1932

Abstract

Photochemical upconversion is a process whereby two lower-energy photons are converted into a higher-energy photon by sensitized triplet–triplet annihilation. While recent interest in this process has been motivated by improving the efficiencies of solar cells, many applications are being explored. In this review, we address the underlying physicochemical phenomena that are responsible for photochemical upconversion. We review their kinetics, and the requirements for annihilators and sensitizers to design efficient upconversion systems. We discuss the spin physics of the bi-excitonic interactions and how the spin character of the triplet pairs can fundamentally limit the upconversion efficiency and give rise to the magnetic field effect on delayed photoluminescence. Finally, we address light-matter coupling phenomena that could be employed to enhance photochemical upconversion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-092722-104952
2023-04-24
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-092722-104952.html?itemId=/content/journals/10.1146/annurev-physchem-092722-104952&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Parker C, Hatchard C. 1962. Sensitized anti-Stokes delayed fluorescence. Proc. Chem. Soc. 1962:386–87
    [Google Scholar]
  2. 2.
    Parker CA, Bowen EJ. 1963. Sensitized P-type delayed fluorescence. Proc. R. Soc. A 276:1364125–35
    [Google Scholar]
  3. 3.
    Shockley W, Queisser HJ. 1961. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32:3510–19
    [Google Scholar]
  4. 4.
    Trupke T, Green MA, Würfel P. 2002. Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92:74117–22
    [Google Scholar]
  5. 5.
    Keivanidis P, Baluschev S, Miteva T, Nelles G, Scherf U et al. 2003. Up-conversion photoluminescence in polyfluorene doped with metal(II)–octaethyl porphyrins. Adv. Mater. 15:242095–98
    [Google Scholar]
  6. 6.
    Baluschev S, Keivanidis PE, Wegner G, Jacob J, Grimsdale AC et al. 2005. Upconversion photoluminescence in poly(ladder-type-pentaphenylene) doped with metal (II)-octaethyl porphyrins. Appl. Phys. Lett. 86:6061904
    [Google Scholar]
  7. 7.
    Kozlov DV, Castellano FN. 2004. Anti-Stokes delayed fluorescence from metal–organic bichromophores. Chem. Commun. 1:242860–61
    [Google Scholar]
  8. 8.
    Beery D, Schmidt TW, Hanson K. 2021. Harnessing sunlight via molecular photon upconversion. ACS Appl. Mater. Int. 13:2832601–5
    [Google Scholar]
  9. 9.
    Schulze TF, Czolk J, Cheng YY, Fückel B, MacQueen RW et al. 2012. Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion. J. Phys. Chem. C 116:4322794–801
    [Google Scholar]
  10. 10.
    Cheng YY, Fückel B, MacQueen RW, Khoury T, Clady RG et al. 2012. Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci. 5:56953–59
    [Google Scholar]
  11. 11.
    Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW et al. 2013. Dye-sensitized solar cell with integrated triplet–triplet annihilation upconversion system. J. Phys. Chem. Lett. 4:122073–78
    [Google Scholar]
  12. 12.
    Simpson C, Clarke TM, MacQueen RW, Cheng YY, Trevitt AJ et al. 2015. An intermediate band dye-sensitised solar cell using triplet–triplet annihilation. Phys. Chem. Chem. Phys. 17:3824826–30
    [Google Scholar]
  13. 13.
    Hill SP, Dilbeck T, Baduell E, Hanson K. 2016. Integrated photon upconversion solar cell via molecular self-assembled bilayers. ACS Energy Lett. 1:13–8
    [Google Scholar]
  14. 14.
    Li C, Koenigsmann C, Deng F, Hagstrom A, Schmuttenmaer CA, Kim JH. 2016. Photocurrent enhancement from solid-state triplet–triplet annihilation upconversion of low-intensity, low-energy photons. ACS Photonics 3:5784–90
    [Google Scholar]
  15. 15.
    Dilbeck T, Hill SP, Hanson K. 2017. Harnessing molecular photon upconversion at sub-solar irradiance using dual sensitized self-assembled trilayers. J. Mater. Chem. A 5:2311652–60
    [Google Scholar]
  16. 16.
