1932

Abstract

Genomes are self-organized and self-maintained as long, complex macromolecules of chromatin. The inherent heterogeneity, stochasticity, phase separation, and chromatin dynamics of genome operation make it challenging to study genomes using ensemble methods. Various single-molecule force-, fluorescent-, and sequencing-based techniques rooted in different disciplines have been developed to fill critical gaps in the capabilities of bulk measurements, each providing unique, otherwise inaccessible, insights into the structure and maintenance of the genome. Capable of capturing molecular-level details about the organization, conformational changes, and packaging of genetic material, as well as processive and stochastic movements of maintenance factors, a single-molecule toolbox provides an excellent opportunity for collaborative research to understand how genetic material functions in health and malfunctions in disease. In this review, we discuss novel insights brought to genomic sciences by single-molecule techniques and their potential to continue to revolutionize the field—one molecule at a time.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090722-010601
2024-06-28
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-090722-010601.html?itemId=/content/journals/10.1146/annurev-physchem-090722-010601&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O'Shea CC. 2017.. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. . Science 357:(6349):eaag0025
    [Crossref] [Google Scholar]
  2. 2.
    Ricci MA, Manzo C, García-Parajo MF, Lakadamyali M, Cosma MP. 2015.. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. . Cell 160:(6):114558
    [Crossref] [Google Scholar]
  3. 3.
    Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. 2009.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. . Science 326:(5950):28993
    [Crossref] [Google Scholar]
  4. 4.
    Dekker J, Mirny L. 2016.. The 3D genome as moderator of chromosomal communication. . Cell 164:(6):111021
    [Crossref] [Google Scholar]
  5. 5.
    Misteli T. 2020.. The self-organizing genome: principles of genome architecture and function. . Cell 183:(1):2845
    [Crossref] [Google Scholar]
  6. 6.
    Lionnet T, Wu C. 2021.. Single-molecule tracking of transcription protein dynamics in living cells: Seeing is believing, but what are we seeing?. Curr. Opin. Genet. Dev. 67::94102
    [Crossref] [Google Scholar]
  7. 7.
    Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. 2019.. Single-molecule analysis and engineering of DNA motors. . Chem. Rev. 120:(1):3678
    [Crossref] [Google Scholar]
  8. 8.
    Jain A, Liu R, Ramani B, Arauz E, Ishitsuka Y, et al. 2011.. Probing cellular protein complexes using single-molecule pull-down. . Nature 473:(7348):48488
    [Crossref] [Google Scholar]
  9. 9.
    Shema E, Jones D, Shoresh N, Donohue L, Ram O, Bernstein BE. 2016.. Single-molecule decoding of combinatorially modified nucleosomes. . Science 352:(6286):71721
    [Crossref] [Google Scholar]
  10. 10.
    Basu A, Bobrovnikov DG, Ha T. 2021.. DNA mechanics and its biological impact. . J. Mol. Biol. 433:(6):166861
    [Crossref] [Google Scholar]
  11. 11.
    Makova KD, Weissensteiner MH. 2023.. Noncanonical DNA structures are drivers of genome evolution. . Trends Genet. 39:(2):10924
    [Crossref] [Google Scholar]
  12. 12.
    Kornberg RD. 1974.. Chromatin structure: a repeating unit of histones and DNA. . Science 184:(4139):86871
    [Crossref] [Google Scholar]
  13. 13.
    Kornberg RD, Lorch Y. 2020.. Primary role of the nucleosome. . Mol. Cell 79:(3):37175
    [Crossref] [Google Scholar]
  14. 14.
    Fierz B, Poirier MG. 2019.. Biophysics of chromatin dynamics. . Annu. Rev. Biophys. 48::32145
    [Crossref] [Google Scholar]
  15. 15.
    Struhl K, Segal E. 2013.. Determinants of nucleosome positioning. . Nat. Struct. Mol. Biol. 20:(3):26773
    [Crossref] [Google Scholar]
  16. 16.
    Clapier CR, Iwasa J, Cairns BR, Peterson CL. 2017.. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. . Nat. Rev. Mol. Cell Biol. 18:(7):40722
    [Crossref] [Google Scholar]
  17. 17.
    Martire S, Banaszynski LA. 2020.. The roles of histone variants in fine-tuning chromatin organization and function. . Nat. Rev. Mol. Cell Biol. 21:(9):52241
    [Crossref] [Google Scholar]
  18. 18.
    Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. 2022.. Histone post-translational modifications—cause and consequence of genome function. . Nat. Rev. Genet. 23:(9):56380
    [Crossref] [Google Scholar]
  19. 19.
    Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, et al. 2019.. Organization of chromatin by intrinsic and regulated phase separation. . Cell 179:(2):47084.e21
    [Crossref] [Google Scholar]
  20. 20.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017.. Biomolecular condensates: organizers of cellular biochemistry. . Nat. Rev. Mol. Cell Biol. 18:(5):28598
    [Crossref] [Google Scholar]
  21. 21.
    Shaban HA, Seeber A. 2020.. Monitoring the spatio-temporal organization and dynamics of the genome. . Nucleic Acids Res. 48:(7):342334
    [Crossref] [Google Scholar]
  22. 22.
    Fyodorov DV, Zhou BR, Skoultchi AI, Bai Y. 2017.. Emerging roles of linker histones in regulating chromatin structure and function. . Nat. Rev. Mol. Cell Biol. 19:(3):192206
    [Crossref] [Google Scholar]
  23. 23.
    Phair RD, Scaffidi P, Elbi C, Vecerová J, Dey A, et al. 2004.. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. . Mol. Cell Biol. 24:(14):6393402
    [Crossref] [Google Scholar]
  24. 24.
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. 2017.. Phase separation drives heterochromatin domain formation. . Nature 547:(7662):24145
    [Crossref] [Google Scholar]
  25. 25.
    Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, et al. 2017.. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. . Nature 547:(7662):23640
    [Crossref] [Google Scholar]
  26. 26.
    Dekker J, Misteli T. 2015.. Long-range chromatin interactions. . Cold Spring Harb. Perspect. Biol. 7:(10):a019356
    [Crossref] [Google Scholar]
  27. 27.
    Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. 2016.. Formation of chromosomal domains by loop extrusion. . Cell Rep. 15:(9):203849
    [Crossref] [Google Scholar]
  28. 28.
    Liu Z, Tjian R. 2018.. Visualizing transcription factor dynamics in living cells. . J. Cell Biol. 217:(4):118191
    [Crossref] [Google Scholar]
  29. 29.
    Smith SB, Cui Y, Bustamante C. 1996.. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. . Science 271:(5250):79599
    [Crossref] [Google Scholar]
  30. 30.
    Kratky O, Porod G. 1949.. Röntgenuntersuchung gelöster Fadenmoleküle. . Recl. Trav. Chim. Pays-Bas 68:(12):110622
    [Crossref] [Google Scholar]
  31. 31.
    Mihardja S, Spakowitz AJ, Zhang Y, Bustamante C. 2006.. Effect of force on mononucleosomal dynamics. . PNAS 103:(43):1587176
    [Crossref] [Google Scholar]
  32. 32.
    Brower-Toland BD, Smith CL, Yeh RC, Lis JT, Peterson CL, Wang MD. 2002.. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. . PNAS 99:(4):196065
    [Crossref] [Google Scholar]
  33. 33.
    Ngo TTM, Zhang Q, Zhou R, Yodh JG, Ha T. 2015.. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. . Cell 160:(6):113544
    [Crossref] [Google Scholar]
  34. 34.
    Cui Y, Bustamante C. 2000.. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. . PNAS 97:(1):12732
    [Crossref] [Google Scholar]
  35. 35.
    Meijering AEC, Sarlós K, Nielsen CF, Witt H, Harju J, et al. 2022.. Nonlinear mechanics of human mitotic chromosomes. . Nature 605:(7910):54550
    [Crossref] [Google Scholar]
  36. 36.
    Ngo TTM, Liu B, Wang F, Basu A, Wu C, Ha T. 2024.. Dependence of nucleosome mechanical stability on DNA mismatches. . bioRxiv 2022.11.21.517409. https://doi.org/10.1101/2022.11.21.517409
  37. 37.
    Hall MA, Shundrovsky A, Bai L, Fulbright RM, Lis JT, Wang MD. 2009.. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. . Nat. Struct. Mol. Biol. 16:(2):12429
    [Crossref] [Google Scholar]
  38. 38.
    Chen Z, Gabizon R, Brown AI, Lee A, Song A, et al. 2019.. High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier. . eLife 8::e48281
    [Crossref] [Google Scholar]
  39. 39.
