1932

Abstract

Water–metal oxide interfaces are central to many phenomena and applications, ranging from material corrosion and dissolution to photoelectrochemistry and bioengineering. In particular, the discovery of photocatalytic water splitting on TiO has motivated intensive studies of water-TiO interfaces for decades. So far, a broad understanding of the interaction of water vapor with several TiO surfaces has been obtained. However, much less is known about liquid water–TiO interfaces, which are more relevant to many practical applications. Probing these complex systems at the molecular level is experimentally challenging and is sometimes possible only through computational studies. This review summarizes recent advances in the atomistic understanding, mostly through computational simulations, of the structure and dynamics of interfacial water on TiO surfaces. The main focus is on the nature, molecular or dissociated, of water in direct contact with low-index defect-free crystalline surfaces. The hydroxyls resulting from water dissociation are essential in the photooxidation of water and critically affect the surface chemistry of TiO

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090722-015957
2024-06-28
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-090722-015957.html?itemId=/content/journals/10.1146/annurev-physchem-090722-015957&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fujishima A, Honda K. 1972.. Electrochemical photolysis of water at a semiconductor electrode. . Nature 238::3738
    [Crossref] [Google Scholar]
  2. 2.
    Grätzel M. 2001.. Photoelectrochemical cells. . Nature 414::33844
    [Crossref] [Google Scholar]
  3. 3.
    Tachikawa T, Fujitsuka M, Majima T. 2007.. Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. . J. Phys. Chem. C 111::525975
    [Crossref] [Google Scholar]
  4. 4.
    Fujishima A, Zhang X, Tryk DA. 2008.. TiO2 photocatalysis and related surface phenomena. . Surf. Sci. Rep. 63::51582
    [Crossref] [Google Scholar]
  5. 5.
    Chen X, Shen S, Guo L, Mao SS. 2010.. Semiconductor-based photocatalytic hydrogen generation. . Chem. Rev. 110::650370
    [Crossref] [Google Scholar]
  6. 6.
    Henderson MA. 2011.. A surface science perspective on TiO2 photocatalysis. . Surf. Sci. Rep. 66::185297
    [Crossref] [Google Scholar]
  7. 7.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, et al. 2012.. A review on the visible light active titanium dioxide photocatalysts for environmental applications. . Appl. Catal. B Environ. 125::33149
    [Crossref] [Google Scholar]
  8. 8.
    Chen X, Selloni A. 2014.. Introduction: titanium dioxide (TiO2) nanomaterials. . Chem. Rev. 114::928182
    [Crossref] [Google Scholar]
  9. 9.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, et al. 2014.. Understanding TiO2 photocatalysis: mechanisms and materials. . Chem. Rev. 114::991986
    [Crossref] [Google Scholar]
  10. 10.
    Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. 2014.. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. . Chem. Rev. 114::998710043
    [Crossref] [Google Scholar]
  11. 11.
    Guo Q, Zhou CY, Ma ZB, Yang XM. 2019.. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. . Adv. Mater. 31::1901997
    [Crossref] [Google Scholar]
  12. 12.
    Zhang H, Banfield JF. 2014.. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. . Chem. Rev. 114::961344
    [Crossref] [Google Scholar]
  13. 13.
    Ramamoorthy M, Vanderbilt D, King-Smith RD. 1994.. First-principles calculations of the energetics of stoichiometric TiO2 surfaces. . Phys. Rev. B 49::1672127
    [Crossref] [Google Scholar]
  14. 14.
    Lazzeri M, Vittadini A, Selloni A. 2001.. Structure and energetics of stoichiometric TiO2 anatase surfaces. . Phys. Rev. B 63::155409
    [Crossref] [Google Scholar]
  15. 15.
    Diebold U. 2003.. The surface science of titanium dioxide. . Surf. Sci. Rep. 48::53229
    [Crossref] [Google Scholar]
  16. 16.
    Pang CL, Lindsay R, Thornton G. 2013.. Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. . Chem. Rev. 113::3887948
    [Crossref] [Google Scholar]
  17. 17.