    Zhou Y, Ruchlin C, Robb AJ, Hanson K. 2019. Singlet sensitization-enhanced upconversion solar cells via self-assembled trilayers. ACS Energy Lett. 4:61458–63
    [Google Scholar]
  17. 17.
    Morifuji T, Takekuma Y, Nagata M. 2019. Integrated photon upconversion dye-sensitized solar cell by co-adsorption with derivative of Pt–porphyrin and anthracene on mesoporous TiO2. ACS Omega 4:611271–75
    [Google Scholar]
  18. 18.
    Monguzzi A, Borisov SM, Pedrini J, Klimant I, Salvalaggio M et al. 2015. Efficient broadband triplet-triplet annihilation-assisted photon upconversion at subsolar irradiance in fully organic systems. Adv. Funct. Mater. 25:355617–24
    [Google Scholar]
  19. 19.
    Cheng YY, Nattestad A, Schulze TF, MacQueen RW, Fückel B et al. 2016. Increased upconversion performance for thin film solar cells: a trimolecular composition. Chem. Sci. 7:1559–68
    [Google Scholar]
  20. 20.
    Tayebjee MJ, McCamey DR, Schmidt TW. 2015. Beyond Shockley-Queisser: molecular approaches to high-efficiency photovoltaics. J. Phys. Chem. Lett. 6:122367–78
    [Google Scholar]
  21. 21.
    Schulze TF, Schmidt TW. 2015. Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8:1103–25
    [Google Scholar]
  22. 22.
    Gray V, Dzebo D, Abrahamsson M, Albinsson B, Moth-Poulsen K. 2014. Triplet-triplet annihilation photon-upconversion: towards solar energy applications. Phys. Chem. Chem. Phys. 16:2210345–52
    [Google Scholar]
  23. 23.
    Richards BS, Hudry D, Busko D, Turshatov A, Howard IA. 2021. Photon upconversion for photovoltaics and photocatalysis: a critical review. Chem. Rev. 121:159165–95
    [Google Scholar]
  24. 24.
    Frazer L, Gallaher JK, Schmidt TW. 2017. Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2:61346–54
    [Google Scholar]
  25. 25.
    Majek M, Faltermeier U, Dick B, Pérez-Ruiz R, Jacobi von Wangelin A. 2015. Application of visible-to-UV photon upconversion to photoredox catalysis: the activation of aryl bromides. Chem. Eur. J. 21:4415496–501
    [Google Scholar]
  26. 26.
    Sanders SN, Schloemer TH, Gangishetty MK, Anderson D, Seitz M et al. 2022. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604:7906474–78
    [Google Scholar]
  27. 27.
    Dou Q, Jiang L, Kai D, Owh C, Loh XJ. 2017. Bioimaging and biodetection assisted with TTA-UC materials. Drug Discov. Today 22:91400–11
    [Google Scholar]
  28. 28.
    Zhang Y, He Z, Du X, Han J, Lin H et al. 2022. High-performance organic upconversion device with 12% photon to photon conversion efficiency at 980 nm and bio-imaging application in near-infrared region. Opt. Express 30:1016644
    [Google Scholar]
  29. 29.
    Graf von Reventlow L, Bremer M, Ebenhoch B, Gerken M, Schmidt TW, Colsmann A. 2018. An add-on organic green-to-blue photon-upconversion layer for organic light emitting diodes. J. Mater. Chem. C 6:153845–48
    [Google Scholar]
  30. 30.
    Shukla A, Hasan M, Banappanavar G, Ahmad V, Sobus J et al. 2022. Controlling triplet–triplet upconversion and singlet-triplet annihilation in organic light-emitting diodes for injection lasing. Commun. Mater. 3:27
    [Google Scholar]
  31. 31.
    Zhou Y, Castellano FN, Schmidt TW, Hanson K. 2020. On the quantum yield of photon upconversion via triplet-triplet annihilation. ACS Energy Lett. 5:72322–26
    [Google Scholar]
  32. 32.
    Schmidt TW, Castellano FN. 2014. Photochemical upconversion: the primacy of kinetics. J. Phys. Chem. Lett. 5:224062–72
    [Google Scholar]
  33. 33.
