1932

Abstract

Oxygenic photosynthesis, the process that converts light energy into chemical energy, is traditionally associated with the absorption of visible light by chlorophyll molecules. However, recent studies have revealed a growing number of organisms capable of using far-red light (700–800 nm) to drive oxygenic photosynthesis. This phenomenon challenges the conventional understanding of the limits of this process. In this review, we briefly introduce the organisms that exhibit far-red photosynthesis and explore the different strategies they employ to harvest far-red light. We discuss the modifications of photosynthetic complexes and their impact on the delivery of excitation energy to photochemical centers and on overall photochemical efficiency. Finally, we examine the solutions employed to drive electron transport and water oxidation using relatively low-energy photons. The findings discussed here not only expand our knowledge of the remarkable adaptation capacities of photosynthetic organisms but also offer insights into the potential for enhancing light capture in crops.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090722-125847
2024-06-28
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-090722-125847.html?itemId=/content/journals/10.1146/annurev-physchem-090722-125847&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Blankenship RE. 2014.. Molecular Mechanisms of Photosynthesis. Hoboken, NJ:: Blackwell
    [Google Scholar]
  2. 2.
    Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S. 1996.. Chlorophyll d as a major pigment. . Nature 383::402
    [Crossref] [Google Scholar]
  3. 3.
    Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H. 2010.. A red-shifted chlorophyll. . Science 329::131819
    [Crossref] [Google Scholar]
  4. 4.
    Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA. 2014.. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. . Science 345::131217
    [Crossref] [Google Scholar]
  5. 5.
    Antonaru LA, Cardona T, Larkum AWD, Nurnberg DJ. 2020.. Global distribution of a chlorophyll f cyanobacterial marker. . ISME J. 14::227587
    [Crossref] [Google Scholar]
  6. 6.
    Billi D, Napoli A, Mosca C, Fagliarone C, de Carolis R, et al. 2022.. Identification of far-red light acclimation in an endolithic Chroococcidiopsis strain and associated genomic features: implications for oxygenic photosynthesis on exoplanets. . Front. Microbiol. 13::933404
    [Crossref] [Google Scholar]
  7. 7.
    Gan F, Shen G, Bryant DA. 2015.. Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. . Life 5::424
    [Crossref] [Google Scholar]
  8. 8.
    Olsen MT, Nowack S, Wood JM, Becraft ED, LaButti K, et al. 2015.. The molecular dimension of microbial species: 3. Comparative genomics of Synechococcus strains with different light responses and in situ diel transcription patterns of associated putative ecotypes in the Mushroom Spring microbial mat. . Front. Microbiol. 6::604
    [Crossref] [Google Scholar]
  9. 9.
    Soulier N, Walters K, Laremore TN, Shen G, Golbeck JH, Bryant DA. 2022.. Acclimation of the photosynthetic apparatus to low light in a thermophilic Synechococcus sp. strain. . Photosynth. Res. 153::2142
    [Crossref] [Google Scholar]
  10. 10.
    Wolf BM, Blankenship RE. 2019.. Far-red light acclimation in diverse oxygenic photosynthetic organisms. . Photosynth. Res. 142::34959
    [Crossref] [Google Scholar]
  11. 11.
    Wolf BM, Niedzwiedzki DM, Magdaong NCM, Roth R, Goodenough U, Blankenship RE. 2017.. Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. . Photosynth. Res. 135::17789
    [Crossref] [Google Scholar]
  12. 12.
    Kosugi M, Ozawa SI, Takahashi Y, Kamei Y, Itoh S, et al. 2020.. Red-shifted chlorophyll a bands allow uphill energy transfer to photosystem II reaction centers in an aerial green alga, Prasiola crispa, harvested in Antarctica. . Biochim. Biophys. Acta Bioenerg. 1861::148139
    [Crossref] [Google Scholar]
  13. 13.
    Wilhelm C, Jakob T. 2006.. Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. . Photosynth. Res. 87::32329
    [Crossref] [Google Scholar]
  14. 14.
    Croce R, van Grondelle R, van Amerongen H, van Stokkum IH. 2018.. Light Harvesting in Photosynthesis. Boca Raton, FL:: CRC
    [Google Scholar]
  15. 15.
    Gouterman M, Dolphin D. 1978.. Optical spectra and electronic structure of porphyrins and related rings. . In The Porphyrins, ed. D Dolphin , pp. 1165. San Diego, CA:: Academic
    [Google Scholar]
  16. 16.
    van Amerongen H, Valkunas L, van Grondelle R. 2000.. Photosyntheric Excitons. Singapore:: World Sci.
    [Google Scholar]
  17. 17.