    De Angelis F, Di Valentin C, Fantacci S, Vittadini A, Selloni A. 2014.. Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. . Chem. Rev. 114::970853
    [Crossref] [Google Scholar]
  18. 18.
    Henderson MA. 2002.. The interaction of water with solid surfaces: fundamental aspects revisited. . Surf. Sci. Rep. 46::1308
    [Crossref] [Google Scholar]
  19. 19.
    Dohnálek Z, Lyubinetsky I, Rousseau R. 2010.. Thermally-driven processes on rutile TiO2(110)-(1×1): a direct view at the atomic scale. . Prog. Surf. Sci. 85::161205
    [Crossref] [Google Scholar]
  20. 20.
    Sun C, Liu L-M, Selloni A, Lu GQ, Smith SC. 2010.. Titania-water interactions: a review of theoretical studies. . J. Mater. Chem. 20::1031934
    [Crossref] [Google Scholar]
  21. 21.
    Bourikas K, Kordulis C, Lycourghiotis A. 2014.. Titanium dioxide (anatase and rutile): surface chemistry, liquid–solid interface chemistry, and scientific synthesis of supported catalysts. . Chem. Rev. 114::9754823
    [Crossref] [Google Scholar]
  22. 22.
    Björneholm O, Hansen MH, Hodgson A, Liu L-M, Limmer DT, et al. 2016.. Water at interfaces. . Chem. Rev. 116::7698726
    [Crossref] [Google Scholar]
  23. 23.
    He YB, Tilocca A, Dulub O, Selloni A, Diebold U. 2009.. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). . Nat. Mater. 8::58589
    [Crossref] [Google Scholar]
  24. 24.
    Vittadini A, Selloni A, Rotzinger FP, Gratzel M. 1998.. Structure and energetics of water adsorbed at TiO2 anatase 101 and 001 surfaces. . Phys. Rev. Lett. 81::295457
    [Crossref] [Google Scholar]
  25. 25.
    Diebold U. 2017.. Perspective: a controversial benchmark system for water-oxide interfaces: H2O/TiO2(110). . J. Chem. Phys. 147::040901
    [Crossref] [Google Scholar]
  26. 26.
    Wang Z-T, Wang Y-G, Mu R, Yoon Y, Dahal A, et al. 2017.. Probing equilibrium of molecular and deprotonated water on TiO2(110). . PNAS 114::18015
    [Crossref] [Google Scholar]
  27. 27.
    Kamal C, Stenberg N, Walle LE, Ragazzon D, Borg A, et al. 2021.. Core-level binding energy reveals hydrogen bonding configurations of water adsorbed on TiO2(110) surface. . Phys. Rev. Lett. 126::016102
    [Crossref] [Google Scholar]
  28. 28.
    Cheng J, Sprik M. 2012.. Alignment of electronic energy levels at electrochemical interfaces. . Phys. Chem. Chem. Phys. 14::1124567
    [Crossref] [Google Scholar]
  29. 29.
    Guo Z, Ambrosio F, Pasquarello A. 2020.. Evaluation of photocatalysts for water splitting through combined analysis of surface coverage and energy-level alignment. . ACS Catal. 10::1318695
    [Crossref] [Google Scholar]
  30. 30.
    Pham TA, Ping Y, Galli G. 2017.. Modelling heterogeneous interfaces for solar water splitting. . Nat. Mater. 16::4018
    [Crossref] [Google Scholar]
  31. 31.
    Yin W-J, Wen B, Zhou C, Selloni A, Liu L-M. 2018.. Excess electrons in reduced rutile and anatase TiO2. . Surf. Sci. Rep. 73::5882
    [Crossref] [Google Scholar]
  32. 32.
    Rousseau R, Glezakou V-A, Selloni A. 2020.. Theoretical insights into the surface physics and chemistry of redox-active oxides. . Nat. Rev. Mater. 5::46075
    [Crossref] [Google Scholar]
  33. 33.