    Murakami Y, Kamada K. 2021. Kinetics of photon upconversion by triplet–triplet annihilation: a comprehensive tutorial. Phys. Chem. Chem. Phys. 23:3418268–82
    [Google Scholar]
  34. 34.
    Cheng YY, Fückel B, Khoury T, Clady RG, Tayebjee MJ et al. 2010. Kinetic analysis of photochemical upconversion by triplet-triplet annihilation: beyond any spin statistical limit. J. Phys. Chem. Lett. 1:121795–99
    [Google Scholar]
  35. 35.
    Geva N, Nienhaus L, Wu M, Bulović V, Baldo MA et al. 2019. A heterogeneous kinetics model for triplet exciton transfer in solid-state upconversion. J. Phys. Chem. Lett. 10:113147–52
    [Google Scholar]
  36. 36.
    Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. 2013. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 8:81535–50
    [Google Scholar]
  37. 37.
    Bachilo SM, Weisman RB. 2000. Determination of triplet quantum yields from triplet-triplet annihilation fluorescence. J. Phys. Chem. A 104:337713–14
    [Google Scholar]
  38. 38.
    de Mello JC, Wittmann HF, Friend RH. 1997. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9:3230–32
    [Google Scholar]
  39. 39.
    Kiseleva N, Busko D, Richards BS, Filatov MA, Turshatov A. 2020. Determination of upconversion quantum yields using charge-transfer state fluorescence of heavy-atom-free sensitizer as a self-reference. J. Phys. Chem. Lett. 11:166560–66
    [Google Scholar]
  40. 40.
    Yanai N, Suzuki K, Ogawa T, Sasaki Y, Harada N, Kimizuka N. 2019. Absolute method to certify quantum yields of photon upconversion via triplet-triplet annihilation. J. Phys. Chem. A 123:4610197–203
    [Google Scholar]
  41. 41.
    Crosby GA, Demas JN. 1971. Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75:8991–1024
    [Google Scholar]
  42. 42.
    Monguzzi A, Mezyk J, Scotognella F, Tubino R, Meinardi F. 2008. Upconversion-induced fluorescence in multicomponent systems: steady-state excitation power threshold. Phys. Rev. B 78:19195112
    [Google Scholar]
  43. 43.
    Manna MK, Shokri S, Wiederrecht GP, Gosztola DJ, Ayitou AJL. 2018. New perspectives for triplet-triplet annihilation based photon upconversion using all-organic energy donor & acceptor chromophores. Chem. Commun. 54:465809–18
    [Google Scholar]
  44. 44.
    Bharmoria P, Bildirir H, Moth-Poulsen K. 2020. Triplet-triplet annihilation based near infrared to visible molecular photon upconversion. Chem. Soc. Rev. 49:186529–54
    [Google Scholar]
  45. 45.
    Ye C, Zhou L, Wang X, Liang Z 2016. Photon upconversion: from two-photon absorption (TPA) to triplet-triplet annihilation (TTA). Phys. Chem. Chem. Phys. 18:1610818–35
    [Google Scholar]
  46. 46.
    Zhao J, Ji S, Guo H 2011. Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv. 1:6937–50
    [Google Scholar]
  47. 47.
    Gray V, Moth-Poulsen K, Albinsson B, Abrahamsson M 2018. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362:54–71
    [Google Scholar]
  48. 48.
    Zhou J, Liu Q, Feng W, Sun Y, Li F. 2015. Upconversion luminescent materials: advances and applications. Chem. Rev. 115:1395–465
    [Google Scholar]
  49. 49.
    VanOrman ZA, Drozdick HK, Wieghold S, Nienhaus L. 2021. Bulk halide perovskites as triplet sensitizers: progress and prospects in photon upconversion. J. Mater. Chem. C 9:82685–94
    [Google Scholar]
  50. 50.
    Simon YC, Weder C. 2012. Low-power photon upconversion through triplet-triplet annihilation in polymers. J. Mater. Chem. 22:3920817–30
    [Google Scholar]
  51. 51.
    Cheng YY, Fückel B, Khoury T, Clady RGCR, Ekins-Daukes NJ et al. 2011. Entropically driven photochemical upconversion. J. Phys. Chem. A 115:61047–53
    [Google Scholar]
  52. 52.