    Rudnizky S, Khamis H, Malik O, Melamed P, Kaplan A. 2019.. The base pair-scale diffusion of nucleosomes modulates binding of transcription factors. . PNAS 116:(25):1216166
    [Crossref] [Google Scholar]
  40. 40.
    Rudnizky S, Khamis H, Ginosar Y, Goren E, Melamed P, Kaplan A. 2021.. Extended and dynamic linker histone-DNA interactions control chromatosome compaction. . Mol. Cell 81:(16):341021.e4
    [Crossref] [Google Scholar]
  41. 41.
    Alshareedah I, Kaur T, Banerjee PR. 2021.. Methods for characterizing the material properties of biomolecular condensates. . Methods Enzymol. 646::14383
    [Crossref] [Google Scholar]
  42. 42.
    La Porta A, Wang MD. 2004.. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. . Phys. Rev. Lett. 92:(19):190801
    [Crossref] [Google Scholar]
  43. 43.
    Sheinin MY, Li M, Soltani M, Luger K, Wang MD. 2013.. Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss. . Nat. Commun. 4:(1):2579
    [Crossref] [Google Scholar]
  44. 44.
    Le TT, Gao X, Park SH, Lee J, Inman JT, et al. 2019.. Synergistic coordination of chromatin torsional mechanics and topoisomerase activity. . Cell 179:(3):61931.e15
    [Crossref] [Google Scholar]
  45. 45.
    De Vlaminck I, Dekker C. 2012.. Recent advances in magnetic tweezers. . Annu. Rev. Biophys. 41::45372
    [Crossref] [Google Scholar]
  46. 46.
    Sarkar R, Rybenkov VV. 2016.. A guide to magnetic tweezers and their applications. . Front. Phys. 4::231444
    [Crossref] [Google Scholar]
  47. 47.
    Li W, Chen P, Yu J, Dong L, Liang D, et al. 2016.. FACT remodels the tetranucleosomal unit of chromatin fibers for gene transcription. . Mol. Cell 64:(1):12033
    [Crossref] [Google Scholar]
  48. 48.
    Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, et al. 2006.. Direct observation of DNA distortion by the RSC complex. . Mol. Cell 21:(3):41725
    [Crossref] [Google Scholar]
  49. 49.
    Chang TR, Long X, Shastry S, Parks JW, Stone MD. 2022.. Single-molecule mechanical analysis of strand invasion in human telomere DNA. . Biochemistry 61:(15):155460
    [Crossref] [Google Scholar]
  50. 50.
    Soman A, Wong SY, Korolev N, Surya W, Lattmann S, et al. 2022.. Columnar structure of human telomeric chromatin. . Nature 609:(7929):104855
    [Crossref] [Google Scholar]
  51. 51.
    Kaczmarczyk A, Meng H, Ordu O, van Noort J, Dekker NH. 2020.. Chromatin fibers stabilize nucleosomes under torsional stress. . Nat. Commun. 11:(1):126
    [Crossref] [Google Scholar]
  52. 52.
    Ryu J-K, Rah S-H, Janissen R, Kerssemakers JWJ, Bonato A, et al. 2022.. Condensin extrudes DNA loops in steps up to hundreds of base pairs that are generated by ATP binding events. . Nucleic Acids Res. 50:(2):82032
    [Crossref] [Google Scholar]
  53. 53.
    Sun M, Nishino T, Marko JF. 2013.. The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. . Nucleic Acids Res. 41:(12):614960
    [Crossref] [Google Scholar]
  54. 54.
    Serrano D, Cordero G, Kawamura R, Sverzhinsky A, Sarker M, et al. 2020.. The Smc5/6 core complex is a structure-specific DNA binding and compacting machine. . Mol. Cell 80:(6):102538.e5
    [Crossref] [Google Scholar]
  55. 55.
    Gutierrez-Escribano P, Hormeño S, Madariaga-Marcos J, Solé-Soler R, O'Reilly FJ, et al. 2020.. Purified Smc5/6 complex exhibits DNA substrate recognition and compaction. . Mol. Cell 80:(6):103954.e6
    [Crossref] [Google Scholar]
  56. 56.
    Bizard AH, Allemand J-F, Hassenkam T, Paramasivam M, Sarlós K, et al. 2019.. PICH and TOP3A cooperate to induce positive DNA supercoiling. . Nat. Struct. Mol. Biol. 26:(4):26774
    [Crossref] [Google Scholar]
  57. 57.