    Karapetyan NV, Schlodder E, van Grondelle R, Dekker JP. 2006.. The long wavelength chlorophylls of photosystem I. . In Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, ed. JH Golbeck , pp. 17792. Dordrecht, Neth.:: Springer
    [Google Scholar]
  18. 18.
    Morosinotto T, Breton J, Bassi R, Croce R. 2003.. The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. . J. Biol. Chem. 278::4922329
    [Crossref] [Google Scholar]
  19. 19.
    Romero E, Mozzo M, van Stokkum IHM, Dekker JP, van Grondelle R, Croce R. 2009.. The origin of the low-energy form of photosystem I light-harvesting complex Lhca4: mixing of the lowest exciton with a charge-transfer state. . Biophys. J. 96::L3537
    [Crossref] [Google Scholar]
  20. 20.
    Sláma V, Cupellini L, Mascoli V, Liguori N, Croce R, Mennucci B. 2023.. Origin of low-lying red states in the Lhca4 light-harvesting complex of photosystem I. . J. Phys. Chem. Lett. 14::834552
    [Crossref] [Google Scholar]
  21. 21.
    Wientjes E, Roest G, Croce R. 2012.. From red to blue to far-red in Lhca4: How does the protein modulate the spectral properties of the pigments?. Biochim. Biophys. Acta Bioenerg. 1817::71117
    [Crossref] [Google Scholar]
  22. 22.
    Ho MY, Shen G, Canniffe DP, Zhao C, Bryant DA. 2016.. Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. . Science 353::aaf9178
    [Crossref] [Google Scholar]
  23. 23.
    Trinugroho JP, Beckova M, Shao S, Yu J, Zhao Z, et al. 2020.. Chlorophyll f synthesis by a super-rogue photosystem II complex. . Nat. Plants 6::23844
    [Crossref] [Google Scholar]
  24. 24.
    Schliep M, Crossett B, Willows RD, Chen M. 2010.. 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors. . J. Biol. Chem. 285::2845056
    [Crossref] [Google Scholar]
  25. 25.
    Fukusumi T, Matsuda K, Mizoguchi T, Miyatake T, Ito S, et al. 2012.. Non-enzymatic conversion of chlorophyll-a into chlorophyll-d in vitro: a model oxidation pathway for chlorophyll-d biosynthesis. . FEBS Lett. 586::233841
    [Crossref] [Google Scholar]
  26. 26.
    Chen M, Blankenship RE. 2011.. Expanding the solar spectrum used by photosynthesis. . Trends Plant Sci. 16::42731
    [Crossref] [Google Scholar]
  27. 27.
    Bryant DA, Shen G, Turner GM, Soulier N, Laremore TN, Ho MY. 2020.. Far-red light allophycocyanin subunits play a role in chlorophyll d accumulation in far-red light. . Photosynth. Res. 143::8195
    [Crossref] [Google Scholar]
  28. 28.
    Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, et al. 2008.. Niche adaptation and genome expansion in the chlorophyll d–producing cyanobacterium Acaryochloris marina. . PNAS 105::200510
    [Crossref] [Google Scholar]
  29. 29.
    Diers JR, Kirmaier C, Taniguchi M, Lindsey JS, Bocian DF, Holten D. 2021.. A perspective on the redox properties of tetrapyrrole macrocycles. . Phys. Chem. Chem. Phys. 23::1913040
    [Crossref] [Google Scholar]
  30. 30.
    Tros M, Mascoli V, Shen GZ, Ho MY, Bersanini L, et al. 2021.. Breaking the red limit: efficient trapping of long-wavelength excitations in chlorophyll-f-containing photosystem I. . Chemistry 7::15573
    [Crossref] [Google Scholar]
  31. 31.
    Gisriel CJ, Cardona T, Bryant DA, Brudvig GW. 2022.. Molecular evolution of far-red light-acclimated photosystem II. . Microorganisms 10::1270
    [Crossref] [Google Scholar]
  32. 32.
    Loughlin P, Lin Y, Chen M. 2013.. Chlorophyll d and Acaryochloris marina: current status. . Photosynth. Res. 116::27793
    [Crossref] [Google Scholar]
  33. 33.
    Bar-Zvi S, Lahav A, Harris D, Niedzwiedzki DM, Blankenship RE, Adir N. 2018.. Structural heterogeneity leads to functional homogeneity in A. marina phycocyanin. . Biochim. Biophys. Acta Bioenerg. 1859::54453
    [Crossref] [Google Scholar]
  34. 34.
    Dagnino-Leone J, Figueroa CP, Latorre Castañeda M, Youlton AD, Vallejos-Almirall A, et al. 2022.. Phycobiliproteins: structural aspects, functional characteristics, and biotechnological perspectives. . Comput. Struct. Biotechnol. J. 20::150627
    [Crossref] [Google Scholar]
  35. 35.