    Bandura AV, Kubicki JD. 2003.. Derivation of force field parameters for TiO2−H2O systems from ab initio calculations. . J. Phys. Chem. B 107::1107281
    [Crossref] [Google Scholar]
  34. 34.
    Předota M, Bandura AV, Cummings PT, Kubicki JD, Wesolowski DJ, et al. 2004.. Electric double layer at the rutile (110) surface. 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials. . J. Phys. Chem. B 108::1204960
    [Crossref] [Google Scholar]
  35. 35.
    Kim S-Y, Kumar N, Persson P, Sofo J, van Duin ACT, Kubicki JD. 2013.. Development of a ReaxFF reactive force field for titanium dioxide/water systems. . Langmuir 29::783846
    [Crossref] [Google Scholar]
  36. 36.
    Raju M, Kim S-Y, van Duin ACT, Fichthorn KA. 2013.. ReaxFF reactive force field study of the dissociation of water on titania surfaces. . J. Phys. Chem. C 117::1055872
    [Crossref] [Google Scholar]
  37. 37.
    Liu L-M, Zhang C, Thornton G, Michaelides A. 2010.. Structure and dynamics of liquid water on rutile TiO2(110). . Phys. Rev. B 82::161415
    [Crossref] [Google Scholar]
  38. 38.
    Cheng J, Liu X, Kattirtzi JA, VandeVondele J, Sprik M. 2014.. Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO2. . Angew. Chem. Int. Ed. 53::1204650
    [Crossref] [Google Scholar]
  39. 39.
    Cheng J, Sprik M. 2010.. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. . J. Chem. Theory Comput. 6::88089
    [Crossref] [Google Scholar]
  40. 40.
    Calegari Andrade MF, Ko HY, Car R, Selloni A. 2018.. Structure, polarization, and sum frequency generation spectrum of interfacial water on anatase TiO2. . J. Phys. Chem. Lett. 9::671621
    [Crossref] [Google Scholar]
  41. 41.
    Behler J, Parrinello M. 2007.. Generalized neural-network representation of high-dimensional potential-energy surfaces. . Phys. Rev. Lett. 98::146401
    [Crossref] [Google Scholar]
  42. 42.
    Bartók AP, Payne MC, Kondor R, Csányi G. 2010.. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. . Phys. Rev. Lett. 104::136403
    [Crossref] [Google Scholar]
  43. 43.
    Zhang L, Han J, Wang H, Car R, E W. 2018.. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. . Phys. Rev. Lett. 120::143001
    [Crossref] [Google Scholar]
  44. 44.
    Noé F, Tkatchenko A, Müller K-R, Clementi C. 2020.. Machine learning for molecular simulation. . Annu. Rev. Phys. Chem. 71::36190
    [Crossref] [Google Scholar]
  45. 45.
    Kang P-L, Shang C, Liu Z-P. 2020.. Large-scale atomic simulation via machine learning potentials constructed by global potential energy surface exploration. . Acc. Chem. Res. 53::211929
    [Crossref] [Google Scholar]
  46. 46.
    Schran C, Thiemann FL, Rowe P, Muller EA, Marsalek O, Michaelides A. 2021.. Machine learning potentials for complex aqueous systems made simple. . PNAS 118::e2110077118
    [Crossref] [Google Scholar]
  47. 47.
    Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, Csányi G. 2021.. Gaussian process regression for materials and molecules. . Chem. Rev. 121::10073141
    [Crossref] [Google Scholar]
  48. 48.
    Kocer E, Ko TW, Behler J. 2022.. Neural network potentials: a concise overview of methods. . Annu. Rev. Phys. Chem. 73::16386
    [Crossref] [Google Scholar]
  49. 49.
    Quaranta V, Behler J, Hellström M. 2019.. Structure and dynamics of the liquid–water/zinc-oxide interface from machine learning potential simulations. . J. Phys. Chem. C 123::1293304
    [Crossref] [Google Scholar]
  50. 50.
    Hellström M, Quaranta V, Behler J. 2019.. One-dimensional versus two-dimensional proton transport processes at solid–liquid zinc-oxide–water interfaces. . Chem. Sci. 10::123243
    [Crossref] [Google Scholar]
  51. 51.
