1932

Abstract

The discovery of more than 200 gas-phase chemical compounds in interstellar space has led to the speculation that this nonterrestrial synthesis may play a role in the origin of life. These identifications were possible because of laboratory spectroscopy, which provides the molecular fingerprints for astronomical observations. Interstellar chemistry produces a wide range of small, organic molecules in dense clouds, such as NHCOCH, CHOCH, CHCOOCH, and CH(OH)CHO. Carbon (C) is also carried in the fullerenes C and C, which can preserve C-C bonds from circumstellar environments for future synthesis. Elusive phosphorus has now been found in molecular clouds, the sites of star formation, in the molecules PO and PN. Such clouds can collapse into solar systems, although the chemical/physical processing of the emerging planetary disk is uncertain. The presence of molecule-rich interstellar starting material, as well as the link to planetary bodies such as meteorites and comets, suggests that astrochemical processes set a prebiotic foundation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090722-010849
2024-06-28
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-090722-010849.html?itemId=/content/journals/10.1146/annurev-physchem-090722-010849&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Douglas AE, Herzberg GH. 1941.. Note on CH+ in interstellar space and in the laboratory. . Astrophys. J. 94::381
    [Crossref] [Google Scholar]
  2. 2.
    Townes CH, Schawlow A. 1971.. Microwave Spectroscopy. New York:: Dover
    [Google Scholar]
  3. 3.
    Cheung AC, Rank DM, Townes CH, Thornton DD, Welch WJ. 1968.. Detection of NH3 molecules in the interstellar medium by their microwave emission. . Phys. Rev. Lett. 21::1701
    [Crossref] [Google Scholar]
  4. 4.
    Weinreb S, Barrett AH, Meeks ML, Henry JC. 1963.. Radio observations of OH in the interstellar medium. . Nature 200::82931
    [Crossref] [Google Scholar]
  5. 5.
    Snyder LE, Buhl D, Zuckerman B, Palmer P. 1969.. Microwave detection of interstellar formaldehyde. . Phys. Rev. Lett. 22::67981
    [Crossref] [Google Scholar]
  6. 6.
    Wilson RW, Jefferts KB, Penzias AA. 1970.. Carbon monoxide in the Orion Nebula. . Astrophys. J. 161::L4344
    [Crossref] [Google Scholar]
  7. 7.
    Snyder LE, Buhl D. 1971.. Observations of radio emission from interstellar hydrogen cyanide. . Astrophys. J. 163::L4752
    [Crossref] [Google Scholar]
  8. 8.
    Wilson RW, Penzias AA, Jefferts KB, Kutner M, Thaddeus P. 1971.. Discovery of interstellar silicon monoxide. . Astrophys. J. 167::L97100
    [Crossref] [Google Scholar]
  9. 9.
    Thaddeus P, Kutner ML, Penzias AA, Wilson RW, Jefferts KB. 1972.. Interstellar hydrogen sulfide. . Astrophys. J. 176::L7376
    [Crossref] [Google Scholar]
  10. 10.
    Halfen DT, Ilyushin VV, Ziurys LM. 2013.. Insights into surface hydrogenation in the interstellar medium: observations of methanimine and methyl amine in Sgr B2(N). . Astrophys. J. 767::66
    [Crossref] [Google Scholar]
  11. 11.
    Hollis JM, Lovas FJ, Remijan AJ, Jewell PR, Ilyushin VV, Kleiner I. 2006.. Detection of acetamide (CH3CONH2): the largest interstellar molecule with a peptide bond. . Astrophys. J. 643::L2528
    [Crossref] [Google Scholar]
  12. 12.
    Halfen DT, Apponi AJ, Woolf NJ, Polt R, Ziurys LM. 2006.. A systematic study of glycolaldehyde in Sgr B2(N) at 2 and 3 millimeters: criteria for detecting large interstellar molecules. . Astrophys. J. 639::23745
    [Crossref] [Google Scholar]
  13. 13.
    Cami J, Bernard-Salas J, Peeters E, Malek SE. 2010.. Detection of C60 and C70 in a young planetary nebula. . Science 329::118082
    [Crossref] [Google Scholar]
  14. 14.
    Campbell EK, Holz M, Gerlich D, Maier JP. 2015.. Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands. . Nature 523::32223
    [Crossref] [Google Scholar]
  15. 15.
    Johansson LE, Anderson C, Elldér J, Friberg P, Hjalmarson Å, et al. 1985.. The spectra of Orion A and IRC+10216 between 72.2 and 91.1 GHz. . Astron. Astrophys. Suppl. Ser. 60::13568
    [Google Scholar]
  16. 16.
    Keady JJ, Ridgway ST. 1993.. The IRC+10216 circumstellar envelope. III. Infrared molecular line profiles. . Astrophys. J. 406::199214
    [Crossref] [Google Scholar]
  17. 17.