    Li Y, Lin Y, Garvey CJ, Birch D, Corkery RW, et al. 2016.. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f–containing cyanobacterium Halomicronema hongdechloris. . Biochim. Biophys. Acta Bioenerg. 1857::10714
    [Crossref] [Google Scholar]
  36. 36.
    Peng P-P, Dong L-L, Sun Y-F, Zeng X-L, Ding W-L, et al. 2014.. The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobillisomes. . Acta Crystallogr. D 70::255869
    [Crossref] [Google Scholar]
  37. 37.
    Soulier NT, Bryant DA. 2021.. The structural basis of far-red light absorbance by allophycocyanins. . Photosynth. Res. 147::1126
    [Crossref] [Google Scholar]
  38. 38.
    Gisriel CJ, Elias E, Shen G, Soulier NT, Brudvig GW, et al. 2023.. Structural comparison of allophycocyanin variants reveals the molecular basis of their spectral differences. . Photosynth. Res. https://doi.org/10.1007/s11120-023-01048-4
    [Google Scholar]
  39. 39.
    Croce R, van Amerongen H. 2014.. Natural strategies for photosynthetic light harvesting. . Nat. Chem. Biol. 10::492501
    [Crossref] [Google Scholar]
  40. 40.
    Mazor Y, Borovikova A, Caspy I, Nelson N. 2017.. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. . Nat. Plants 3::17014
    [Crossref] [Google Scholar]
  41. 41.
    Novoderezhkin VI, Croce R, Wahadoszamen M, Polukhina I, Romero E, van Grondelle R. 2016.. Mixing of exciton and charge-transfer states in light-harvesting complex Lhca4. . Phys. Chem. Chem. Phys. 18::1936877
    [Crossref] [Google Scholar]
  42. 42.
    Sonani RR, Gupta GD, Madamwar D, Kumar V. 2015.. Crystal structure of allophycocyanin from marine cyanobacterium Phormidium sp. A09DM. . PLOS ONE 10::e0124580
    [Crossref] [Google Scholar]
  43. 43.
    Gisriel CJ, Elias E, Shen G, Soulier NT, Flesher DA, et al. 2023.. Helical allophycocyanin nanotubes absorb far-red light in a thermophilic cyanobacterium. . Sci. Adv. 9::eadg0251
    [Crossref] [Google Scholar]
  44. 44.
    Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T. 2007.. Redox potential of chlorophyll d in vitro. . Biochim. Biophys. Acta Bioenerg. 1767::596602
    [Crossref] [Google Scholar]
  45. 45.
    Chen M, Bibby TS, Nield J, Larkum AWD, Barber J. 2005.. Structure of a large photosystem II supercomplex from Acaryochloris marina. . FEBS Lett. 579::130610
    [Crossref] [Google Scholar]
  46. 46.
    Ho MY, Gan F, Shen G, Bryant DA. 2017.. Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II. Characterization of phycobiliproteins produced during acclimation to far-red light. . Photosynth. Res. 131::187202
    [Crossref] [Google Scholar]
  47. 47.
    Rappaport F. 2018.. Modulation of the redox potentials. . See Ref. 14 , pp. 35978
  48. 48.
    Förster T. 1946.. Energiewanderung und Fluoreszenz. . Naturwissenschaften 33::16675
    [Crossref] [Google Scholar]
  49. 49.
    Beddard GS, Carlin SE, Porter G. 1976.. Concentration quenching of chlorophyll fluorescence in bilayer lipid vesicles and liposomes. . Chem. Phys. Lett. 43::2732
    [Crossref] [Google Scholar]
  50. 50.
    Belgio E, Johnson MP, Juric S, Ruban AV. 2012.. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime—both the maximum and the nonphotochemically quenched. . Biophys. J. 102::276171
    [Crossref] [Google Scholar]
  51. 51.
    Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. 2001.. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. . Nature 411::90917
    [Crossref] [Google Scholar]
  52. 52.
    Gobets B, van Stokkum IH, Rogner M, Kruip J, Schlodder E, et al. 2001.. Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. . Biophys. J. 81::40724
    [Crossref] [Google Scholar]
  53. 53.
    Chukhutsina VU, Liu X, Xu P, Croce R. 2020.. The major light-harvesting complex (LHCII) is an antenna of photosystem I in dark-adapted plants. . Nat. Plants 6::86068
    [Crossref] [Google Scholar]
  54. 54.
    Karapetyan NV. 1998.. Organization and role of the long-wave chlorophylls in the photosystem I of the cyanobacterium Spirulina. . Membr. Cell Biol. 12::57184
    [Google Scholar]
  55. 55.