    Calegari Andrade MF, Ko H-Y, Zhang L, Car R, Selloni A. 2020.. Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics. . Chem. Sci. 11::233541
    [Crossref] [Google Scholar]
  52. 52.
    Wen B, Calegari Andrade MF, Liu L-M, Selloni A. 2023.. Water dissociation at the water rutile TiO2(110) interface from ab-initio-based deep neural network simulations. . PNAS 120::e2212250120
    [Crossref] [Google Scholar]
  53. 53.
    Hosseinpour S, Tang F, Wang F, Livingstone RA, Schlegel SJ, et al. 2017.. Chemisorbed and physisorbed water at the TiO2/water interface. . J. Phys. Chem. Lett. 8::219599
    [Crossref] [Google Scholar]
  54. 54.
    Miranda PB, Shen YR. 1999.. Liquid interfaces: a study by sum-frequency vibrational spectroscopy. . J. Phys. Chem. B 103::3292307
    [Crossref] [Google Scholar]
  55. 55.
    Sun J, Ruzsinszky A, Perdew JP. 2015.. Strongly constrained and appropriately normed semilocal density functional. . Phys. Rev. Lett. 115::036402
    [Crossref] [Google Scholar]
  56. 56.
    Chen M, Ko H-Y, Remsing RC, Calegari Andrade MF, Santra B, et al. 2017.. Ab initio theory and modeling of water. . PNAS 114::10846
    [Crossref] [Google Scholar]
  57. 57.
    van Spronsen MA, Zhao X, Jaugstetter M, Escudero C, Duchoň T, et al. 2021.. Interface sensitivity in electron/ion yield X-ray absorption spectroscopy: the TiO2–H2O interface. . J. Phys. Chem. Lett. 12::1021217
    [Crossref] [Google Scholar]
  58. 58.
    Li J-Q, Sun Y, Cheng J. 2023.. Theoretical investigation on water adsorption conformations at aqueous anatase TiO2/water interfaces. . J. Mater. Chem. A 11::94352
    [Crossref] [Google Scholar]
  59. 59.
    Selcuk S, Selloni A. 2016.. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. . Nat. Mater. 15::110712
    [Crossref] [Google Scholar]
  60. 60.
    Tachikawa T, Yamashita S, Majima T. 2011.. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. . J. Am. Chem. Soc. 133::7197204
    [Crossref] [Google Scholar]
  61. 61.
    Ohno T, Sarukawa K, Matsumura M. 2002.. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. . New J. Chem. 26::116770
    [Crossref] [Google Scholar]
  62. 62.
    Nadeem IM, Treacy JPW, Selcuk S, Torrelles X, Hussain H, et al. 2018.. Water dissociates at the aqueous interface with reduced anatase TiO2(101). . J. Phys. Chem. Lett. 9::313136
    [Crossref] [Google Scholar]
  63. 63.
    Zhang Z, Fenter P, Cheng L, Sturchio NC, Bedzyk MJ, et al. 2004.. Ion adsorption at the rutile−water interface:linking molecular and macroscopic properties. . Langmuir 20::495469
    [Crossref] [Google Scholar]
  64. 64.
    Zhang Z, Fenter P, Sturchio NC, Bedzyk MJ, Machesky ML, Wesolowski DJ. 2007.. Structure of rutile TiO2(110) in water and 1molal Rb+ at pH 12: inter-relationship among surface charge, interfacial hydration structure, and substrate structural displacements. . Surf. Sci. 601::112943
    [Crossref] [Google Scholar]
  65. 65.
    Wesolowski DJ, Sofo JO, Bandura AV, Zhang Z, Mamontov E, et al. 2012.. Comment on “Structure and dynamics of liquid water on rutile TiO2(110). .” Phys. Rev. B 85::167401
    [Crossref] [Google Scholar]
  66. 66.
