1932

Abstract

In this article, we review nonadiabatic molecular dynamics (NAMD) methods for modeling spin-crossover transitions. First, we discuss different representations of electronic states employed in the grid-based and direct NAMD simulations. The nature of interstate couplings in different representations is highlighted, with the main focus on nonadiabatic and spin-orbit couplings. Second, we describe three NAMD methods that have been used to simulate spin-crossover dynamics, including trajectory surface hopping, ab initio multiple spawning, and multiconfiguration time-dependent Hartree. Some aspects of employing different electronic structure methods to obtain information about potential energy surfaces and interstate couplings for NAMD simulations are also discussed. Third, representative applications of NAMD to spin crossovers in molecular systems of different sizes and complexities are highlighted. Finally, we pose several fundamental questions related to spin-dependent processes. These questions should be possible to address with future methodological developments in NAMD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-101419-012625
2021-04-20
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-101419-012625.html?itemId=/content/journals/10.1146/annurev-physchem-101419-012625&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Halcrow MA 2013. Spin-Crossover Materials: Properties and Applications Oxford, UK: John Wiley & Sons
    [Google Scholar]
  2. 2. 
    Swart M, Costas M 2015. Spin States in Biochemistry and Inorganic Chemistry Oxford, UK: John Wiley & Sons
    [Google Scholar]
  3. 3. 
    Penfold TJ, Gindensperger E, Daniel C, Marian CM. 2018. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118:156975–7025
    [Google Scholar]
  4. 4. 
    Harvey JN. 2014. Spin-forbidden reactions: computational insight into mechanisms and kinetics. WIREs Comput. Mol. Sci. 4:11–14
    [Google Scholar]
  5. 5. 
    Shaik S. 2020. Two-state reactivity: personal recounting of its conception and future prospects. Isr. J. Chem. 60:10–11938–56
    [Google Scholar]
  6. 6. 
    Agostini F, Curchod BFE. 2019. Different flavors of nonadiabatic molecular dynamics. WIREs Comput. Mol. Sci. 9:5e1417
    [Google Scholar]
  7. 7. 
    Lykhin AO, Kaliakin DS, DePolo GE, Kuzubov AA, Varganov SA. 2016. Nonadiabatic transition state theory: application to intersystem crossings in the active sites of metal-sulfur proteins. Int. J. Quantum Chem. 116:10750–61
    [Google Scholar]
  8. 8. 
    Jasper AW. 2015. Multidimensional effects in nonadiabatic statistical theories of spin-forbidden kinetics: a case study of 3O + CO → CO2. J. Phys. Chem. A 119:287339–51
    [Google Scholar]
  9. 9. 
    Harvey JN. 2007. Understanding the kinetics of spin-forbidden chemical reactions. Phys. Chem. Chem. Phys. 9:3331–43
    [Google Scholar]
  10. 10. 
    Lykhin AO, Varganov SA. 2020. Intersystem crossing in tunneling regime: T1 → S0 relaxation in thiophosgene. Phys. Chem. Chem. Phys. 22:105500–8
    [Google Scholar]
  11. 11. 
    Pokhilko P, Shannon R, Glowacki D, Wang H, Krylov AI. 2019. Spin-forbidden channels in reactions of unsaturated hydrocarbons with O(3P). J. Phys. Chem. A 123:2482–91
    [Google Scholar]
  12. 12. 
    Kaliakin DS, Fedorov DG, Alexeev Y, Varganov SA. 2019. Locating minimum energy crossings of different spin states using the fragment molecular orbital method. J. Chem. Theory Comput. 15:116074–84
    [Google Scholar]
  13. 13. 
    Granucci G, Persico M, Spighi G. 2012. Surface hopping trajectory simulations with spin-orbit and dynamical couplings. J. Chem. Phys. 137:2222A501
    [Google Scholar]
  14. 14. 
    Mai S, Marquetand P, González L. 2015. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem. 115:181215–31
    [Google Scholar]
  15. 15. 
    Mead CA, Truhlar DG. 1982. Conditions for the definition of a strictly diabatic electronic basis for molecular systems. J. Chem. Phys. 77:126090–98
    [Google Scholar]
  16. 16. 
    Tully JC. 1998. Mixed quantum-classical dynamics. Faraday Discuss 110:407–19
    [Google Scholar]
  17. 17. 
    Tully JC, Preston RK. 1971. Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2. J. Chem. Phys. 55:2562–72
    [Google Scholar]
  18. 18. 