    Goldhaber DM, Betz AL. 1984.. Silane in IRC+10216. . Astrophys. J. 579::L5558
    [Crossref] [Google Scholar]
  18. 18.
    Wilson TL, Rohlfs K, Hüttemeister S. 2009.. Tools of Radio Astronomy. Berlin:: Springer
    [Google Scholar]
  19. 19.
    Meyer DM, Roth KC. 1991.. Discovery of interstellar NH. . Astrophys. J. 376::L4952
    [Crossref] [Google Scholar]
  20. 20.
    Hunaerts J. 1967.. C2 Ballick-Ramsay bands in late carbon stars. . Astrophys. J. 149::L3132
    [Crossref] [Google Scholar]
  21. 21.
    Forgan D, Dayal P, Cockell C, Libeskind N. 2017.. Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation. . Int. J. Astrobiol. 16::6073
    [Crossref] [Google Scholar]
  22. 22.
    Ziurys LM. 2019.. Interstellar molecules and their prebiotic potential. . In Handbook of Astrobiology, ed. VM Kolb , pp. 16885. Boca Raton, FL:: CRC Press
    [Google Scholar]
  23. 23.
    Neufeld DA, Schilke P, Menten KM, Wolfire MG, Black JH, et al. 2006.. Discovery of interstellar CF+. . Astron. Astrophys. 454::L3740
    [Crossref] [Google Scholar]
  24. 24.
    Cernicharo J, Cabezas C, Pardo JR, Agúndez M, Roncero O, et al. 2023.. The magnesium paradigm in IRC+10216: discovery of MgC4H+, MgC3N+, MgC6H+, and MgC5N+. . Astron. Astrophys. 672::L13
    [Crossref] [Google Scholar]
  25. 25.
    Humphreys RM, Ziurys LM, Bernal JJ, Gordon MS, Helton LA, et al. 2019.. The unexpected spectrum of the innermost ejecta of the red hypergiant VY CMa. . Astrophys. J. Lett. 874::L26
    [Crossref] [Google Scholar]
  26. 26.
    Zack LN, Halfen DT, Ziurys LM. 2011.. Detection of FeCN (X4Δi) in IRC+10216: a new interstellar molecule. . Astrophys. J. Lett. 733::L36
    [Crossref] [Google Scholar]
  27. 27.
    Schilke P, Neufeld DA, Müller HS, Comito C, Bergin EA, et al. 2014.. Ubiquitous argonium (ArH+) in the diffuse interstellar medium: a molecular tracer of almost purely atomic gas. . Astron. Astrophys. 566::A29
    [Crossref] [Google Scholar]
  28. 28.
    Green DA. 2015.. Constraints on the distribution of supernova remnants with Galactocentric radius. . Mon. Not. R. Astron. Soc. 454::151724
    [Crossref] [Google Scholar]
  29. 29.
    Dorschner J, Henning T. 1995.. Dust metamorphosis in the galaxy. . Astron. Astrophys. Rev. 6::271333
    [Crossref] [Google Scholar]
  30. 30.
    Koo BC, Lee YH, Moon DS, Yoon SC, Raymond JC. 2013.. Phosphorus in the young supernova remnant Cassiopeia A. . Science 342::134648
    [Crossref] [Google Scholar]
  31. 31.
    Smartt SJ. 2009.. Progenitors of core-collapse supernovae. . Annu. Rev. Astron. Astrophys. 47::63106
    [Crossref] [Google Scholar]
  32. 32.
    Milam SN, Woolf NJ, Ziurys LM. 2009.. Circumstellar 12C/13C isotope ratios from millimeter observations of CN and CO: mixing in carbon- and oxygen-rich stars. . Astrophys. J. 690::83749
    [Crossref] [Google Scholar]
  33. 33.
    Glassgold AE. 1996.. Circumstellar photochemistry. . Annu. Rev. Astron. Astrophys. 34::24177
    [Crossref] [Google Scholar]
  34. 34.
    Cernicharo J, Guélin M, Kahane C. 2000.. A λ2 mm molecular line survey of the C-star envelope IRC+ 10216. . Astron. Astrophys. Suppl. Ser. 142::181215
    [Crossref] [Google Scholar]
  35. 35.
    Tenenbaum ED, Dodd JL, Milam SN, Woolf NJ, Ziurys LM. 2010.. The Arizona Radio Observatory 1 mm spectral survey of IRC+10216 and VY Canis Majoris (215–285 GHz). . Astrophys. J. Suppl. Ser. 190::348417
    [Crossref] [Google Scholar]
  36. 36.
    Ziurys LM, Halfen DT, Geppert W, Aikawa Y. 2016.. Following the interstellar history of carbon: from the interiors of stars to the surfaces of planets. . Astrobiology 16::9971012
    [Crossref] [Google Scholar]
  37. 37.