    Croce R, van Amerongen H. 2013.. Light-harvesting in photosystem I. . Photosynth. Res. 116::15366
    [Crossref] [Google Scholar]
  56. 56.
    van Stokkum IHM, Desquilbet TE, van der Weij–de Wit C, Snellenburg JJ, van Grondelle R, et al. 2013.. Energy transfer and trapping in red-chlorophyll-free photosystem I from Synechococcus WH 7803. . J. Phys. Chem. B 117::1117683
    [Crossref] [Google Scholar]
  57. 57.
    Savikhin S. 2006.. Utrafast optical spectroscopy of photosystem I. . In Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, ed. JH Golbeck , pp. 15575. Dordrecht, Neth:.: Springer
    [Google Scholar]
  58. 58.
    Croce R, Zucchelli G, Garlaschi FM, Bassi R, Jennings RC. 1996.. Excited state equilibration in the photosystem I–light-harvesting I complex: P700 is almost isoenergetic with its antenna. . Biochemistry 35::857279
    [Crossref] [Google Scholar]
  59. 59.
    Jennings RC, Zucchelli G, Croce R, Garlaschi FM. 2003.. The photochemical trapping rate from red spectral states in PSI-LHCI is determined by thermal activation of energy transfer to bulk chlorophylls. . Biochim. Biophys. Acta Bioenerg. 1557::9198
    [Crossref] [Google Scholar]
  60. 60.
    Russo M, Casazza AP, Cerullo G, Santabarbara S, Maiuri M. 2021.. Direct evidence for excitation energy transfer limitations imposed by low-energy chlorophylls in photosystem I–light harvesting complex I of land plants. . J. Phys. Chem. B 125::356673
    [Crossref] [Google Scholar]
  61. 61.
    Nurnberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, et al. 2018.. Photochemistry beyond the red limit in chlorophyll f–containing photosystems. . Science 360::121013
    [Crossref] [Google Scholar]
  62. 62.
    Gisriel CJ, Flesher DA, Shen G, Wang J, Ho MY, et al. 2022.. Structure of a photosystem I–ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. . J. Biol. Chem. 298::101408
    [Crossref] [Google Scholar]
  63. 63.
    Kato K, Shinoda T, Nagao R, Akimoto S, Suzuki T, et al. 2020.. Structural basis for the adaptation and function of chlorophyll f in photosystem I. . Nat. Commun. 11::238
    [Crossref] [Google Scholar]
  64. 64.
    Gisriel C, Shen G, Kurashov V, Ho MY, Zhang S, et al. 2020.. The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. . Sci. Adv. 6::eaay6415
    [Crossref] [Google Scholar]
  65. 65.
    Zamzam N, Kaucikas M, Nürnberg DJ, Rutherford AW, van Thor JJ. 2019.. Femtosecond infrared spectroscopy of chlorophyll f–containing photosystem I. . Phys. Chem. Chem. Phys. 21::122434
    [Crossref] [Google Scholar]
  66. 66.
    Kaucikas M, Nürnberg DJ, Dorlhiac G, Rutherford AW, van Thor JJ. 2017.. Femtosecond visible transient absorption spectroscopy of chlorophyll f–containing photosystem I. . Biophys. J. 112::23449
    [Crossref] [Google Scholar]
  67. 67.
    Hastings G, Makita H, Agarwala N, Rohani L, Shen G, Bryant DA. 2019.. Fourier transform visible and infrared difference spectroscopy for the study of P700 in photosystem I from Fischerella thermalis PCC 7521 cells grown under white light and far-red light: evidence that the A−1 cofactor is chlorophyll f. . Biochim. Biophys. Acta Bioenerg. 1860::45260
    [Crossref] [Google Scholar]
  68. 68.
    Kurashov V, Ho MY, Shen G, Piedl K, Laremore TN, et al. 2019.. Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. . Photosynth. Res. 141::15163
    [Crossref] [Google Scholar]
  69. 69.
    Mascoli V, Bersanini L, Croce R. 2020.. Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis. . Nat. Plants 6::104453
    [Crossref] [Google Scholar]
  70. 70.
    Cherepanov DA, Shelaev IV, Gostev FE, Aybush AV, Mamedov MD, et al. 2020.. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. . Biochim. Biophys. Acta Bioenerg. 1861::148184
    [Crossref] [Google Scholar]
  71. 71.
    Schlodder E, Lendzian F, Meyer J, Çetin M, Brecht M, et al. 2014.. Long-wavelength limit of photochemical energy conversion in photosystem I. . J. Am. Chem. Soc. 136::390418
    [Crossref] [Google Scholar]
  72. 72.
    Xu C, Zhu Q, Chen JH, Shen L, Yi X, et al. 2021.. A unique photosystem I reaction center from a chlorophyll d–containing cyanobacterium Acaryochloris marina. . J. Integr. Plant Biol. 63::174052
    [Crossref] [Google Scholar]
  73. 73.