    Eeftens JM, Bisht S, Kerssemakers J, Kschonsak M, Haering CH, Dekker C. 2017.. Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism. . EMBO J. 36:(23):344857
    [Crossref] [Google Scholar]
  58. 58.
    Alonso JL, Goldmann WH. 2003.. Feeling the forces: atomic force microscopy in cell biology. . Life Sci. 72:(23):255360
    [Crossref] [Google Scholar]
  59. 59.
    Pyne ALB, Noy A, Main KHS, Velasco-Berrelleza V, Piperakis MM, et al. 2021.. Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides. . Nat. Commun. 12:(1):1053
    [Crossref] [Google Scholar]
  60. 60.
    Bintu L, Kopaczynska M, Hodges C, Lubkowska L, Kashlev M, Bustamante C. 2011.. The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes. . Nat. Struct. Mol. Biol. 18:(12):139499
    [Crossref] [Google Scholar]
  61. 61.
    Melters DP, Neuman KC, Bentahar RS, Rakshit T, Dalal Y. 2023.. Single molecule analysis of CENP-A chromatin by high-speed atomic force microscopy. . eLife 12::e86709
    [Crossref] [Google Scholar]
  62. 62.
    Morioka S, Sato S, Horikoshi N, Kujirai T, Tomita T, et al. 2023.. High-speed atomic force microscopy reveals spontaneous nucleosome sliding of H2A.Z at the subsecond time scale. . Nano Lett. 23:(5):1696704
    [Crossref] [Google Scholar]
  63. 63.
    Ryu J-K, Katan AJ, van der Sluis EO, Wisse T, de Groot R, et al. 2020.. The condensin holocomplex cycles dynamically between open and collapsed states. . Nat. Struct. Mol. Biol. 27:(12):113441
    [Crossref] [Google Scholar]
  64. 64.
    Kim E, Gonzalez AM, Pradhan B, van der Torre J, Dekker C. 2022.. Condensin-driven loop extrusion on supercoiled DNA. . Nat. Struct. Mol. Biol. 29:(7):71927
    [Crossref] [Google Scholar]
  65. 65.
    Ryu J-K, Bouchoux C, Liu HW, Kim E, Minamino M, et al. 2021.. Bridging-induced phase separation induced by cohesin SMC protein complexes. . Sci. Adv. 7:(7):eabe5905
    [Crossref] [Google Scholar]
  66. 66.
    Roy R, Hohng S, Ha T. 2008.. A practical guide to single-molecule FRET. . Nat. Methods 5:(6):50716
    [Crossref] [Google Scholar]
  67. 67.
    Kim E, Barth R, Dekker C. 2023.. Looping the genome with SMC complexes. . Annu. Rev. Biochem. 92::1541
    [Crossref] [Google Scholar]
  68. 68.
    Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters J-M. 2019.. DNA loop extrusion by human cohesin. . Science 366:(6471):133845
    [Crossref] [Google Scholar]
  69. 69.
    Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H. 2019.. Human cohesin compacts DNA by loop extrusion. . Science 366:(6471):134549
    [Crossref] [Google Scholar]
  70. 70.
    Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, et al. 2018.. Real-time imaging of DNA loop extrusion by condensin. . Science 360:(6384):1025
    [Crossref] [Google Scholar]
  71. 71.
    Pradhan B, Kanno T, Umeda Igarashi M, Loke MS, Baaske MD, et al. 2023.. The Smc5/6 complex is a DNA loop-extruding motor. . Nature 616:(7958):84348
    [Crossref] [Google Scholar]
  72. 72.
    Davidson IF, Barth R, Zaczek M, van der Torre J, Tang W, et al. 2023.. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. . Nature 616:(7958):82227
    [Crossref] [Google Scholar]
  73. 73.
    Dequeker BJH, Scherr MJ, Brandão HB, Gassler J, Powell S, et al. 2022.. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. . Nature 606:(7912):197203
    [Crossref] [Google Scholar]
  74. 74.
    Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S. 1996.. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. . PNAS 93:(13):626468
    [Crossref] [Google Scholar]
  75. 75.
    Vafabakhsh R, Ha T. 2012.. Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. . Science 337:(6098):1097101
    [Crossref] [Google Scholar]
  76. 76.