    Wang X, Tom R, Liu X, Congreve DN, Marom N. 2020. An energetics perspective on why there are so few triplet-triplet annihilation emitters. J. Mater. Chem. C 8:3110816–24
    [Google Scholar]
  53. 53.
    Gray V, Dreos A, Erhart P, Albinsson B, Moth-Poulsen K, Abrahamsson M. 2017. Loss channels in triplet-triplet annihilation photon upconversion: importance of annihilator singlet and triplet surface shapes. Phys. Chem. Chem. Phys. 19:1710931–39
    [Google Scholar]
  54. 54.
    Olesund A, Johnsson J, Edhborg F, Ghasemi S, Moth-Poulsen K, Albinsson B 2022. Approaching the spin-statistical limit in visible-to-ultraviolet photon upconversion. J. Am. Chem. Soc. 144:83706–16
    [Google Scholar]
  55. 55.
    Olesund A, Gray V, Mårtensson J, Albinsson B. 2021. Diphenylanthracene dimers for triplet–triplet annihilation photon upconversion: mechanistic insights for intramolecular pathways and the importance of molecular geometry. J. Am. Chem. Soc. 143:155745–54
    [Google Scholar]
  56. 56.
    Gao C, Prasad SK, Zhang B, Dvořák M, Tayebjee MJ et al. 2019. Intramolecular versus intermolecular triplet fusion in multichromophoric photochemical upconversion. J. Phys. Chem. C 123:3320181–87
    [Google Scholar]
  57. 57.
    Kanoh M, Matsui Y, Honda K, Kokita Y, Ogaki T et al. 2021. Elongation of triplet lifetime caused by intramolecular energy hopping in diphenylanthracene dyads oriented to undergo efficient triplet-triplet annihilation upconversion. J. Phys. Chem. B 125:184831–37
    [Google Scholar]
  58. 58.
    Gray V, Dzebo D, Lundin A, Alborzpour J, Abrahamsson M et al. 2015. Photophysical characterization of the 9,10-disubstituted anthracene chromophore and its applications in triplet-triplet annihilation photon upconversion. J. Mater. Chem. C 3:4211111–21
    [Google Scholar]
  59. 59.
    Fallon KJ, Churchill EM, Sanders SN, Shee J, Weber JL et al. 2020. Molecular engineering of chromophores to enable triplet–triplet annihilation upconversion. J. Am. Chem. Soc. 142:4719917–25
    [Google Scholar]
  60. 60.
    Radiunas E, Raišys S, Juršenas S, Jozeliunaite A, Javorskis T et al. 2020. Understanding the limitations of NIR-to-visible photon upconversion in phthalocyanine-sensitized rubrene systems. J. Mater. Chem. C 8:165525–34
    [Google Scholar]
  61. 61.
    Radiunas E, Dapkevičus M, Raišys S, Juršenas S, Jozeliunaite A et al. 2020. Impact of t-butyl substitution in a rubrene emitter for solid state NIR-to-visible photon upconversion. Phys. Chem. Chem. Phys. 22:147392–403
    [Google Scholar]
  62. 62.
    Radiunas E, Dapkevičus M, Naimovičus L, Baronas P, Raišys S et al. 2021. NIR-to-vis photon upconversion in rubrenes with increasing structural complexity. J. Mater. Chem. C 9:124359–66
    [Google Scholar]
  63. 63.
    Ye C, Gray V, Kushwaha K, Singh SK, Erhart P, Börjesson K 2020. Optimizing photon upconversion by decoupling excimer formation and triplet triplet annihilation. Phys. Chem. Chem. Phys. 22:31715–20
    [Google Scholar]
  64. 64.
    Danos A, MacQueen RW, Cheng YY, Dvořák M, Darwish TA et al. 2015. Deuteration of perylene enhances photochemical upconversion efficiency. J. Phys. Chem. Lett. 6:153061–66
    [Google Scholar]
  65. 65.
    Singh-Rachford TN, Castellano FN 2009. Low power visible-to-UV upconversion. J. Phys. Chem. A 113:205912–17
    [Google Scholar]
  66. 66.
    Marian CM. 2021. Understanding and controlling intersystem crossing in molecules. Annu. Rev. Phys. Chem. 72:617–40
    [Google Scholar]
  67. 67.