    Singh AP, Edwards JL, Humphreys RM, Ziurys LM. 2021.. Molecules and outflows in NML Cygni: new insights from a 1 mm spectral line survey. . Astrophys. J. Lett. 920::L38
    [Crossref] [Google Scholar]
  38. 38.
    Singh AP, Edwards JL, Ziurys LM. 2022.. The Arizona Radio Observatory 1 mm spectral survey of the hypergiant star NML Cygni (215–285 GHz). . Astron. J. 164::230
    [Crossref] [Google Scholar]
  39. 39.
    Humphreys RM, Helton LA, Jones TJ. 2007.. The three-dimensional morphology of VY Canis Majoris. I. The kinematics of the ejecta. . Astron. J. 133::271629
    [Crossref] [Google Scholar]
  40. 40.
    Tenenbaum ED, Dodd JL, Milam SN, Woolf NJ, Ziurys LM. 2010.. Comparative spectra of oxygen-rich versus carbon-rich circumstellar shells: VY Canis Majoris and IRC+10216 at 215–215 GHz. . Astrophys. J. Lett. 720::L1027
    [Crossref] [Google Scholar]
  41. 41.
    Jones A. 2001.. Dust in the dense interstellar medium. . In From Darkness to Light ( ASP Conference Series , Vol. 243), ed. T Montmerle, P André , pp. 3746. San Francisco:: Astron. Soc. Pac.
    [Google Scholar]
  42. 42.
    Lodders K, Fegley B. 1999.. Condensation chemistry of circumstellar grains. . Proc. Int. Astron. Union 191::27990
    [Crossref] [Google Scholar]
  43. 43.
    Kwok S. 2004.. The synthesis of organic and inorganic compounds in evolved stars. . Nature 430::98591
    [Crossref] [Google Scholar]
  44. 44.
    Lodders K, Amari S. 2005.. Presolar grains from meteorites: remnants from the early times of the solar system. . Geochemistry 65::93166
    [Crossref] [Google Scholar]
  45. 45.
    Gobrecht D, Cherchneff I, Sarangi A, Plane JMC, Bromley ST. 2016.. Dust formation in the oxygen-rich AGB star IK Tauri. . Astron. Astrophys. 585::A6
    [Crossref] [Google Scholar]
  46. 46.
    Kwok S. 2000.. The Origin and Evolution of Planetary Nebulae. New York:: Cambridge Univ. Press
    [Google Scholar]
  47. 47.
    Redman MP, Viti S, Cau P, Williams DA. 2003.. Chemistry and clumpiness in planetary nebulae. . Mon. Not. R. Astron. Soc. 345::129196
    [Crossref] [Google Scholar]
  48. 48.
    Schmidt DR, Ziurys LM. 2016.. Hidden molecules in planetary nebulae: new detections of HCN and HCO+ from a multi-object survey. . Astrophys. J. 817::175
    [Crossref] [Google Scholar]
  49. 49.
    Schmidt DR, Zack LN, Ziurys LM. 2018.. Widespread CCH and c-C3H2 in the Helix Nebula: unraveling the chemical history of hydrocarbons. . Astrophys. J. Lett. 864::L31
    [Crossref] [Google Scholar]
  50. 50.
    Schmidt DR, Gold KR, Sinclair A, Bergstrom S, Ziurys LM. 2022.. HCN and HCO+ in planetary nebulae: the next level. . Astrophys. J. 927::46
    [Crossref] [Google Scholar]
  51. 51.
    Bianchi S, Schneider R. 2007.. Dust formation and survival in supernova ejecta. . Mon. Not. R. Astron. Soc. 378::97382
    [Crossref] [Google Scholar]
  52. 52.
    Snow TP, McCall BJ. 2006.. Diffuse atomic and molecular clouds. . Annu. Rev. Astron. Astrophys. 44::367414
    [Crossref] [Google Scholar]
  53. 53.
    Liszt HS, Lucas R, Pety J. 2006.. Comparative chemistry in diffuse clouds. V. Ammonia and formaldehyde. . Astron. Astrophys. 448::25359
    [Crossref] [Google Scholar]
  54. 54.
    Lee J-E, Bergin EA, Evans NJ II. 2004.. Evolution of chemistry and molecular line profiles during protostellar collapse. . Astrophys. J. 617::36083
    [Crossref] [Google Scholar]
  55. 55.
    Nummelin A, Bergman P, Hjalmarson Å, Friberg P, Irvine WM, et al. 2000.. A three-position spectral line survey of Sagittarius B2 between 218 and 263 GHz. II. Data analysis. . Astrophys. J. Suppl. Ser. 128::21343
    [Crossref] [Google Scholar]
  56. 56.