    Ngo TTM, Yoo J, Dai Q, Zhang Q, He C, et al. 2016.. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. . Nat. Commun. 7:(1):10813
    [Crossref] [Google Scholar]
  77. 77.
    Hwang H, Kreig A, Calvert J, Lormand J, Kwon Y, et al. 2014.. Telomeric overhang length determines structural dynamics and accessibility to telomerase and ALT-associated proteins. . Structure 22:(6):84253
    [Crossref] [Google Scholar]
  78. 78.
    Paul T, Opresko PL, Ha T, Myong S. 2022.. Vectorial folding of telomere overhang promotes higher accessibility. . Nucleic Acids Res. 50:(11):627183
    [Crossref] [Google Scholar]
  79. 79.
    Noer SL, Preus S, Gudnason D, Aznauryan M, Mergny J-L, Birkedal V. 2016.. Folding dynamics and conformational heterogeneity of human telomeric G-quadruplex structures in Na+ solutions by single molecule FRET microscopy. . Nucleic Acids Res. 44:(1):46471
    [Crossref] [Google Scholar]
  80. 80.
    Hwang H, Buncher N, Opresko PL, Myong S. 2012.. POT1-TPP1 regulates telomeric overhang structural dynamics. . Structure 20:(11):187280
    [Crossref] [Google Scholar]
  81. 81.
    Shiekh S, Jack A, Saurabh A, Mustafa G, Kodikara SG, et al. 2022.. Shelterin reduces the accessibility of telomeric overhangs. . Nucleic Acids Res. 50:(22):1288595
    [Crossref] [Google Scholar]
  82. 82.
    Paul T, Liou W, Cai X, Opresko PL, Myong S. 2021.. TRF2 promotes dynamic and stepwise looping of POT1 bound telomeric overhang. . Nucleic Acids Res. 49:(21):1237793
    [Crossref] [Google Scholar]
  83. 83.
    Wang K, Flaherty DP, Chen L, Yang D. 2019.. High-throughput screening of G-quadruplex ligands by FRET assay. . Methods Mol. Biol. 2035::32331
    [Crossref] [Google Scholar]
  84. 84.
    Ngo TTM, Ha T. 2015.. Nucleosomes undergo slow spontaneous gaping. . Nucleic Acids Res. 43:(8):396471
    [Crossref] [Google Scholar]
  85. 85.
    Kilic S, Felekyan S, Doroshenko O, Boichenko I, Dimura M, et al. 2018.. Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α. . Nat. Commun. 9:(1):235
    [Crossref] [Google Scholar]
  86. 86.
    Hohng S, Joo C, Ha T. 2004.. Single-molecule three-color FRET. . Biophys. J. 87:(2):132837
    [Crossref] [Google Scholar]
  87. 87.
    Brahma S, Udugama MI, Kim J, Hada A, Bhardwaj SK, et al. 2017.. INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. . Nat. Commun. 8:(1):15616
    [Crossref] [Google Scholar]
  88. 88.
    Lee J, Lee TH. 2017.. Single-molecule investigations on histone H2A-H2B dynamics in the nucleosome. . Biochemistry 56:(7):97785
    [Crossref] [Google Scholar]
  89. 89.
    Sabantsev A, Levendosky RF, Zhuang X, Bowman GD, Deindl S. 2019.. Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling. . Nat. Commun. 10:(1):1720
    [Crossref] [Google Scholar]
  90. 90.
    Poyton MF, Feng XA, Ranjan A, Lei Q, Wang F, et al. 2022.. Coordinated DNA and histone dynamics drive accurate histone H2A.Z exchange. . Sci. Adv. 8:(10):eabj5509
    [Crossref] [Google Scholar]
  91. 91.
    Bustamante CJ, Chemla YR, Liu S, Wang MD. 2021.. Optical tweezers in single-molecule biophysics. . Nat. Rev. Methods Primers 1:(1):25
    [Crossref] [Google Scholar]
  92. 92.
    Ha T, Kaiser C, Myong S, Wu B, Xiao J. 2022.. Next generation single-molecule techniques: imaging, labeling, and manipulation in vitro and in cellulo. . Mol. Cell 82:(2):30414
    [Crossref] [Google Scholar]
  93. 93.
    Mitra J, Ha T. 2019.. Streamlining effects of extra telomeric repeat on telomeric DNA folding revealed by fluorescence-force spectroscopy. . Nucleic Acids Res. 47:(21):1104456
    [Crossref] [Google Scholar]
  94. 94.