    Hamaguchi T, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Itoh S, et al. 2021.. Structure of the far-red light utilizing photosystem I of Acaryochloris marina. . Nat. Commun. 12::2333
    [Crossref] [Google Scholar]
  74. 74.
    Nagao R, Ogawa H, Tsuboshita N, Kato K, Toyofuku R, et al. 2023.. Isolation and characterization of trimeric and monomeric PSI cores from Acaryochloris marina MBIC11017. . Photosynth. Res. 157::5563
    [Crossref] [Google Scholar]
  75. 75.
    Petrova AA, Casazza AP, Shelaev IV, Gostev FE, Aybush AV, et al. 2023.. Role of pheophytin a in the primary charge separation of photosystem I from Acaryochloris marina: femtosecond optical studies of excitation energy and electron transfer reactions. . Biochim. Biophys. Acta Bioenerg. 1864::148984
    [Crossref] [Google Scholar]
  76. 76.
    Mi DH, Chen M, Lin S, Lince M, Larkum AWD, Blankenship RE. 2003.. Excitation dynamics in the core antenna in the photosystem I reaction center of the chlorophyll d–containing photosynthetic prokaryote Acaryochloris marina. . J. Phys. Chem. B 107::145257
    [Crossref] [Google Scholar]
  77. 77.
    Kumazaki S, Abiko K, Ikegami I, Iwaki M, Itoh S. 2002.. Energy equilibration and primary charge separation in chlorophyll d–based photosystem I reaction center isolated from Acaryochloris marina. . FEBS Lett. 530::15357
    [Crossref] [Google Scholar]
  78. 78.
    Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, et al. 2022.. Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus. . eLife 11::e73990
    [Crossref] [Google Scholar]
  79. 79.
    Toporik H, Khmelnitskiy A, Dobson Z, Riddle R, Williams D, et al. 2020.. The structure of a red-shifted photosystem I reveals a red site in the core antenna. . Nat. Commun. 11::5279
    [Crossref] [Google Scholar]
  80. 80.
    Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, et al. 2008.. Characterization of highly purified photosystem I complexes from the chlorophyll d–dominated cyanobacterium Acaryochloris marina MBIC 11017. . J. Biol. Chem. 283::18198209
    [Crossref] [Google Scholar]
  81. 81.
    Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P, Krauá N. 1998.. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. . J. Mol. Biol. 280::297314
    [Crossref] [Google Scholar]
  82. 82.
    Shibata Y, Nishi S, Kawakami K, Shen JR, Renger T. 2013.. Photosystem II does not possess a simple excitation energy funnel: Time-resolved fluorescence spectroscopy meets theory. . J. Am. Chem. Soc. 135::690314
    [Crossref] [Google Scholar]
  83. 83.
    Muh F, Zouni A. 2020.. Structural basis of light-harvesting in the photosystem II core complex. . Protein Sci. 29::1090119
    [Crossref] [Google Scholar]
  84. 84.
    Croce R, van Amerongen H. 2020.. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. . Science 369::eaay2058
    [Crossref] [Google Scholar]
  85. 85.
    Umena Y, Kawakami K, Shen JR, Kamiya N. 2011.. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. . Nature 473::5560
    [Crossref] [Google Scholar]
  86. 86.
    Gisriel CJ, Shen G, Flesher DA, Kurashov V, Golbeck JH, et al. 2023.. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. . J. Biol. Chem. 299::102815
    [Crossref] [Google Scholar]
  87. 87.
    Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, et al. 2007.. Identification of the special pair of photosystem II in a chlorophyll d–dominated cyanobacterium. . PNAS 104::728388
    [Crossref] [Google Scholar]
  88. 88.
    Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, et al. 1999.. Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. . Biochim. Biophys. Acta Bioenerg. 1412::25061
    [Crossref] [Google Scholar]
  89. 89.
    Petrásek Z, Schmitt F-J, Theiss C, Huyer J, Chen M, et al. 2005.. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. . Photochem. Photobiol. Sci. 4::101622
    [Crossref] [Google Scholar]
  90. 90.
    Judd M, Morton J, Nürnberg D, Fantuzzi A, Rutherford AW, et al. 2020.. The primary donor of far-red photosystem II: ChlD1 or PD2?. Biochim. Biophys. Acta Bioenerg. 1861::148248
    [Crossref] [Google Scholar]
  91. 91.
    Zamzam N, Rakowski R, Kaucikas M, Dorlhiac G, Viola S, et al. 2020.. Femtosecond visible transient absorption spectroscopy of chlorophyll-f-containing photosystem II. . PNAS 117::2315864
    [Crossref] [Google Scholar]
  92. 92.