    Hussain H, Tocci G, Woolcot T, Torrelles X, Pang CL, et al. 2017.. Structure of a model TiO2 photocatalytic interface. . Nat. Mater. 16::46166
    [Crossref] [Google Scholar]
  67. 67.
    Serrano G, Bonanni B, Di Giovannantonio M, Kosmala T, Schmid M, et al. 2015.. Molecular ordering at the interface between liquid water and rutile TiO2(110). . Adv. Mater. Interfaces 2::1500246
    [Crossref] [Google Scholar]
  68. 68.
    Balajka J, Hines MA, DeBenedetti WJI, Komora M, Pavelec J, et al. 2018.. High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. . Science 361::78689
    [Crossref] [Google Scholar]
  69. 69.
    Bredow T, Giordano L, Cinquini F, Pacchioni G. 2004.. Electronic properties of rutile TiO2 ultrathin films: odd-even oscillations with the number of layers. . Phys. Rev. B 70::035419
    [Crossref] [Google Scholar]
  70. 70.
    Zhuang Y-B, Bi R-H, Cheng J. 2022.. Resolving the odd–even oscillation of water dissociation at rutile TiO2(110)–water interface by machine learning accelerated molecular dynamics. . J. Chem. Phys. 157::164701
    [Crossref] [Google Scholar]
  71. 71.
    Perdew JP, Burke K, Ernzerhof M. 1996.. Generalized gradient approximation made simple. . Phys. Rev. Lett. 77::386568. Erratum . 1997.. Phys. Rev. Lett. 78::1396
    [Google Scholar]
  72. 72.
    Kosmulski M. 2016.. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks' review. . Adv. Colloid Interface Sci. 238::161
    [Crossref] [Google Scholar]
  73. 73.
    Cheng J, Liu X, VandeVondele J, Sprik M. 2015.. Reductive hydrogenation of the aqueous rutile TiO2(110) surface. . Electrochimica Acta 179::65867
    [Crossref] [Google Scholar]
  74. 74.
    Di Liberto G, Maleki F, Pacchioni G. 2022.. pH dependence of MgO, TiO2, and γ-Al2O3 surface chemistry from first principles. . J. Phys. Chem. C 126::1021623
    [Crossref] [Google Scholar]
  75. 75.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, et al. 1997.. Light-induced amphiphilic surfaces. . Nature 388::43132
    [Crossref] [Google Scholar]
  76. 76.
    Liu K, Cao M, Fujishima A, Jiang L. 2014.. Bio-inspired titanium dioxide materials with special wettability and their applications. . Chem. Rev. 114::1004494
    [Crossref] [Google Scholar]
  77. 77.
    Wang C, Groenzin H, Shultz MJ. 2003.. Molecular species on nanoparticulate anatase TiO2 film detected by sum frequency generation: trace hydrocarbons and hydroxyl groups. . Langmuir 19::733034
    [Crossref] [Google Scholar]
  78. 78.
    White JM, Szanyi J, Henderson MA. 2003.. The photon-driven hydrophilicity of titania:a model study using TiO2(110) and adsorbed trimethyl acetate. . J. Phys. Chem. B 107::902933
    [Crossref] [Google Scholar]
  79. 79.
    Zubkov T, Stahl D, Thompson TL, Panayotov D, Diwald O, Yates JT. 2005.. Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1×1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. . J. Phys. Chem. B 109::1545462
    [Crossref] [Google Scholar]
  80. 80.
    Yates JT. 2009.. Photochemistry on TiO2: mechanisms behind the surface chemistry. . Surf. Sci. 603::160512
    [Crossref] [Google Scholar]
  81. 81.
    Kawasaki S, Holmström E, Takahashi R, Spijker P, Foster AS, et al. 2017.. Intrinsic superhydrophilicity of titania-terminated surfaces. . J. Phys. Chem. C 121::226875
    [Crossref] [Google Scholar]
  82. 82.
    Qu M, Huang G, Liu X, Nie X, Qi C, et al. 2022.. Room temperature bilayer water structures on a rutile TiO2(110) surface: hydrophobic or hydrophilic?. Chem. Sci. 13::1054654
    [Crossref] [Google Scholar]
  83. 83.