    Bruenken S, Gupta H, Gottleib CA, McCarthy MC, Thaddeus P. 2007.. Detection of the carbon chain negative ion C8H in TMC-1. . Astrophys. J. Lett. 664::L4346
    [Crossref] [Google Scholar]
  57. 57.
    Hatchell J, Thompson MA, Millar TJ, Macdonald GH. 1998.. Sulphur chemistry and evolution in hot cores. . Astron. Astrophys. 338::71322
    [Google Scholar]
  58. 58.
    Wright MCH, Plambeck RL. 2017.. ALMA images of the Orion hot core at 349 GHz. . Astrophys. J. 843::83
    [Crossref] [Google Scholar]
  59. 59.
    Vidal THG, Wakelam V. 2018.. A new look at sulphur chemistry in hot cores and corinos. . Mon. Not. R. Astron. Soc. 474::557587
    [Crossref] [Google Scholar]
  60. 60.
    Öberg KI, Bergin EA. 2021.. Astrochemistry and compositions of planetary systems. . Phys. Rep. 893::148
    [Crossref] [Google Scholar]
  61. 61.
    Eistrup C, Walsh C, van Dishoeck EF. 2018.. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes. . Astron. Astrophys. 613::A14
    [Crossref] [Google Scholar]
  62. 62.
    Booth RA, Ilee JD. 2019.. Planet-forming material in a protoplanetary disc: the interplay between chemical evolution and pebble drift. . Mon. Not. R. Astron. Soc. 487::39984011
    [Crossref] [Google Scholar]
  63. 63.
    Cevallos Soto A, Tan JC, Hu X, Hsu CJ, Walsh C. 2022.. Inside-out planet formation. VII. Astrochemical models of protoplanetary discs and implications for planetary compositions. . Mon. Not. R. Astron. Soc. 517::2285308
    [Crossref] [Google Scholar]
  64. 64.
    Mulders GD, Pascucci I, Apai D, Ciesla FJ. 2018.. The Exoplanet Population Observation Simulator. I. The inner edges of planetary systems. . Astrophys. J. 156::24
    [Google Scholar]
  65. 65.
    Voosen P. 2019.. Project traces 500 million years of roller-coaster climate. . Science 364::71617
    [Crossref] [Google Scholar]
  66. 66.
    Denlinger MC. 2005.. The origin and evolution of the atmospheres of Venus, Earth, and Mars. . Earth Moon Planets 96::5980
    [Crossref] [Google Scholar]
  67. 67.
    Morbidelli A, Nesvorny D, Laurenz V, Marchi S, Rubie DC, et al. 2017.. The lunar late heavy bombardment as a tail-end of planet accretion. Presented at Lunar Planet. Sci. Conf., 48th, Contrib. 1964, ID 2298 , Woodslands:, Tex., Mar. 20–24
    [Google Scholar]
  68. 68.
    Zhang Y, Kwok S, Sadjadi S. 2016.. Fullerenes and fulleranes in circumstellar envelopes. . J. Phys. Conf. Ser. 728::052004
    [Crossref] [Google Scholar]
  69. 69.
    Pizzarello S. 2007.. Question 2: why astrobiology?. Orig. Life Evol. Biosph. 37::34144
    [Crossref] [Google Scholar]
  70. 70.
    Busemann H, Young AF, Alexander CM, Hoppe P, Mukhopadhyay S, Nittler LR. 2006.. Interstellar chemistry recorded in organic matter from primitive meteorites. . Science 312::72730
    [Crossref] [Google Scholar]
  71. 71.
    Caselli P, Ceccarelli C. 2012.. Our astrochemical heritage. . Astron. Astrophys. Rev. 20::56
    [Crossref] [Google Scholar]
  72. 72.
    Millar TJ, Bennett A, Herbst E. 1989.. Deuterium fractionation in dense interstellar clouds. . Astrophys. J. 340::90620
    [Crossref] [Google Scholar]
  73. 73.
    Halfen DT, Woolf NJ, Ziurys LM. 2017.. The 12C/13C ratio in Sgr B2 (N): constraints for galactic chemical evolution and isotopic chemistry. . Astrophys. J. 845::158
    [Crossref] [Google Scholar]
  74. 74.
    Pfeiffer MJ, Frank C, Baumüller D, Fuhrmann K, Gehren T. 1998.. FOCES—a fibre optics Cassegrain echelle spectrograph. . Astron. Astrophys. Suppl. Ser. 130::38193
    [Crossref] [Google Scholar]
  75. 75.
    Bernal JJ, Haenecour P, Howe J, Zega TJ, Amari S, Ziurys LM. 2019.. Formation of interstellar C60 from silicon carbide circumstellar grains. . Astrophys. J. Lett. 883::L43
    [Crossref] [Google Scholar]
  76. 76.