    Barbatti M. 2011. Nonadiabatic dynamics with trajectory surface hopping method. WIREs Comput. Mol. Sci. 1:4620–33
    [Google Scholar]
  19. 19. 
    Wang L, Akimov A, Prezhdo OV. 2016. Recent progress in surface hopping: 2011–2015. J. Phys. Chem. Lett. 7:112100–12
    [Google Scholar]
  20. 20. 
    Marquetand P, Richter M, González-Vázquez J, Sola I, González L. 2011. Nonadiabatic ab initio molecular dynamics including spin-orbit coupling and laser fields. Faraday Discuss 153:261–73
    [Google Scholar]
  21. 21. 
    Persico M, Granucci G. 2014. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 133:91526
    [Google Scholar]
  22. 22. 
    Crespo-Otero R, Barbatti M 2018. Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem. Rev. 118:157026–68
    [Google Scholar]
  23. 23. 
    Richter M, Marquetand P, González-Vázquez J, Sola I, González L. 2011. SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J. Chem. Theory Comput. 7:51253–58
    [Google Scholar]
  24. 24. 
    Cui G, Thiel W. 2014. Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. J. Chem. Phys. 141:12124101
    [Google Scholar]
  25. 25. 
    Martínez-Fernández L, Corral I, Granucci G, Persico M. 2014. Competing ultrafast intersystem crossing and internal conversion: a time resolved picture for the deactivation of 6-thioguanine. Chem. Sci. 5:41336–47
    [Google Scholar]
  26. 26. 
    Zaari RR, Varganov SA. 2015. Nonadiabatic transition state theory and trajectory surface hopping dynamics: intersystem crossing between 3B1 and 1A1 states of SiH2. J. Phys. Chem. A 119:81332–38
    [Google Scholar]
  27. 27. 
    Favero L, Granucci G, Persico M. 2013. Dynamics of acetone photodissociation: a surface hopping study. Phys. Chem. Chem. Phys. 15:4720651–61
    [Google Scholar]
  28. 28. 
    Marian CM 2001. Spin-orbit coupling in molecules. Reviews in Computational Chemistry, Vol. 17 KB Lipkowitz, DB Boyd 99–204 New York: John Wiley & Sons
    [Google Scholar]
  29. 29. 
    Fedorov DG, Koseki S, Schmidt MW, Gordon MS. 2003. Spin-orbit coupling in molecules: chemistry beyond the adiabatic approximation. Int. Rev. Phys. Chem. 22:3551–92
    [Google Scholar]
  30. 30. 
    Sun L, Hase WL. 2010. Comparisons of classical and Wigner sampling of transition state energy levels for quasiclassical trajectory chemical dynamics simulations. J. Chem. Phys. 133:4044313
    [Google Scholar]
  31. 31. 
    Barbatti M, Sen K. 2016. Effects of different initial condition samplings on photodynamics and spectrum of pyrrole. Int. J. Quantum Chem. 116:10762–71
    [Google Scholar]
  32. 32. 
    Tully JC. 1990. Molecular dynamics with electronic transitions. J. Chem. Phys. 93:21061–71
    [Google Scholar]
  33. 33. 
    Hammes-Schiffer S, Tully JC. 1994. Proton transfer in solution: molecular dynamics with quantum transitions. J. Chem. Phys. 101:64657–67
    [Google Scholar]
  34. 34. 
    Jasper AW, Stechmann SN, Truhlar DG. 2002. Fewest-switches with time uncertainty: a modified trajectory surface-hopping algorithm with better accuracy for classically forbidden electronic transitions. J. Chem. Phys. 116:135424–31
    [Google Scholar]
  35. 35. 
    Hu W, Lendvay G, Maiti B, Schatz GC. 2008. Trajectory surface hopping study of the O(3P) + ethylene reaction dynamics. J. Phys. Chem. A 112:102093–103
    [Google Scholar]
  36. 36. 
    Rajak K, Maiti B. 2014. Trajectory surface hopping study of the O(3P) + C2H2 reaction dynamics: effect of collision energy on the extent of intersystem crossing. J. Chem. Phys. 140:4044314
    [Google Scholar]
  37. 37. 
    Xu C, Yu L, Zhu C, Yu J, Cao Z 2016. Intersystem crossing-branched excited-state intramolecular proton transfer for o-nitrophenol: an ab initio on-the-fly nonadiabatic molecular dynamic simulation. Sci. Rep. 6:26768
    [Google Scholar]
  38. 38. 