    Mitra J, Makurath MA, Ngo TTM, Troitskaia A, Chemla YR, Ha T. 2019.. Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. . PNAS 116:(17):835059
    [Crossref] [Google Scholar]
  95. 95.
    Koirala D, Dhakal S, Ashbridge B, Sannohe Y, Rodriguez R, et al. 2011.. A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. . Nat. Chem. 3:(10):78287
    [Crossref] [Google Scholar]
  96. 96.
    Deleted in proof
  97. 97.
    Leicher R, Osunsade A, Chua GNL, Faulkner SC, Latham AP, et al. 2022.. Single-stranded nucleic acid binding and coacervation by linker histone H1. . Nat. Struct. Mol. Biol. 29:(5):46371
    [Crossref] [Google Scholar]
  98. 98.
    Morin JA, Wittmann S, Choubey S, Klosin A, Golfier S, et al. 2022.. Sequence-dependent surface condensation of a pioneer transcription factor on DNA. . Nat. Phys. 18:(3):27176
    [Crossref] [Google Scholar]
  99. 99.
    Fazio T, Visnapuu ML, Wind S, Greene EC. 2008.. DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging. . Langmuir 24:(18):1052431
    [Crossref] [Google Scholar]
  100. 100.
    Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC. 2017.. The condensin complex is a mechanochemical motor that translocates along DNA. . Science 358:(6363):67276
    [Crossref] [Google Scholar]
  101. 101.
    Stigler J, Çamdere , Koshland DE, Greene EC. 2016.. Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. . Cell Rep. 15:(5):98898
    [Crossref] [Google Scholar]
  102. 102.
    Keenen MM, Brown D, Brennan LD, Renger R, Khoo H, et al. 2021.. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. . eLife 10::e64563
    [Crossref] [Google Scholar]
  103. 103.
    Zuo L, Zhang G, Massett M, Cheng J, Guo Z, et al. 2021.. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. . Nat. Commun. 12:(1):1491
    [Crossref] [Google Scholar]
  104. 104.
    Boka AP, Mukherjee A, Mir M. 2021.. Single-molecule tracking technologies for quantifying the dynamics of gene regulation in cells, tissue and embryos. . Development 148:(18):dev199744
    [Crossref] [Google Scholar]
  105. 105.
    Hansen AS, Amitai A, Cattoglio C, Tjian R, Darzacq X. 2019.. Guided nuclear exploration increases CTCF target search efficiency. . Nat. Chem. Biol. 16:(3):25766
    [Crossref] [Google Scholar]
  106. 106.
    Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. 2017.. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. . eLife 6::e25776
    [Crossref] [Google Scholar]
  107. 107.
    Gabriele M, Brandão HB, Grosse-Holz S, Jha A, Dailey GM, et al. 2022.. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. . Science 376:(6592):476501
    [Crossref] [Google Scholar]
  108. 108.
    Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, et al. 2017.. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. . Mol. Cell 67:(2):28293.e7
    [Crossref] [Google Scholar]
  109. 109.
    Iida S, Shinkai S, Itoh Y, Tamura S, Kanemaki MT, et al. 2022.. Single-nucleosome imaging reveals steady-state motion of interphase chromatin in living human cells. . Sci. Adv. 8:(22):eabn5626
    [Crossref] [Google Scholar]
  110. 110.
    Nozaki T, Shinkai S, Ide S, Higashi K, Tamura S, et al. 2023.. Condensed but liquid-like domain organization of active chromatin regions in living human cells. . Sci. Adv. 9:(14):eadf1488
    [Crossref] [Google Scholar]
  111. 111.
    Hook PW, Timp W. 2023.. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. . Nat. Rev. Genet. 24:(9):62741
    [Crossref] [Google Scholar]
  112. 112.
    Klemm SL, Shipony Z, Greenleaf WJ. 2019.. Chromatin accessibility and the regulatory epigenome. . Nat. Rev. Genet. 20:(4):20720
    [Crossref] [Google Scholar]
  113. 113.
    Lee I, Razaghi R, Gilpatrick T, Molnar M, Gershman A, et al. 2020.. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. . Nat. Methods 17:(12):119199
    [Crossref] [Google Scholar]
  114. 114.