    Lower SK, El-Sayed MA. 1966. The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 66:2199–241
    [Google Scholar]
  68. 68.
    Fan C, Wei L, Niu T, Rao M, Cheng G et al. 2019. Efficient triplet–triplet annihilation upconversion with an anti-Stokes shift of 1.08 eV achieved by chemically tuning sensitizers. J. Am. Chem. Soc. 141:3815070–77
    [Google Scholar]
  69. 69.
    Aulin YV, van Sebille M, Moes M, Grozema FC. 2015. Photochemical upconversion in metal-based octaethyl porphyrin–diphenylanthracene systems. RSC Adv. 5:130107896–903
    [Google Scholar]
  70. 70.
    Gray V, Allardice JR, Zhang Z, Rao A. 2021. Organic-quantum dot hybrid interfaces and their role in photon fission/fusion applications. Chem. Phys. Rev. 2:3031305
    [Google Scholar]
  71. 71.
    Gholizadeh EM, Frazer L, MacQueen RW, Gallaher JK, Schmidt TW. 2018. Photochemical upconversion is suppressed by high concentrations of molecular sensitizers. Phys. Chem. Chem. Phys. 20:2919500–6
    [Google Scholar]
  72. 72.
    Wu M, Congreve DN, Wilson MWB, Jean J, Geva N et al. 2016. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10:131–34
    [Google Scholar]
  73. 73.
    Huang Z, Li X, Mahboub M, Hanson KM, Nichols VM et al. 2015. Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15:85552–57
    [Google Scholar]
  74. 74.
    Nienhaus L, Wu M, Geva N, Shepherd JJ, Wilson MWB et al. 2017. Speed limit for triplet-exciton transfer in solid-state PbS nanocrystal-sensitized photon upconversion. ACS Nano 11:87848–57
    [Google Scholar]
  75. 75.
    Nishimura N, Allardice JR, Xiao J, Gu Q, Gray V, Rao A. 2019. Photon upconversion utilizing energy beyond the band gap of crystalline silicon with a hybrid TES-ADT/PbS quantum dots system. Chem. Sci. 10:184750–60
    [Google Scholar]
  76. 76.
    Tripathi N, Ando M, Akai T, Kamada K. 2022. Near-infrared-to-visible upconversion from 980 nm excitation band by binary solid of PbS quantum dot with directly attached emitter. J. Mater. Chem. C 10:124563–67
    [Google Scholar]
  77. 77.
    Lin T-A, Perkinson CF, Baldo MA. 2020. Strategies for high-performance solid-state triplet–triplet-annihilation-based photon upconversion. Adv. Mater. 32:261908175
    [Google Scholar]
  78. 78.
    Alves J, Feng J, Nienhaus L, Schmidt TW. 2022. Challenges, progress and prospects in solid state triplet fusion upconversion. J. Mater. Chem. C 10:7783–98
    [Google Scholar]
  79. 79.
    Musser AJ, Clark J. 2019. Triplet-pair states in organic semiconductors. Annu. Rev. Phys. Chem. 70:323–51
    [Google Scholar]
  80. 80.
    Yago T, Wakasa M. 2018. A spin exchange model for singlet fission. Chem. Phys. Lett. 695:240–44
    [Google Scholar]
  81. 81.
    Wakasa M, Kaise M, Yago T, Katoh R, Wakikawa Y, Ikoma T. 2015. What can be learned from magnetic field effects on singlet fission: role of exchange interaction in excited triplet pairs. J. Phys. Chem. C 119:4625840–44
    [Google Scholar]
  82. 82.
    Yago T, Ishikawa K, Katoh R, Wakasa M. 2016. Magnetic field effects on triplet pair generated by singlet fission in an organic crystal: application of radical pair model to triplet pair. J. Phys. Chem. C 120:4927858–70
    [Google Scholar]
  83. 83.
    Bayliss SL, Weiss LR, Mitioglu A, Galkowski K, Yang Z et al. 2018. Site-selective measurement of coupled spin pairs in an organic semiconductor. PNAS 115:205077–82
    [Google Scholar]
  84. 84.
    Köhler A, Bässler H. 2009. Triplet states in organic semiconductors. Mater. Sci. Eng. R 66:4–671–109
    [Google Scholar]
  85. 85.