    Hagfeldt A, Grätzel M. 2000.. Molecular photovoltaics. . Acc. Chem. Res. 33::26977
    [Crossref] [Google Scholar]
  84. 84.
    Chen H, Nanayakkara CE, Grassian VH. 2012.. Titanium dioxide photocatalysis in atmospheric chemistry. . Chem. Rev. 112::591948
    [Crossref] [Google Scholar]
  85. 85.
    DeBenedetti WJI, Skibinski ES, Jing D, Song A, Hines MA. 2018.. Atomic-scale understanding of catalyst activation: Carboxylic acid solutions, but not the acid itself, increase the reactivity of anatase (001) faceted nanocatalysts. . J. Phys. Chem. C 122::430714
    [Crossref] [Google Scholar]
  86. 86.
    Zeng G, Wen B, Selloni A. 2021.. Structure and stability of pristine and carboxylate-covered anatase TiO2(001) in aqueous environment. . J. Phys. Chem. C 125::1591017
    [Crossref] [Google Scholar]
  87. 87.
    Wen B, Selloni A. 2021.. Hydrogen bonds and H3O+ formation at the water interface with formic acid covered anatase TiO2. . J. Phys. Chem. Lett. 12::684046
    [Crossref] [Google Scholar]
  88. 88.
    Nosaka Y. 2022.. Water photo-oxidation over TiO2—history and reaction mechanism. . Catalysts 12::1557
    [Crossref] [Google Scholar]
  89. 89.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, et al. 2010.. Solar water splitting cells. . Chem. Rev. 110::644673
    [Crossref] [Google Scholar]
  90. 90.
    Nakamura R, Nakato Y. 2004.. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. . J. Am. Chem. Soc. 126::129098
    [Crossref] [Google Scholar]
  91. 91.
    Imanishi A, Okamura T, Ohashi N, Nakamura R, Nakato Y. 2007.. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH. . J. Am. Chem. Soc. 129::1156978
    [Crossref] [Google Scholar]
  92. 92.
    Tang J, Durrant JR, Klug DR. 2008.. Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. . J. Am. Chem. Soc. 130::1388591
    [Crossref] [Google Scholar]
  93. 93.
    Salvador P. 2011.. Mechanisms of water photooxidation at n-TiO2 rutile single crystal oriented electrodes under UV illumination in competition with photocorrosion. . Prog. Surf. Sci. 86::4158
    [Crossref] [Google Scholar]
  94. 94.
    Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK. 2007.. Electrolysis of water on oxide surfaces. . J. Electroanal. Chem. 607::8389
    [Crossref] [Google Scholar]
  95. 95.
    Valdés Á, Qu ZW, Kroes GJ, Rossmeisl J, Nørskov JK. 2008.. Oxidation and photo-oxidation of water on TiO2 surface. . J. Phys. Chem. C 112::987279
    [Crossref] [Google Scholar]
  96. 96.
    Li Y-F, Liu Z-P, Liu L, Gao W. 2010.. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. . J. Am. Chem. Soc. 132::1300815
    [Crossref] [Google Scholar]
  97. 97.
    Kim W, Tachikawa T, Moon G-h, Majima T, Choi W. 2014.. Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. . Angew. Chem. Int. Ed. 53::1403641
    [Crossref] [Google Scholar]
  98. 98.
    Cohen AJ, Mori-Sánchez P, Yang W. 2008.. Insights into current limitations of density functional theory. . Science 321::79294
    [Crossref] [Google Scholar]
  99. 99.
    Chen J, Li Y-F, Sit P, Selloni A. 2013.. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase. . J. Am. Chem. Soc. 135::1877477
    [Crossref] [Google Scholar]
  100. 100.
    Li Y-F, Selloni A. 2016.. Pathway of photocatalytic oxygen evolution on aqueous TiO2 anatase and insights into the different activities of anatase and rutile. . ACS Catal. 6::476974
    [Crossref] [Google Scholar]
  101. 101.