    Brown JM, Körsgen H, Beaton SP, Evenson KM. 2006.. The rotational and fine-structure spectrum of FeH, studied by far-infrared laser magnetic resonance. . J. Chem. Phys. 124::234309
    [Crossref] [Google Scholar]
  77. 77.
    Prozument K, Park GB, Shaver RG, Vasiliou AK, Oldham JM, et al. 2014.. Chirped-pulse millimeter-wave spectroscopy for dynamics and kinetics studies of pyrolysis reactions. . Phys. Chem. Chem. Phys. 16::1573951
    [Crossref] [Google Scholar]
  78. 78.
    Hirota E. 1985.. High-Resolution Spectroscopy of Transient Molecules. Berlin/Heidelberg, Ger:.: Springer
    [Google Scholar]
  79. 79.
    Ziurys LM, Barclay WL Jr., Anderson MA, Fletcher DA, Lamb JW. 1994.. A millimeter/submillimeter spectrometer for high resolution studies of transient molecules. . Rev. Sci. Instrum. 65::151722
    [Crossref] [Google Scholar]
  80. 80.
    Goldsmith PF. 1998.. Quasi-Optical Systems: Gaussian Beam Quasi-Optical Propagation and Applications. Piscataway, NJ:: IEEE
    [Google Scholar]
  81. 81.
    Balle TJ, Flygare WH. 1981.. Fabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source. . Rev. Sci. Instrum. 52::3345
    [Crossref] [Google Scholar]
  82. 82.
    Thorwirth S, McCarthy MC, Dudek JB, Thaddeus P. 2005.. Fourier transform microwave spectroscopy of vinyldiacetylene, vinyltriacetylene, and vinylcyanodiacetylene. . J. Chem. Phys. 122::184308
    [Crossref] [Google Scholar]
  83. 83.
    Xie F, Fusé M, Hazrah AS, Jäger W, Barone V, Xu Y. 2020.. Discovering the elusive global minimum in a ternary chiral cluster: rotational spectra of propylene oxide trimer. . Angew. Chem. Int. Ed. 59::2242730
    [Crossref] [Google Scholar]
  84. 84.
    Sun M, Apponi AJ, Ziurys LM. 2009.. Fourier transform microwave spectroscopy of HZnCN (X 1Σ+) and ZnCN (X 2Σ+). . J. Chem. Phys. 130::034309
    [Crossref] [Google Scholar]
  85. 85.
    Yu S, Pearson JC, Drouin BJ, Martin-Drumel MA, Pirali O, et al. 2012.. Measurement and analysis of new terahertz and far-infrared spectra of high temperature water. . J. Mol. Spectrosc. 279::1625
    [Crossref] [Google Scholar]
  86. 86.
    Cheung AC, Rank DM, Townes CH, Thornton DD, Welch WJ. 1969.. Detection of water in interstellar regions by its microwave emission. . Nature 221::62628
    [Crossref] [Google Scholar]
  87. 87.
    Belloche A, Meshcheryakov AA, Garrod RT, Ilyushin VV, Alekseev EA, et al. 2017.. Rotational spectroscopy, tentative interstellar detection, and chemical modeling of N-methylformamide. . Astron. Astrophys. 601::A49
    [Crossref] [Google Scholar]
  88. 88.
    Butler RA, De Lucia FC, Petkie DT, Møllendal H, Horn A, Herbst E. 2001.. The millimeter-and submillimeter-wave spectrum of glycolaldehyde (CH2OHCHO). . Astrophys. J. Suppl. Ser. 134::31921
    [Crossref] [Google Scholar]
  89. 89.
    Sanz-Novo M, Alonso JL, Rivilla VM, McGuire BA, León I, et al. 2022.. Laboratory detection and astronomical study of interstellar acetohydroxamic acid, a glycine isomer. . Astron. Astrophys. 666::A134
    [Crossref] [Google Scholar]
  90. 90.
    Halfen DT, Ilyushin VV, Ziurys LM. 2015.. Interstellar detection of methyl isocyanate CH3NCO in Sgr B2 (N): a link from molecular clouds to comets. . Astrophys. J. Lett. 812::L5
    [Crossref] [Google Scholar]
  91. 91.
    Halfen DT, Clouthier DJ, Ziurys LM. 2014.. Millimeter/submillimeter spectroscopy of PH2CN (X1A′) and CH3PH2 (X1A′): probing the complexity of interstellar phosphorus chemistry. . Astrophys. J. 796::36
    [Crossref] [Google Scholar]
  92. 92.
    Gupta H, Bruenken S, Tamassia F, Gottlieb CA, McCarthy MC, Thaddeus P. 2007.. Rotational spectra of the carbon chain negative ion C4H and C8H. . Astrophys. J. Lett. 655::L5760
    [Crossref] [Google Scholar]
  93. 93.