    Stergachis AB, Debo BM, Haugen E, Churchman LS, Stamatoyannopoulos JA. 2020.. Single-molecule regulatory architectures captured by chromatin fiber sequencing. . Science 368:(6498):144954
    [Crossref] [Google Scholar]
  115. 115.
    Altemose N, Maslan A, Smith OK, Sundararajan K, Brown RR, et al. 2022.. DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide. . Nat. Methods 19:(6):71123
    [Crossref] [Google Scholar]
  116. 116.
    Müller CA, Boemo MA, Spingardi P, Kessler BM, Kriaucionis S, et al. 2019.. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. . Nat. Methods 16:(5):42936
    [Crossref] [Google Scholar]
  117. 117.
    Mahadevan J, Jha A, Rudolph J, Bowerman S, Narducci D, et al. 2023.. Dynamics of endogenous PARP1 and PARP2 during DNA damage revealed by live-cell single-molecule imaging. . iScience 26:(1):105779
    [Crossref] [Google Scholar]
  118. 118.
    Miné-Hattab J, Heltberg M, Villemeur M, Guedj C, Mora T, et al. 2021.. Single molecule microscopy reveals key physical features of repair foci in living cells. . eLife 10::e60577
    [Crossref] [Google Scholar]
  119. 119.
    Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC. 2015.. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. . Mol. Cell 58:(3):48394
    [Crossref] [Google Scholar]
  120. 120.
    Sánchez H, McCluskey K, van Laar T, van Veen E, Asscher FM, et al. 2021.. DNA replication origins retain mobile licensing proteins. . Nat. Commun. 12:(1):1908
    [Crossref] [Google Scholar]
  121. 121.
    Li S, Wasserman MR, Yurieva O, Bai L, O'Donnell ME, Liu S. 2022.. Origin recognition complex harbors an intrinsic nucleosome remodeling activity. . PNAS 119:(42):e2211568119
    [Crossref] [Google Scholar]
  122. 122.
    Caron M-C, Sharma AK, O'Sullivan J, Myler LR, Ferreira MT, et al. 2019.. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. . Nat. Commun. 10:(1):2954
    [Crossref] [Google Scholar]
  123. 123.
    Myler LR, Gallardo IF, Soniat MM, Deshpande RA, Gonzalez XB, et al. 2017.. Single-molecule imaging reveals how Mre11-Rad50-Nbs1 initiates DNA break repair. . Mol. Cell 67:(5):89198.e4
    [Crossref] [Google Scholar]
  124. 124.
    Liu L, Kong M, Gassman NR, Freudenthal BD, Prasad R, et al. 2017.. PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1. . Nucleic Acids Res. 45:(22):1283447
    [Crossref] [Google Scholar]
  125. 125.
    Cheon NY, Kim H-S, Yeo J-E, Schärer OD, Lee JY. 2019.. Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B. . Nucleic Acids Res. 47:(16):833747
    [Crossref] [Google Scholar]
  126. 126.
    Raper AT, Maxwell BA, Suo Z. 2021.. Dynamic processing of a common oxidative DNA lesion by the first two enzymes of the base excision repair pathway. . J. Mol. Biol. 433:(5):166811
    [Crossref] [Google Scholar]
  127. 127.
    Hanne J, Britton BM, Park J, Liu J, Martín-López J, et al. 2018.. MutS homolog sliding clamps shield the DNA from binding proteins. . J. Biol. Chem. 293:(37):1428594
    [Crossref] [Google Scholar]
  128. 128.
    Gorman J, Wang F, Redding S, Plys AJ, Fazio T, et al. 2012.. Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. . PNAS 109:(45):E307483
    [Crossref] [Google Scholar]
  129. 129.
    Ticau S, Friedman LJ, Champasa K, Corrêa IR, Gelles J, Bell SP. 2017.. Mechanism and timing of Mcm2–7 ring closure during DNA replication origin licensing. . Nat. Struct. Mol. Biol. 24:(3):30915
    [Crossref] [Google Scholar]
  130. 130.
    Wasserman MR, Schauer GD, O'Donnell ME, Liu S. 2019.. Replication fork activation is enabled by a single-stranded DNA gate in CMG helicase. . Cell 178:(3):60011.e16
    [Crossref] [Google Scholar]
  131. 131.
    Ma CJ, Kwon Y, Sung P, Greene EC. 2017.. Human RAD52 interactions with replication protein A and the RAD51 presynaptic complex. . J. Biol. Chem. 292:(28):1170213
    [Crossref] [Google Scholar]
  132. 132.