    Li F, Chen J-F, Gong X-Q, Hu P, Wang D. 2022.. Subtle structure matters: The vicinity of surface Ti5c cations alters the photooxidation behaviors of anatase and rutile TiO2 under aqueous environments. . ACS Catal. 12::824251
    [Crossref] [Google Scholar]
  102. 102.
    Wang D, Sheng T, Chen J, Wang H-F, Hu P. 2018.. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. . Nat. Catal. 1::29199
    [Crossref] [Google Scholar]
  103. 103.
    Torrelles X, Cabailh G, Lindsay R, Bikondoa O, Roy J, et al. 2008.. Geometric structure of TiO2(011)(2×1). . Phys. Rev. Lett. 101::185501
    [Crossref] [Google Scholar]
  104. 104.
    Gong X-Q, Khorshidi N, Stierle A, Vonk V, Ellinger C, et al. 2009.. The 2×1 reconstruction of the rutile TiO2(011) surface: a combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. . Surf. Sci. 603::13844
    [Crossref] [Google Scholar]
  105. 105.
    Aschauer U, Selloni A. 2011.. Structure of the rutile TiO2(011) surface in an aqueous environment. . Phys. Rev. Lett. 106::166102
    [Crossref] [Google Scholar]
  106. 106.
    Balajka J, Aschauer U, Mertens SFL, Selloni A, Schmid M, Diebold U. 2017.. Surface structure of TiO2 rutile (011) exposed to liquid water. . J. Phys. Chem. C 121::2642431
    [Crossref] [Google Scholar]
  107. 107.
    Herman GS, Sievers MR, Gao Y. 2000.. Structure determination of the two-domain (1 × 4) anatase TiO2(001) surface. . Phys. Rev. Lett. 84::335457
    [Crossref] [Google Scholar]
  108. 108.
    Liang Y, Gan S, Chambers SA, Altman EI. 2001.. Surface structure of anatase TiO2(001): reconstruction, atomic steps, and domains. . Phys. Rev. B 63::235402
    [Crossref] [Google Scholar]
  109. 109.
    Lazzeri M, Selloni A. 2001.. Stress-driven reconstruction of an oxide surface. The anatase TiO2(001)–(1 × 4) surface. . Phys. Rev. Lett. 87::266105
    [Crossref] [Google Scholar]
  110. 110.
    Selçuk S, Selloni A. 2013.. Surface structure and reactivity of anatase TiO2 crystals with dominant {001} facets. . J. Phys. Chem. C 117::635862
    [Crossref] [Google Scholar]
  111. 111.
    Zeng Z, Wodaczek F, Liu K, Stein F, Hutter J, et al. 2023.. Mechanistic insight on water dissociation on pristine low-index TiO2 surfaces from machine learning molecular dynamics simulations. . Nat. Commun. 14::6131
    [Crossref] [Google Scholar]
  112. 112.
    Petkov V, Holzhüter G, Tröge U, Gerber T, Himmel B. 1998.. Atomic-scale structure of amorphous TiO2 by electron, X-ray diffraction and reverse Monte Carlo simulations. . J. Non-Cryst. Solids 231::1730
    [Crossref] [Google Scholar]
  113. 113.
    Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA. 2012.. Properties of amorphous and crystalline titanium dioxide from first principles. . J. Mater. Sci. 47::751521
    [Crossref] [Google Scholar]
  114. 114.
    Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS. 2014.. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. . Science 344::10059
    [Crossref] [Google Scholar]
  115. 115.
    Mavračić J, Mocanu FC, Deringer VL, Csányi G, Elliott SR. 2018.. Similarity between amorphous and crystalline phases: the case of TiO2. . J. Phys. Chem. Lett. 9::298590
    [Crossref] [Google Scholar]
  116. 116.
    Ding Z, Selloni A. 2023.. Modeling the aqueous interface of amorphous TiO2 using deep potential molecular dynamics. . J. Chem. Phys. 159::024706
    [Crossref] [Google Scholar]
  117. 117.