    Yue L, Yu L, Xu C, Lei Y, Liu Y, Zhu C. 2017. Benchmark performance of global switching versus local switching for trajectory surface hopping molecular dynamics simulation: cistrans azobenzene photoisomerization. Chem. Phys. Chem. 18:101274–87
    [Google Scholar]
  39. 39. 
    Schwartz BJ, Bittner ER, Prezhdo OV, Rossky PJ. 1996. Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J. Chem. Phys. 104:155942–55
    [Google Scholar]
  40. 40. 
    Subotnik JE, Jain A, Landry B, Petit A, Ouyang W, Bellonzi N. 2016. Understanding the surface hopping view of electronic transitions and decoherence. Annu. Rev. Phys. Chem. 67:387–417
    [Google Scholar]
  41. 41. 
    Jasper AW, Truhlar DG. 2005. Electronic decoherence time for non-Born-Oppenheimer trajectories. J. Chem. Phys. 123:6064103
    [Google Scholar]
  42. 42. 
    Granucci G, Persico M, Zoccante A. 2010. Including quantum decoherence in surface hopping. J. Chem. Phys. 133:13134111
    [Google Scholar]
  43. 43. 
    Subotnik JE, Shenvi N. 2011. A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J. Chem. Phys. 134:2024105
    [Google Scholar]
  44. 44. 
    Shu Y, Zhang L, Mai S, Sun S, González L, Truhlar DG. 2020. Implementation of coherent switching with decay of mixing into the SHARC program. J. Chem. Theory Comput. 16:63464–75
    [Google Scholar]
  45. 45. 
    Subotnik JE, Ouyang W, Landry BR. 2013. Can we derive Tully's surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence. J. Chem. Phys. 139:21214107
    [Google Scholar]
  46. 46. 
    Wang L, Sifain AE, Prezhdo OV. 2015. Fewest switches surface hopping in Liouville space. J. Phys. Chem. Lett. 6:193827–33
    [Google Scholar]
  47. 47. 
    Kapral R. 2016. Surface hopping from the perspective of quantum-classical Liouville dynamics. Chem. Phys. 481:77–83
    [Google Scholar]
  48. 48. 
    Martens CC. 2016. Surface hopping by consensus. J. Phys. Chem. Lett. 7:132610–15
    [Google Scholar]
  49. 49. 
    Coronado E. 2020. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5:287–104
    [Google Scholar]
  50. 50. 
    Giménez-Santamarina S, Cardona-Serra S, Clemente-Juan JM, Gaita-Ariño A, Coronado E 2020. Exploiting clock transitions for the chemical design of resilient molecular spin qubits. Chem. Sci. 11:10718–28
    [Google Scholar]
  51. 51. 
    Wasielewski MR, Forbes MDE, Frank NL, Kowalski K, Scholes GD et al. 2020. Exploiting chemistry and molecular systems for quantum information science. . Nat. Rev. Chem. 4:9490–504
    [Google Scholar]
  52. 52. 
    Ullah A, Cerdá J, Baldoví JJ, Varganov SA, Aragó J, Gaita-Ariño A. 2019. In silico molecular engineering of dysprosocenium-based complexes to decouple spin energy levels from molecular vibrations. J. Phys. Chem. Lett. 10:247678–83
    [Google Scholar]
  53. 53. 
    Upadhyay S, Dargyte U, Dergachev VD, Prater RP, Varganov SA et al. 2019. Spin coherence and optical properties of alkali-metal atoms in solid parahydrogen. Phys. Rev. A 100:6063419
    [Google Scholar]
  54. 54. 
    Upadhyay S, Dargyte U, Prater RP, Dergachev VD, Varganov SA et al. 2019. Enhanced spin coherence of rubidium atoms in solid parahydrogen. Phys. Rev. B 100:2024106
    [Google Scholar]
  55. 55. 
    Heller EJ. 1981. Frozen Gaussians: a very simple semiclassical approximation. J. Chem. Phys. 75:62923–31
    [Google Scholar]
  56. 56. 
    Martinez TJ, Ben-Nun M, Levine RD. 1996. Multi-electronic-state molecular dynamics: a wave function approach with applications. J. Phys. Chem. 100:197884–95
    [Google Scholar]
  57. 57. 
    Ben-Nun M, Martínez TJ 2002. Ab initio quantum molecular dynamics. Advances in Chemical Physics I Prigogine, SA Rice 439–512 New York: John Wiley & Sons
    [Google Scholar]
  58. 58. 
    Levine BG, Coe JD, Virshup AM, Martínez TJ. 2008. Implementation of ab initio multiple spawning in the Molpro quantum chemistry package. Chem. Phys. 347:1–33–16
    [Google Scholar]
  59. 59. 