    Mascoli V, Bhatti AF, Bersanini L, van Amerongen H, Croce R. 2022.. The antenna of far-red absorbing cyanobacteria increases both absorption and quantum efficiency of Photosystem II. . Nat. Commun. 13::3562
    [Crossref] [Google Scholar]
  93. 93.
    Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, et al. 2005.. The nature of the photosystem II reaction centre in the chlorophyll d–containing prokaryote, Acaryochloris marina. . Photochem. Photobiol. Sci. 4::106064
    [Crossref] [Google Scholar]
  94. 94.
    Croce R, Morosinotto T, Castelletti S, Breton J, Bassi R. 2002.. The Lhca antenna complexes of higher plants photosystem I. . Biochim. Biophys. Acta Bioenerg. 1556::2940
    [Crossref] [Google Scholar]
  95. 95.
    Hu C, Nawrocki WJ, Croce R. 2021.. Long-term adaptation of Arabidopsis thaliana to far-red light. . Plant Cell Environ. 44::300214
    [Crossref] [Google Scholar]
  96. 96.
    Le Quiniou C, van Oort B, Drop B, van Stokkum IH, Croce R. 2015.. The high efficiency of photosystem I in the green alga Chlamydomonas reinhardtii is maintained after the antenna size is substantially increased by the association of light-harvesting complexes II. . J. Biol. Chem. 290::3058795
    [Crossref] [Google Scholar]
  97. 97.
    Engelmann E, Zucchelli G, Casazza AP, Brogioli D, Garlaschi FM, Jennings RC. 2006.. Influence of the photosystem I–light harvesting complex I antenna domains on fluorescence decay. . Biochemistry 45::694755
    [Crossref] [Google Scholar]
  98. 98.
    Kotabova E, Jaresova J, Kana R, Sobotka R, Bina D, Prasil O. 2014.. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. . Biochim. Biophys. Acta Bioenerg. 1837::73443
    [Crossref] [Google Scholar]
  99. 99.
    Kosugi M, Kawasaki M, Shibata Y, Hara K, Takaichi S, et al. 2023.. Uphill energy transfer mechanism for photosynthesis in an Antarctic alga. . Nat. Commun. 14::730
    [Crossref] [Google Scholar]
  100. 100.
    Soulier N, Laremore TN, Bryant DA. 2020.. Characterization of cyanobacterial allophycocyanins absorbing far-red light. . Photosynth. Res. 145::189207
    [Crossref] [Google Scholar]
  101. 101.
    Ho MY, Niedzwiedzki DM, MacGregor-Chatwin C, Gerstenecker G, Hunter CN, et al. 2020.. Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. . Biochim. Biophys. Acta Bioenerg. 1861::148064
    [Crossref] [Google Scholar]
  102. 102.
    Lax JEM, Arteni AA, Boekema EJ, Pistorius EK, Michel KP, Rogner M. 2007.. Structural response of photosystem 2 to iron deficiency: characterization of a new photosystem 2–IdiA complex from the cyanobacterium Thermosynechococcus elongatus BP-1. . Biochim. Biophys. Acta Bioenerg. 1767::52834
    [Crossref] [Google Scholar]
  103. 103.
    Diner BA, Rappaport F. 2002.. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. . Annu. Rev. Plant Biol. 53::55180
    [Crossref] [Google Scholar]
  104. 104.
    Durrant JR, Dekker JP, Kwa SLS, van Grondelle R, Barber J, et al. 1995.. Trapping of excitation energy by photosystem two reaction centres: Is P680 a multimer?. Sol. Energy Mat. Sol. Cells 38::13538
    [Crossref] [Google Scholar]
  105. 105.
    Sirohiwal A, Neese F, Pantazis DA. 2020.. Protein matrix control of reaction center excitation in photosystem II. . J. Am. Chem. Soc. 142::1817490
    [Crossref] [Google Scholar]
  106. 106.
    Holzwarth AR, Muller MG, Reus M, Nowaczyk M, Sander J, Rogner M. 2006.. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. . PNAS 103::6895900
    [Crossref] [Google Scholar]
  107. 107.
    Groot ML, Pawlowicz NP, van Wilderen LJ, Breton J, van Stokkum IH, van Grondelle R. 2005.. Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. . PNAS 102::1308792
    [Crossref] [Google Scholar]
  108. 108.
    Dekker JP, van Grondelle R. 2000.. Primary charge separation in Photosystem II. . Photosynth. Res. 63::195208
    [Crossref] [Google Scholar]
  109. 109.
    Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, et al. 2010.. Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. . PNAS 107::392429
    [Crossref] [Google Scholar]
  110. 110.
    Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J. 2002.. Kinetics and pathways of charge recombination in photosystem II. . Biochemistry 41::851827
    [Crossref] [Google Scholar]
  111. 111.