    McCarthy MC, Chen W, Apponi AJ, Gottlieb CA, Thaddeus P. 1999.. Hyperfine structure of the C5H, C6H, and C8H radicals. . Astrophys. J. 520::15861
    [Crossref] [Google Scholar]
  94. 94.
    Martinez O, Crabtree KN, Gottlieb CA, Stanton JF, McCarthy MC. 2014.. An accurate molecular structure of phenyl, the simplest aryl radical. . Angew. Chem. 127::182831
    [Crossref] [Google Scholar]
  95. 95.
    Halfen DT, Ziurys LM. 2018.. The pure rotational spectrum of the T-shaped AlC2 radical (X2A1). . Phys. Chem. Chem. Phys. 20::1104752
    [Crossref] [Google Scholar]
  96. 96.
    Changala PB, Gupta H, Cernicharo J, Pardo JR, Agúndez M, et al. 2022.. Laboratory and astronomical discovery of magnesium dicarbide, MgC2. . Astrophys. J. Lett. 940::L42
    [Crossref] [Google Scholar]
  97. 97.
    Flory MA, Ziurys LM. 2011.. Millimeter-wave rotational spectroscopy of FeCN (X4Δi) and FeNC (X6Δi): determining the lowest energy isomer. . J. Chem. Phys. 135::184303
    [Crossref] [Google Scholar]
  98. 98.
    Zack LN, Min J, Harris BJ, Flory MA, Ziurys LM. 2011.. Fourier-transform microwave spectroscopy of FeCN (X4Δi): confirmation of the quartet electronic ground state. . Chem. Phys. Lett. 514::2026
    [Crossref] [Google Scholar]
  99. 99.
    Hodges JN, Bernath PF. 2018.. Fourier transform spectroscopy of the C3Δ–X3Δ transition of TiO in support of exoplanet spectroscopy. . Astrophys. J. 863::36
    [Crossref] [Google Scholar]
  100. 100.
    Jakubek ZJ, Nakhate SG, Simard B. 2002.. The SiP molecule: first observation and spectroscopic characterization. . J. Chem. Phys. 116::651320
    [Crossref] [Google Scholar]
  101. 101.
    Hinkle KW, Keady JJ, Bernath PF. 1988.. Detection of C3 in the circumstellar shell of IRC+10216. . Science 241::131922
    [Crossref] [Google Scholar]
  102. 102.
    Bernath PF. 2020.. Spectra of Atoms and Molecules. New York:: Oxford Univ. Press
    [Google Scholar]
  103. 103.
    Young JS, Scoville N. 1982.. Extragalactic CO-gas distributions which follow the light in IC 342 and NGC 6946. . Astrophys. J. 258::46789
    [Crossref] [Google Scholar]
  104. 104.
    Heyer M, Dame TM. 2015.. Molecular clouds in the Milky Way. . Annu. Rev. Astron. Astrophys. 53::583629
    [Crossref] [Google Scholar]
  105. 105.
    Ziurys LM, Tenenbaum ED, Pulliam RL, Woolf NJ, Milam SN. 2009.. Carbon chemistry in the envelope of VY Canis Majoris: implications for oxygen-rich evolved stars. . Astrophys. J. 695::160413
    [Crossref] [Google Scholar]
  106. 106.
    Lerner NR, Peterson E, Chang S. 1993.. The Strecker synthesis as a source of amino acids in carbonaceous chondrites: deuterium retention during synthesis. . Geochim. Cosmochim. Acta 57::471323
    [Crossref] [Google Scholar]
  107. 107.
    Jiménez-Serra I, Martín-Pintado J, Rivilla VM, Rodríguez-Almeida L, Alonso ER, et al. 2020.. Toward the RNA-world in the interstellar medium—detection of urea and search of 2-amino-oxazole and simple sugars. . Astrobiology 20::104866
    [Crossref] [Google Scholar]
  108. 108.
    Ziurys LM, Adande GR, Edwards JL, Schmidt DR, Halfen DT, Woolf NJ. 2015.. Prebiotic chemical evolution in the astrophysical context. . Orig. Life Evol. Biosph. 45::27588
    [Crossref] [Google Scholar]
  109. 109.
    De Simone M, Codella C, Testi L, Belloche A, Maury AJ, et al. 2017.. Glycolaldehyde in Perseus young solar analogs. . Astron. Astrophys. 599::A121
    [Crossref] [Google Scholar]
  110. 110.
    Breslow R. 1959.. On the mechanism of the formose reaction. . Tetrahedron Lett. 1::2226
    [Crossref] [Google Scholar]
  111. 111.
    Ohishi M, Shin-ichi I, Amano T, Oka H, Irvine WM, et al. 1996.. Detection of a new interstellar molecular ion, H2COH+ (protonated formaldehyde). . Astrophys. J. 471::L6164
    [Crossref] [Google Scholar]
  112. 112.