    Bayliss SL, Chepelianskii AD, Sepe A, Walker BJ, Ehrler B et al. 2014. Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112:23238701
    [Google Scholar]
  86. 86.
    Wang R, Zhang C, Zhang B, Liu Y, Wang X, Xiao M. 2015. Magnetic dipolar interaction between correlated triplets created by singlet fission in tetracene crystals. Nat. Commun. 6:8602
    [Google Scholar]
  87. 87.
    Weiss LR, Bayliss SL, Kraffert F, Thorley KJ, Anthony JE et al. 2017. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13:2176–81
    [Google Scholar]
  88. 88.
    Benk H, Sixl H. 1981. Theory of two coupled triplet states: application to bicarbene structures. Mol. Phys. 42:4779–801
    [Google Scholar]
  89. 89.
    Tayebjee MJ, Sanders SN, Kumarasamy E, Campos LM, Sfeir MY, McCamey DR. 2017. Quintet multiexciton dynamics in singlet fission. Nat. Phys. 13:2182–88
    [Google Scholar]
  90. 90.
    Bayliss SL, Weiss LR, Rao A, Friend RH, Chepelianskii AD, Greenham NC. 2016. Spin signatures of exchange-coupled triplet pairs formed by singlet fission. Phys. Rev. B 94:4045204
    [Google Scholar]
  91. 91.
    Taffet EJ, Beljonne D, Scholes GD. 2020. Overlap-driven splitting of triplet pairs in singlet fission. J. Am. Chem. Soc. 142:4720040–47
    [Google Scholar]
  92. 92.
    Keevers T, McCamey D. 2016. Theory of triplet-triplet annihilation in optically detected magnetic resonance. Phys. Rev. B 93:4045210
    [Google Scholar]
  93. 93.
    Bossanyi DG, Sasaki Y, Wang S, Chekulaev D, Kimizuka N et al. 2021. Spin statistics for triplet–triplet annihilation upconversion: exchange coupling, intermolecular orientation, and reverse intersystem crossing. JACS Au 1:122188–201
    [Google Scholar]
  94. 94.
    Johnson R, Merrifield R. 1970. Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B 1:2896–902
    [Google Scholar]
  95. 95.
    Burdett JJ, Piland GB, Bardeen CJ. 2013. Magnetic field effects and the role of spin states in singlet fission. Chem. Phys. Lett. 585:1–10
    [Google Scholar]
  96. 96.
    Mezyk J, Tubino R, Monguzzi A, Mech A, Meinardi F. 2009. Effect of an external magnetic field on the up-conversion photoluminescence of organic films: the role of disorder in triplet-triplet annihilation. Phys. Rev. Lett. 102:8087404
    [Google Scholar]
  97. 97.
    Burdett JJ, Bardeen CJ. 2012. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134:208597–607
    [Google Scholar]
  98. 98.
    Lukman S, Richter JM, Yang L, Hu P, Wu J et al. 2017. Efficient singlet fission and triplet-pair emission in a family of zethrene diradicaloids. J. Am. Chem. Soc. 139:5018376–85
    [Google Scholar]
  99. 99.
    Yong CK, Musser AJ, Bayliss SL, Lukman S, Tamura H et al. 2017. The entangled triplet pair state in acene and heteroacene materials. Nat. Commun. 8:15953
    [Google Scholar]
  100. 100.
    Chabr M, Wild U, Fünfschilling J, Zschokke-Gränacher I. 1981. Quantum beats of prompt fluorescence in tetracene crystals. Chem. Phys. 57:3425–30
    [Google Scholar]
  101. 101.
    Merrifield R. 1971. Magnetic effects on triplet exciton interactions. Pure Appl. Chem. 27:3481–98
    [Google Scholar]
  102. 102.
    Cheng YY, Khoury T, Clady RG, Tayebjee MJ, Ekins-Daukes N et al. 2010. On the efficiency limit of triplet–triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12:166–71
    [Google Scholar]
  103. 103.
    Dick B, Nickel B. 1983. Accessibility of the lowest quintet state of organic molecules through triplet-triplet annihilation; an INDO CI study. Chem. Phys. 78:11–16
    [Google Scholar]
  104. 104.