    Kato Y, Sugiura M, Oda A, Watanabe T. 2009.. Spectroelectrochemical determination of the redox potential of pheophytin a, the primary electron acceptor in photosystem II. . PNAS 106::1736570
    [Crossref] [Google Scholar]
  112. 112.
    Wientjes E, van Amerongen H, Croce R. 2013.. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. . J. Phys. Chem. B 117::112008
    [Crossref] [Google Scholar]
  113. 113.
    Merry SA, Nixon PJ, Barter LM, Schilstra M, Porter G, et al. 1998.. Modulation of quantum yield of primary radical pair formation in photosystem II by site-directed mutagenesis affecting radical cations and anions. . Biochemistry 37::1743947
    [Crossref] [Google Scholar]
  114. 114.
    Nuijs AM, van Gorkom HJ, Plijter JJ, Duysens LNM. 1986.. Primary-charge separation and excitation of chlorophyll a in photosystem II particles from spinach as studied by picosecond absorbance-difference spectroscopy. . Biochim. Biophys. Acta Bioenerg. 848::16775
    [Crossref] [Google Scholar]
  115. 115.
    Brinkert K, De Causmaecker S, Krieger-Liszkay A, Fantuzzi A, Rutherford AW. 2016.. Bicarbonate-induced redox tuning in Photosystem II for regulation and protection. . PNAS 113::1214449
    [Crossref] [Google Scholar]
  116. 116.
    Grabolle M, Dau H. 2005.. Energetics of primary and secondary electron transfer in Photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. . Biochim. Biophys. Acta Bioenerg. 1708::20918
    [Crossref] [Google Scholar]
  117. 117.
    Cardona T, Sedoud A, Cox N, Rutherford AW. 2012.. Charge separation in photosystem II: a comparative and evolutionary overview. . Biochim. Biophys. Acta Bioenerg. 1817::2643
    [Crossref] [Google Scholar]
  118. 118.
    Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, et al. 2004.. Identification of the primary electron donor in PS II of the Chl d–dominated cyanobacterium Acaryochloris marina. . FEBS Lett. 556::9598
    [Crossref] [Google Scholar]
  119. 119.
    Schlodder E, Cetin M, Eckert HJ, Schmitt FJ, Barber J, Telfer A. 2007.. Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. . Biochim. Biophys. Acta Bioenerg. 1767::58995
    [Crossref] [Google Scholar]
  120. 120.
    Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T, Iwaki M. 2007.. Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. . Biochemistry 46::1247381
    [Crossref] [Google Scholar]
  121. 121.
    Renger T, Schlodder E. 2008.. The primary electron donor of photosystem II of the cyanobacterium Acaryochloris marina is a chlorophyll d and the water oxidation is driven by a chlorophyll a/chlorophyll d heterodimer. . J. Phys. Chem. B 112::735154
    [Crossref] [Google Scholar]
  122. 122.
    Viola S, Roseby W, Santabarbara S, Nurnberg D, Assuncao R, et al. 2022.. Impact of energy limitations on function and resilience in long-wavelength Photosystem II. . eLife 11::e79890
    [Crossref] [Google Scholar]
  123. 123.
    Shevela D, Noring B, Eckert HJ, Messinger J, Renger G. 2006.. Characterization of the water oxidizing complex of photosystem II of the Chl d–containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. . Phys. Chem. Chem. Phys. 8::346066
    [Crossref] [Google Scholar]
  124. 124.
    Allakhverdiev SI, Tsuchiya T, Watabe K, Kojima A, Los DA, et al. 2011.. Redox potentials of primary electron acceptor quinone molecule (QA) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. . PNAS 108::805458
    [Crossref] [Google Scholar]
  125. 125.
    Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. 2023.. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. . Photosynth. Res. In press. https://doi.org/10.1007/s11120-023-01023-z
    [Google Scholar]
  126. 126.
    Dau H, Haumann M. 2008.. The manganese complex of photosystem II in its reaction cycle—basic framework and possible realization at the atomic level. . Coord. Chem. Rev. 252::27395
    [Crossref] [Google Scholar]
  127. 127.
    Gisriel CJ, Shen G, Ho MY, Kurashov V, Flesher DA, et al. 2022.. Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. . J. Biol. Chem. 298::101424
    [Crossref] [Google Scholar]
  128. 128.
    Rutherford AW, Osyczka A, Rappaport F. 2012.. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. . FEBS Lett. 586::60316
    [Crossref] [Google Scholar]
  129. 129.
    Vass I, Cser K. 2009.. Janus-faced charge recombinations in photosystem II photoinhibition. . Trends Plant Sci. 14::2005
    [Crossref] [Google Scholar]
  130. 130.
    Joliot P, Joliot A. 1999.. In vivo analysis of the electron transfer within photosystem I: Are the two phylloquinones involved?. Biochemistry 38::1113036
    [Crossref] [Google Scholar]
  131. 131.
    Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P, Redding K. 2001.. Evidence for two active branches for electron transfer in photosystem I. . PNAS 98::443742
    [Crossref] [Google Scholar]
  132. 132.
    Xu W, Chitnis PR, Valieva A, van der Est A, Brettel K, et al. 2003.. Electron transfer in cyanobacterial photosystem I. II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. . J. Biol. Chem. 278::2787687
    [Crossref] [Google Scholar]
  133. 133.
    Webber AN, Lubitz W. 2001.. P700: the primary electron donor of photosystem I. . Biochim. Biophys. Acta Bioenerg. 1507::6179
    [Crossref] [Google Scholar]
  134. 134.
    Cherepanov DA, Shelaev IV, Gostev FE, Mamedov MD, Petrova AA, et al. 2017.. Mechanism of adiabatic primary electron transfer in photosystem I: femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the QY band. . Biochim. Biophys. Acta Bioenerg. 1858::895905
    [Crossref] [Google Scholar]
  135. 135.
    Muller MG, Niklas J, Lubitz W, Holzwarth AR. 2003.. Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. . Biophys. J. 85::3899922
    [Crossref] [Google Scholar]
  136. 136.
    Muller MG, Slavov C, Luthra R, Redding KE, Holzwarth AR. 2010.. Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center. . PNAS 107::412328
    [Crossref] [Google Scholar]
  137. 137.
    Witt H, Bordignon E, Carbonera D, Dekker JP, Karapetyan N, et al. 2003.. Species-specific differences of the spectroscopic properties of P700: analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. . J. Biol. Chem. 278::4676071
    [Crossref] [Google Scholar]
  138. 138.
    Ptushenko V, Cherepanov DA, Krishtalik LI, Semenov AY. 2008.. Semi-continuum electrostatic calculations of redox potentials in photosystem I. . Photosynth. Res. 97::5574
    [Crossref] [Google Scholar]
  139. 139.
    Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, et al. 1998.. A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. . PNAS 95::1331923
    [Crossref] [Google Scholar]
  140. 140.
    Sivakumar V, Wang R, Hastings G. 2003.. Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. . Biophys. J. 85::316272
    [Crossref] [Google Scholar]
  141. 141.
    Hastings G, Wang R. 2008.. Vibrational mode frequency calculations of chlorophyll-d for assessing (P740+-P740) FTIR difference spectra obtained using photosystem I particles from Acaryochloris marina. . Photosynth. Res. 95::5562
    [Crossref] [Google Scholar]
  142. 142.
    Bailleul B, Johnson X, Finazzi G, Barber J, Rappaport F, Telfer A. 2008.. The thermodynamics and kinetics of electron transfer between cytochrome b6f and photosystem I in the chlorophyll d–dominated cyanobacterium, Acaryochloris marina. . J. Biol. Chem. 283::2521826
    [Crossref] [Google Scholar]
  143. 143.
    Schenderlein M, Cetin M, Barber J, Telfer A, Schlodder E. 2008.. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. . Biochim. Biophys. Acta Bioenerg. 1777::14008
    [Crossref] [Google Scholar]
  144. 144.
    Nakamura A, Suzawa T, Kato Y, Watanabe T. 2011.. Species dependence of the redox potential of the primary electron donor P700 in photosystem I of oxygenic photosynthetic organisms revealed by spectroelectrochemistry. . Plant Cell Physiol. 52::81523
    [Crossref] [Google Scholar]
  145. 145.
    Savikhin S, Xu W, Soukoulis V, Chitnis PR, Struve WS. 1999.. Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. . Biophys. J. 76::327888
    [Crossref] [Google Scholar]
  146. 146.
    Hastings G, Reed LJ, Lin S, Blankenship RE. 1995.. Excited state dynamics in photosystem I: effects of detergent and excitation wavelength. . Biophys. J. 69::204455
    [Crossref] [Google Scholar]
  147. 147.
    Iwaki M, Kumazaki S, Yoshihara K, Erabi T, Itoh S. 1996.. ΔG0 dependence of the electron transfer rate in the photosynthetic reaction center of plant photosystem I: natural optimization of reaction between chlorophyll a (A0) and quinone. . J. Phys. Chem. 100::108029
    [Crossref] [Google Scholar]
  148. 148.
    Santabarbara S, Bailleul B, Redding K, Barber J, Rappaport F, Telfer A. 2012.. Kinetics of phyllosemiquinone oxidation in the Photosystem I reaction centre of Acaryochloris marina. . Biochim. Biophys. Acta Bioenerg. 1817::32835
    [Crossref] [Google Scholar]
  149. 149.
    Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. . PNAS 112::852936
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-090722-125847
Loading
/content/journals/10.1146/annurev-physchem-090722-125847
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error