    Kaniecki K, De Tullio L, Gibb B, Kwon Y, Sung P, Greene EC. 2017.. Dissociation of Rad51 presynaptic complexes and heteroduplex DNA joints by tandem assemblies of Srs2. . Cell Rep. 21:(11):316677
    [Crossref] [Google Scholar]
  133. 133.
    Meir A, Crickard JB, Kwon Y, Sung P, Greene EC. 2022.. Rad54 and Rdh54 prevent Srs2-mediated disruption of Rad51 presynaptic filaments. . PNAS 119:(4):e2113871119
    [Crossref] [Google Scholar]
  134. 134.
    Anand R, Buechelmaier E, Belan O, Newton M, Vancevska A, et al. 2022.. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. . Nature 601:(7892):26873
    [Crossref] [Google Scholar]
  135. 135.
    Fairlamb MS, Spies M, Washington MT, Freudenthal BD. 2023.. Visualizing the coordination of apurinic/apyrimidinic endonuclease (APE1) and DNA polymerase β during base excision repair. . J. Biol. Chem. 299:(5):104636
    [Crossref] [Google Scholar]
  136. 136.
    Bralić A, Tehseen M, Sobhy MA, Tsai C-L, Alhudhali L, et al. 2023.. A scanning-to-incision switch in TFIIH-XPG induced by DNA damage licenses nucleotide excision repair. . Nucleic Acids Res. 51:(3):101933
    [Crossref] [Google Scholar]
  137. 137.
    Qi Z, Pugh RA, Spies M, Chemla YR. 2013.. Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. . eLife 2::e00334
    [Crossref] [Google Scholar]
  138. 138.
    Kim Y, Furman CM, Manhart CM, Alani E, Finkelstein IJ. 2019.. Intrinsically disordered regions regulate both catalytic and non-catalytic activities of the MutLα mismatch repair complex. . Nucleic Acids Res. 47:(4):182335
    [Google Scholar]
  139. 139.
    Lewis JS, Spenkelink LM, Schauer GD, Yurieva O, Mueller SH, et al. 2020.. Tunability of DNA polymerase stability during eukaryotic DNA replication. . Mol. Cell 77:(1):1725.e5
    [Crossref] [Google Scholar]
  140. 140.
    Lewis JS, Spenkelink LM, Schauer GD, Hill FR, Georgescu RE, et al. 2017.. Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome. . PNAS 114:(40):1063035
    [Crossref] [Google Scholar]
  141. 141.
    Schaich MA, Schnable BL, Kumar N, Roginskaya V, Jakielski RC, et al. 2023.. Single-molecule analysis of DNA-binding proteins from nuclear extracts (SMADNE). . Nucleic Acids Res. 51:(7):e39
    [Crossref] [Google Scholar]
  142. 142.
    Birnie A, Dekker C. 2021.. Genome-in-a-box: building a chromosome from the bottom up. . ACS Nano 15:(1):11124
    [Crossref] [Google Scholar]
  143. 143.
    Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, et al. 2020.. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. . Nat. Methods 17:(2):21724
    [Crossref] [Google Scholar]
  144. 144.
    de Wit E, Nora EP. 2022.. New insights into genome folding by loop extrusion from inducible degron technologies. . Nat. Rev. Genet. 24:(2):7385
    [Crossref] [Google Scholar]
  145. 145.
    Liu Y, Zou RS, He S, Nihongaki Y, Li X, et al. 2020.. Very fast CRISPR on demand. . Science 368:(6496):126569
    [Crossref] [Google Scholar]
  146. 146.
    Wang Y, Cottle WT, Wang H, Feng XA, Mallon J, et al. 2021.. Genome oligopaint via local denaturation fluorescence in situ hybridization. . Mol. Cell 81:(7):156677.e8
    [Crossref] [Google Scholar]
  147. 147.
    Gauchier M, van Mierlo G, Vermeulen M, Déjardin J. 2020.. Purification and enrichment of specific chromatin loci. . Nat. Methods 17:(4):38089
    [Crossref] [Google Scholar]
  148. 148.
    Fedyuk V, Erez N, Furth N, Beresh O, Andreishcheva E, et al. 2022.. Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. . Nat. Biotechnol. 41:(2):21221
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-090722-010601
Loading
/content/journals/10.1146/annurev-physchem-090722-010601
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error