    Tang X, Pan R, Zhao X, Zhu H, Xiong Z. 2020. Achievement of high-level reverse intersystem crossing in rubrene-doped organic light-emitting diodes. J. Phys. Chem. Lett. 11:82804–11
    [Google Scholar]
  105. 105.
    Ieuji R, Goushi K, Adachi C. 2019. Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nat. Commun. 10:5283
    [Google Scholar]
  106. 106.
    Reindl S, Penzkofer A. 1996. Higher excited-state triplet-singlet intersystem crossing of some organic dyes. Chem. Phys. 211:1–3431–39
    [Google Scholar]
  107. 107.
    Xu Y, Liang X, Zhou X, Yuan P, Zhou J et al. 2019. Highly efficient blue fluorescent OLEDs based on upper level triplet–singlet intersystem crossing. Adv. Mater. 31:121807388
    [Google Scholar]
  108. 108.
    Hoseinkhani S, Tubino R, Meinardi F, Monguzzi A. 2015. Achieving the photon up-conversion thermodynamic yield upper limit by sensitized triplet–triplet annihilation. Phys. Chem. Chem. Phys. 17:64020–24
    [Google Scholar]
  109. 109.
    Tapping PC, Huang DM. 2016. Comment on “Magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene. .” J. Phys. Chem. C 120:4325151–57
    [Google Scholar]
  110. 110.
    Imperiale CJ, Green PB, Miller EG, Damrauer NH, Wilson MW. 2019. Triplet-fusion upconversion using a rigid tetracene homodimer. J. Phys. Chem. Lett. 10:237463–69
    [Google Scholar]
  111. 111.
    Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. 2020. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19:5491–502
    [Google Scholar]
  112. 112.
    Lewitzka F, Löhmannsröben HG. 1986. Investigation of triplet tetracene and triplet rubrene in solution. Z. Phys. Chem. 150:169–86
    [Google Scholar]
  113. 113.
    Song L, Fayer M. 1991. Temperature dependent intersystem crossing and triplet-triplet absorption of rubrene in solid solution. J. Luminesc. 50:275–81
    [Google Scholar]
  114. 114.
    Kondakov D, Pawlik T, Hatwar T, Spindler J. 2009. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. J. Appl. Phys. 106:12124510
    [Google Scholar]
  115. 115.
    Liu W, Ying S, Guo R, Qiao X, Leng P et al. 2019. Nondoped blue fluorescent organic light-emitting diodes based on benzonitrile-anthracene derivative with 10.06% external quantum efficiency and low efficiency roll-off. J. Mater. Chem. C 7:41014–21
    [Google Scholar]
  116. 116.
    Lampert RA, Phillips D. 1985. Photophysics of meso-substituted anthracenes. Part 2.—Temperature effects in the solution and vapour phases. Faraday Trans. 2 81:3383–93
    [Google Scholar]
  117. 117.
    Johnson R, Merrifield R, Avakian P, Flippen R. 1967. Effects of magnetic fields on the mutual annihilation of triplet excitons in molecular crystals. Phys. Rev. Lett. 19:6285–87
    [Google Scholar]
  118. 118.
    Ern V, Merrifield R. 1968. Magnetic field effect on triplet exciton quenching in organic crystals. Phys. Rev. Lett. 21:9609–11
    [Google Scholar]
  119. 119.
    Bardeen CJ. 2014. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65:127–48
    [Google Scholar]
  120. 120.
    Yarmus L, Rosenthal J, Chopp M. 1972. EPR of triplet excitions in tetracene crystals: spin polarization and the role of singlet exciton fission. Chem. Phys. Lett. 16:3477–81
    [Google Scholar]
  121. 121.
    Bayliss SL, Thorley KJ, Anthony JE, Bouchiat H, Greenham NC, Chepelianskii AD. 2015. Localization length scales of triplet excitons in singlet fission materials. Phys. Rev. B 92:11115432
    [Google Scholar]
  122. 122.
    Piland GB, Burdett JJ, Kurunthu D, Bardeen CJ. 2013. Magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene. J. Phys. Chem. C 117:31224–36
    [Google Scholar]
  123. 123.