    Silva SG, Vichietti RM, Haiduke RL, Machado FB, Spada RF. 2020.. Methanol and glycolaldehyde production from formaldehyde in massive star-forming regions. . Mon. Not. R. Astron. Soc. 497::448694
    [Crossref] [Google Scholar]
  113. 113.
    Belloche A, Müller HSP, Garrod RT, Menten KM. 2016.. Exploring molecular complexity with ALMA (EMoCA): deuterated complex organic molecules in Sagittarius B2(N2). . Astron. Astrophys. 587::A91
    [Crossref] [Google Scholar]
  114. 114.
    Skouteris D, Balucani N, Ceccarelli C, Vazart F, Puzzarini C, et al. 2018.. The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid, and formic acid. . Astrophys. J. 854::135
    [Crossref] [Google Scholar]
  115. 115.
    Ligterink NF, Walsh C, Bhuin RG, Vissapragada S, van Scheltinga JT, Linnartz H. 2018.. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase. . Astron. Astrophys. 612::A88
    [Crossref] [Google Scholar]
  116. 116.
    Skouteris D, Balucani N, Ceccarelli C, Faginas Lago N, Codella C, et al. 2019.. Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study. . Mon. Not. R. Astron. Soc. 482::356775
    [Crossref] [Google Scholar]
  117. 117.
    Thaddeus P, Gottlieb CA, Gupta H, Brünken S, McCarthy MC, et al. 2008.. Laboratory and astronomical detection of the negative molecular ion C3N. . Astrophys. J. 677::113239
    [Crossref] [Google Scholar]
  118. 118.
    Anderson JK, Ziurys LM. 2014.. Detection of CCN (X2Πr) in IRC+10216: constraining carbon-chain chemistry. . Astrophys. J. Lett. 795::L1
    [Crossref] [Google Scholar]
  119. 119.
    Herbig GH. 1995.. The diffuse interstellar bands. . Annu. Rev. Astron. Astrophys. 33::1973
    [Crossref] [Google Scholar]
  120. 120.
    Berné O, Tielens AG. 2012.. Formation of buckminsterfullerene (C60) in interstellar space. . PNAS 109::4016
    [Crossref] [Google Scholar]
  121. 121.
    Duley WW, Hu A. 2012.. Fullerenes and proto-fullerenes in interstellar carbon dust. . Astrophys. J. Lett. 745::L11
    [Crossref] [Google Scholar]
  122. 122.
    Omont A, Bettinger HF. 2021.. Intermediate-size fullerenes as degradation products of interstellar polycyclic aromatic hydrocarbons. . Astron. Astrophys. 650::A193
    [Crossref] [Google Scholar]
  123. 123.
    Kwok S, Zhang Y. 2013.. Unidentified infrared emission bands: PAHs or MAONs?. Astrophys. J. 771::5
    [Crossref] [Google Scholar]
  124. 124.
    Bernal JJ, Zega TJ, Ziurys LM. 2022.. Destructive processing of silicon carbide grains: experimental insights into the formation of interstellar fullerenes and carbon nanotubes. . J. Phys. Chem. A 126::576167
    [Crossref] [Google Scholar]
  125. 125.
    Van Winckel H. 2003.. Post-AGB stars. . Annu. Rev. Astron. Astrophys. 41::391427
    [Crossref] [Google Scholar]
  126. 126.
    Mishra N, Boeckl J, Motta N, Iacopi F. 2016.. Graphene growth on silicon carbide: a review. . Phys. Status Solid. A 213::227789
    [Crossref] [Google Scholar]
  127. 127.
    Goel A, Howard JB, Vander Sande JB. 2004.. Size analysis of single fullerene molecules by electron microscopy. . Carbon 42::190715
    [Crossref] [Google Scholar]
  128. 128.
    Bernal JJ, Thakur A, Zega TJ, Muralidharan K, Ziurys LM. 2023.. On carbon nanotubes as carriers of diffuse interstellar/circumstellar bands. . Astrophys. J. Submitted
    [Google Scholar]
  129. 129.
    Chen T, Xiao CY, Li A, Zhou CT. 2022.. Where have all the interstellar silicon carbides gone?. Mon. Not. R. Astron. Soc. 509::523136
    [Crossref] [Google Scholar]
  130. 130.
    Benner SA, Kim HJ, Biondi E. 2019.. Prebiotic chemistry that could not have happened. . Life 9::84
    [Crossref] [Google Scholar]
  131. 131.
    Maciá E. 2005.. The role of phosphorus in chemical evolution. . Chem. Soc. Rev. 34::691701
    [Crossref] [Google Scholar]
  132. 132.
