme F. 2016.. Force-field dependence on the liquid-expanded to liquid-condensed transition in DPPC monolayers. . Mol. Simul. 42:(5):39197
    [Crossref] [Google Scholar]
  131. 131.
    Klauda JB, Wu X, Pastor RW, Brooks BR. 2007.. Long-range Lennard-Jones and electrostatic interactions in interfaces: application of the isotropic periodic sum method. . J. Phys. Chem. B 111:(17):4393400
    [Crossref] [Google Scholar]
  132. 132.
    Wu X, Brooks BR. 2019.. The homogeneity condition: a simple way to derive isotropic periodic sum potentials for efficient calculation of long-range interactions in molecular simulation. . J. Chem. Phys. 150:(21):214109
    [Crossref] [Google Scholar]
  133. 133.
    Yu Y, Krämer A, Venable RM, Brooks BR, Klauda JB, Pastor RW. 2021.. CHARMM36 lipid force field with explicit treatment of long-range dispersion: parametrization and validation for phosphatidylethanolamine, phosphatidylglycerol, and ether lipids. . J. Chem. Theory Comput. 17:(3):158195
    [Crossref] [Google Scholar]
  134. 134.
    Ingolfsson HI, Neale C, Carpenter TS, Shrestha R, Lopez CA, et al. 2022.. Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. . PNAS 119:(1):e2113297119
    [Crossref] [Google Scholar]
  135. 135.
    Walter V, Ruscher C, Benzerara O, Marques CM, Thalmann F. 2020.. A machine learning study of the two states model for lipid bilayer phase transitions. . Phys. Chem. Chem. Phys. 22:(34):1914754
    [Crossref] [Google Scholar]
  136. 136.
    Roy S, Gruenbaum SM, Skinner JL. 2014.. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. . J. Chem. Phys. 141:(18):18C502
    [Crossref] [Google Scholar]
  137. 137.
    Pieniazek PA, Tainter CJ, Skinner JL. 2011.. Surface of liquid water: three-body interactions and vibrational sum-frequency spectroscopy. . J. Am. Chem. Soc. 133:(27):1036063
    [Crossref] [Google Scholar]
  138. 138.
    Ballout F, Krassen H, Kopf I, Ataka K, Bründermann E, et al. 2011.. Scanning near-field IR microscopy of proteins in lipid bilayers. . Phys. Chem. Chem. Phys. 13:(48):2143236
    [Crossref] [Google Scholar]
  139. 139.
    Xu XG, Rang M, Craig IM, Raschke MB. 2012.. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. . J. Phys. Chem. Lett. 3:(13):183641
    [Crossref] [Google Scholar]
  140. 140.
    Berweger S, Nguyen DM, Muller EA, Bechtel HA, Perkins TT, Raschke MB. 2013.. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. . J. Am. Chem. Soc. 135:(49):1829295
    [Crossref] [Google Scholar]
  141. 141.
    Govyadinov AA, Mastel S, Golmar F, Chuvilin A, Carney PS, Hillenbrand R. 2014.. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography. . ACS Nano 8:(7):691121
    [Crossref] [Google Scholar]
  142. 142.
    Arkin IT. 2006.. Isotope-edited IR spectroscopy for the study of membrane proteins. . Curr. Opin. Chem. Biol. 10:(5):394401
    [Crossref] [Google Scholar]
  143. 143.
    Decatur SM. 2006.. Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. . Acc. Chem. Res. 39:(3):16975
    [Crossref] [Google Scholar]
  144. 144.
    Gasse P, Stensitzki T, Mai-Linde Y, Linker T, Müller-Werkmeister HM. 2023.. 2D-IR spectroscopy of carbohydrates: characterization of thiocyanate-labeled β-glucose in CHCl3 and H2O. . J. Chem. Phys. 158:(14):145101
    [Crossref] [Google Scholar]
  145. 145.
    Van Wilderen LJGW, Kern-Michler D, Müller-Werkmeister HM, Bredenbeck J. 2014.. Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy. . Phys. Chem. Chem. Phys. 16:(36):1964353
    [Crossref] [Google Scholar]
  146. 146.
    Flores J, Brea RJ, Lamas A, Fracassi A, Salvador-Castell M, et al. 2022.. Rapid and sequential dual oxime ligation enables de novo formation of functional synthetic membranes from water-soluble precursors. . Angew. Chem. Int. Ed. 61:(29):e202200549
    [Crossref] [Google Scholar]
  147. 147.
    Fracassi A, Podolsky KA, Pandey S, Xu C, Hutchings J, et al. 2023.. Characterizing the self-assembly properties of monoolein lipid isosteres. . J. Phys. Chem. B 127:(8):177179
    [Crossref] [Google Scholar]
  148. 148.
    You X, Thakur N, Ray AP, Eddy MT, Baiz CR. 2022.. A comparative study of interfacial environments in lipid nanodiscs and vesicles. . Biophys. Rep. 2:(3):1000066
    [Google Scholar]
  149. 149.
    Song W, Joshi H, Chowdhury R, Najem JS, Shen Y-X, et al. 2019.. Artificial water channels enable fast and selective water permeation through water-wire networks. . Nat. Nanotechnol. 15:(1):7379
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-090722-010230
Loading
/content/journals/10.1146/annurev-physchem-090722-010230
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error