    Iwasaki Y, Maeda K, Murai H. 2001. Time-domain observation of external magnetic field effects on the delayed fluorescence of N,N,N′,N′-tetramethyl-1, 4-phenylenediamine in alcoholic solution. J. Phys. Chem. A 105:132961–66
    [Google Scholar]
  124. 124.
    Mani T, Vinogradov SA. 2013. Magnetic field effects on triplet–triplet annihilation in solutions: modulation of visible/NIR luminescence. J. Phys. Chem. Lett. 4:172799–804
    [Google Scholar]
  125. 125.
    Gholizadeh EM, Prasad SK, Teh ZL, Ishwara T, Norman S et al. 2020. Photochemical upconversion of near-infrared light from below the silicon bandgap. Nat. Photon. 14:9585–90
    [Google Scholar]
  126. 126.
    Zarea M, Carmieli R, Ratner MA, Wasielewski MR. 2014. Spin dynamics of radical pairs with restricted geometries and strong exchange coupling: the role of hyperfine coupling. J. Phys. Chem. A 118:244249–55
    [Google Scholar]
  127. 127.
    Poorkazem K, Hesketh AV, Kelly TL. 2014. Plasmon-enhanced triplet–triplet annihilation using silver nanoplates. J. Phys. Chem. C 118:126398–404
    [Google Scholar]
  128. 128.
    Cao X, Hu B, Ding R, Zhang P. 2015. Plasmon-enhanced homogeneous and heterogeneous triplet–triplet annihilation by gold nanoparticles. Phys. Chem. Chem. Phys. 17:2214479–83
    [Google Scholar]
  129. 129.
    Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ. 2014. Aluminum for plasmonics. ACS Nano 8:1834–40
    [Google Scholar]
  130. 130.
    Christopher P, Moskovits M. 2017. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 68:379–98
    [Google Scholar]
  131. 131.
    Wu DM, García-Etxarri A, Salleo A, Dionne JA. 2014. Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5:224020–31
    [Google Scholar]
  132. 132.
    Geddes CD, Lakowicz JR. 2002. Metal-enhanced fluorescence. J. Fluoresc. 12:2121–29
    [Google Scholar]
  133. 133.
    Hertzog M, Wang M, Mony J, Börjesson K. 2019. Strong light–matter interactions: a new direction within chemistry. Chem. Soc. Rev. 48:3937–61
    [Google Scholar]
  134. 134.
    Keeling J, Kéna-Cohen S. 2020. Bose–Einstein condensation of exciton-polaritons in organic microcavities. Annu. Rev. Phys. Chem. 71:435–59
    [Google Scholar]
  135. 135.
    Byrnes T, Kim NY, Yamamoto Y. 2014. Exciton–polariton condensates. Nat. Phys. 10:11803–13
    [Google Scholar]
  136. 136.
    Deveaud B. 2015. Exciton-polariton Bose-Einstein condensates. Annu. Rev. Condens. Matter Phys. 6:155–75
    [Google Scholar]
  137. 137.
    Polak D, Jayaprakash R, Lyons TP, Martínez-Martínez , Leventis A et al. 2020. Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities. Chem. Sci. 11:2343–54
    [Google Scholar]
  138. 138.
    Ye C, Mallick S, Hertzog M, Kowalewski M, Börjesson K. 2021. Direct transition from triplet excitons to hybrid light–matter states via triplet–triplet annihilation. J. Am. Chem. Soc. 143:197501–8
    [Google Scholar]
  139. 139.
    Coehoorn R, Bobbert P, Van Eersel H. 2019. Effect of exciton diffusion on the triplet-triplet annihilation rate in organic semiconductor host-guest systems. Phys. Rev. B 99:2024201
    [Google Scholar]
  140. 140.
    Berghuis AM, Halpin A, Le-Van Q, Ramezani M, Wang S et al. 2019. Enhanced delayed fluorescence in tetracene crystals by strong light-matter coupling. Adv. Funct. Mater. 29:361901317
    [Google Scholar]
  141. 141.
    Pandya R, Chen RYS, Gu Q, Sung J, Schnedermann C et al. 2021. Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors. Nat. Commun. 12:6519
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-092722-104952
Loading
/content/journals/10.1146/annurev-physchem-092722-104952
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error