    Calegari Andrade MF, Selloni A. 2020.. Structure of disordered TiO2 phases from ab initio based deep neural network simulations. . Phys. Rev. Mater. 4::113803
    [Crossref] [Google Scholar]
  118. 118.
    Waegele MM, Chen X, Herlihy DM, Cuk T. 2014.. How surface potential determines the kinetics of the first hole transfer of photocatalytic water oxidation. . J. Am. Chem. Soc. 136::1063239
    [Crossref] [Google Scholar]
  119. 119.
    Herlihy DM, Waegele MM, Chen X, Pemmaraju CD, Prendergast D, Cuk T. 2016.. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. . Nat. Chem. 8::54955
    [Crossref] [Google Scholar]
  120. 120.
    Chen X, Choing SN, Aschaffenburg DJ, Pemmaraju CD, Prendergast D, Cuk T. 2017.. The formation time of Ti-O and Ti-O-Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. . J. Am. Chem. Soc. 139::183041
    [Crossref] [Google Scholar]
  121. 121.
    Zhang M, Frei H. 2017.. Water oxidation mechanisms of metal oxide catalysts by vibrational spectroscopy of transient intermediates. . Annu. Rev. Phys. Chem. 68::20931
    [Crossref] [Google Scholar]
  122. 122.
    Chen X, Aschaffenburg DJ, Cuk T. 2019.. Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. . Nat. Catal. 2::82027
    [Crossref] [Google Scholar]
  123. 123.
    Pastor E, Park J-S, Steier L, Kim S, Grätzel M, et al. 2019.. In situ observation of picosecond polaron self-localisation in α-Fe2O3 photoelectrochemical cells. . Nat. Commun. 10::3962
    [Crossref] [Google Scholar]
  124. 124.
    Mesa CA, Francàs L, Yang KR, Garrido-Barros P, Pastor E, et al. 2020.. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. . Nat. Chem. 12::8289
    [Crossref] [Google Scholar]
  125. 125.
    Vinogradov I, Singh S, Lyle H, Paolino M, Mandal A, et al. 2022.. Free energy difference to create the M-OH* intermediate of the oxygen evolution reaction by time-resolved optical spectroscopy. . Nat. Mater. 21::8894
    [Crossref] [Google Scholar]
  126. 126.
    Lu Y, Yin W-J, Peng K-L, Wang K, Hu Q, et al. 2018.. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. . Nat. Commun. 9::2752
    [Crossref] [Google Scholar]
  127. 127.
    Grisafi A, Ceriotti M. 2019.. Incorporating long-range physics in atomic-scale machine learning. . J. Chem. Phys. 151::204105
    [Crossref] [Google Scholar]
  128. 128.
    Ko TW, Finkler JA, Goedecker S, Behler J. 2021.. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. . Nat. Commun. 12::398
    [Crossref] [Google Scholar]
  129. 129.
    Zhang L, Wang H, Muniz MC, Panagiotopoulos AZ, Car R, E W. 2022.. A deep potential model with long-range electrostatic interactions. . J. Chem. Phys. 156::124107
    [Crossref] [Google Scholar]
  130. 130.
    Nandi A, Qu C, Houston PL, Conte R, Bowman JM. 2021.. Δ-machine learning for potential energy surfaces: a PIP approach to bring a DFT-based PES to CCSD(T) level of theory. . J. Chem. Phys. 154::051102
    [Crossref] [Google Scholar]
  131. 131.
    Bogojeski M, Vogt-Maranto L, Tuckerman ME, Müller K-R, Burke K. 2020.. Quantum chemical accuracy from density functional approximations via machine learning. . Nat. Commun. 11::5223
    [Crossref] [Google Scholar]
  132. 132.
    Liu P, Wang J, Avargues N, Verdi C, Singraber A, et al. 2023.. Combining machine learning and many-body calculations: coverage-dependent adsorption of CO on Rh(111). . Phys. Rev. Lett. 130::078001
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-090722-015957
Loading
/content/journals/10.1146/annurev-physchem-090722-015957
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error