    Hinkel NR, Hartnett HE, Young PA. 2020.. The influence of stellar phosphorus on our understanding of exoplanets and astrobiology. . Astrophys. J. Lett. 900::L38
    [Crossref] [Google Scholar]
  133. 133.
    Pasek MA. 2019.. Phosphorus volatility in the early solar nebula. . Icarus 317::5965
    [Crossref] [Google Scholar]
  134. 134.
    Koelemay LA, Gold KR, Ziurys LM. 2023.. Phosphorus-bearing molecules PO and PN at the edge of the Galaxy. . Nature 623::29295
    [Crossref] [Google Scholar]
  135. 135.
    Ziurys LM. 1987.. Detection of interstellar PN: the first phosphorus-bearing species observed in molecular clouds. . Astrophys. J. 321::L8185
    [Crossref] [Google Scholar]
  136. 136.
    Bernal JJ, Koelemay LA, Ziurys LM. 2021.. Detection of PO in Orion-KL: phosphorus chemistry in the plateau outflow. . Astrophys. J. 906::55
    [Crossref] [Google Scholar]
  137. 137.
    Bergner JB, Öberg KI, Walker S, Guzmán VV, Rice TS, et al. 2019.. Detection of phosphorus-bearing molecules toward a solar-type protostar. . Astrophys. J. Lett. 884::L36
    [Crossref] [Google Scholar]
  138. 138.
    Rivilla VM, Drozdovskaya MN, Altwegg K, Caselli P, Beltrán MT, et al. 2020.. ALMA and ROSINA detections of phosphorus-bearing molecules: the interstellar thread between star-forming regions and comets. . Mon. Not. R. Astron. Soc. 492::118098
    [Crossref] [Google Scholar]
  139. 139.
    Guélin M, Cernicharo J, Paubert G, Turner BE. 1990.. Free CP in IRC+10216. . Astron. Astrophys. 230::L911
    [Google Scholar]
  140. 140.
    Agúndez M, Cernicharo J, Decin L, Encrenaz P, Teyssier D. 2014.. Confirmation of circumstellar phosphine. . Astrophys. J. Lett. 790::L27
    [Crossref] [Google Scholar]
  141. 141.
    Koelemay LA, Burton MA, Singh AP, Sheridan PM, Bernal JJ, Ziurys LM. 2022.. Laboratory and astronomical detection of the SiP Radical (X2Πi): more circumstellar phosphorus. . Astrophys. J. Lett. 940::L11
    [Crossref] [Google Scholar]
  142. 142.
    Milam SN, Halfen DT, Tenenbaum ED, Apponi AJ, Woolf NJ, Ziurys LM. 2008.. Constraining phosphorus chemistry in carbon- and oxygen-rich circumstellar envelopes: observations of PN, HCP, and CP. . Astrophys. J. 684::61825
    [Crossref] [Google Scholar]
  143. 143.
    Tenenbaum ED, Woolf NJ, Ziurys LM. 2007.. Identification of phosphorus monoxide (X2Πr) in VY Canis Majoris: detection of the first P-O bond in space. . Astrophys. J. 666::L2932
    [Crossref] [Google Scholar]
  144. 144.
    Ziurys LM, Schmidt DR, Bernal JJ. 2018.. New circumstellar sources of PO and PN: the increasing role of phosphorus chemistry in oxygen-rich stars. . Astrophys. J. 856::169
    [Crossref] [Google Scholar]
  145. 145.
    Christiansen JL. 2022.. Five thousand exoplanets at the NASA Exoplanet Archive. . Nat. Astron. 6::51619
    [Crossref] [Google Scholar]
  146. 146.
    Morrison IS, Gowanlock MG. 2015.. Extending Galactic Habitable Zone modeling to include the emergence of intelligent life. . Astrobiology 15::68396
    [Crossref] [Google Scholar]
  147. 147.
    Gonzalez G, Brownlee D, Ward P. 2001.. The Galactic Habitable Zone: galactic chemical evolution. . Icarus 152::185200
    [Crossref] [Google Scholar]
  148. 148.
    Gowanlock MG, Patton DR, McConnell SM. 2011.. A model of habitability within the Milky Way Galaxy. . Astrobiology 11::85573
    [Crossref] [Google Scholar]
  149. 149.
    Bernal JJ, Sephus CD, Ziurys LM. 2021.. Methanol at the edge of the Galaxy: new observations to constrain the Galactic Habitable Zone. . Astrophys. J. 922::106
    [Crossref] [Google Scholar]
  150. 150.
    Fontani F, Colzi L, Bizzocchi L, Rivilla VM, Elia D, et al. 2022.. CHEMOUT: CHEMical complexity in star-forming regions of the OUTer Galaxy. I. Organic molecules and tracers of star-formation activity. . Astron. Astrophys. 660::A76
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-090722-010849
Loading
/content/journals/10.1146/annurev-physchem-090722-010849
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error