    Yang S, Martínez TJ 2011. Ab initio multiple spawning: first principles dynamics around conical intersections. Conical Intersections. Theory, Computation and Experiment W Domcke, DR Yarkony, H Köppel 347–74 Singapore: World Sci. Publ.
    [Google Scholar]
  60. 60. 
    Mignolet B, Curchod BFE. 2018. A walk through the approximations of ab initio multiple spawning. J. Chem. Phys. 148:13134110
    [Google Scholar]
  61. 61. 
    Ibele LM, Nicolson A, Curchod BFE. 2020. Excited-state dynamics of molecules with classically driven trajectories and Gaussians. Mol. Phys. 118:8e1665199
    [Google Scholar]
  62. 62. 
    Fedorov DA, Pruitt SR, Keipert K, Gordon MS, Varganov SA. 2016. Ab initio multiple spawning method for intersystem crossing dynamics: spin-forbidden transitions between 3B1 and 1A1 states of GeH2. J. Phys. Chem. A 120:182911–19
    [Google Scholar]
  63. 63. 
    Fedorov DA, Lykhin AO, Varganov SA. 2018. Predicting intersystem crossing rates with AIMS-DFT molecular dynamics. J. Phys. Chem. A 122:133480–88
    [Google Scholar]
  64. 64. 
    Curchod BFE, Rauer C, Marquetand P, González L, Martínez TJ. 2016. Communication: GAIMS—Generalized Ab Initio Multiple Spawning for both internal conversion and intersystem crossing processes. J. Chem. Phys. 144:10101102
    [Google Scholar]
  65. 65. 
    Martínez TJ, Levine RD. 1997. Non-adiabatic molecular dynamics: split-operator multiple spawning with applications to photodissociation. J. Chem. Soc. Faraday Trans. 93:5941–47
    [Google Scholar]
  66. 66. 
    Yang S, Coe JD, Kaduk B, Martínez TJ. 2009. An “optimal” spawning algorithm for adaptive basis set expansion in nonadiabatic dynamics. J. Chem. Phys. 130:13134113
    [Google Scholar]
  67. 67. 
    Hack MD, Wensmann AM, Truhlar DG, Ben-Nun M, Martínez TJ. 2001. Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically nonadiabatic dynamics. J. Chem. Phys. 115:31172–86
    [Google Scholar]
  68. 68. 
    Curchod BFE, Glover WJ, Martínez TJ. 2020. SSAIMS—stochastic-selection ab initio multiple spawning for efficient nonadiabatic molecular dynamics. J. Phys. Chem. A 124:306133–43
    [Google Scholar]
  69. 69. 
    Meyer H-D, Manthe U, Cederbaum LS. 1990. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165:173–78
    [Google Scholar]
  70. 70. 
    Manthe U, Meyer H-D, Cederbaum LS. 1992. Wave-packet dynamics within the multiconfiguration Hartree framework: general aspects and application to NOCl. J. Chem. Phys. 97:53199–213
    [Google Scholar]
  71. 71. 
    Beck M, Jäckle A, Worth GA, Meyer H-D. 2000. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324:11–105
    [Google Scholar]
  72. 72. 
    Meyer H-D. 2012. Studying molecular quantum dynamics with the multiconfiguration time-dependent Hartree method. WIREs Comput. Mol. Sci. 2:2351–74
    [Google Scholar]
  73. 73. 
    Vendrell O, Meyer H-D. 2011. Multilayer multiconfiguration time-dependent Hartree method: implementation and applications to a Henon-Heiles Hamiltonian and to pyrazine. J. Chem. Phys. 134:4044135
    [Google Scholar]
  74. 74. 
    Wang H, Thoss M. 2003. Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119:31289–99
    [Google Scholar]
  75. 75. 
    Manthe U. 2008. A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. J. Chem. Phys. 128:16164116
    [Google Scholar]
  76. 76. 
    Wang H, Thoss M. 2008. From coherent motion to localization: dynamics of the spin-boson model at zero temperature. New J. Phys. 10:11115005
    [Google Scholar]
  77. 77. 
    Worth GA, Robb MA, Burghardt I. 2004. A novel algorithm for non-adiabatic direct dynamics using variational Gaussian wavepackets. Faraday Discuss 127:307–23
    [Google Scholar]
  78. 78. 
    Richings GW, Polyak I, Spinlove KE, Worth GA, Burghardt I, Lasorne B. 2015. Quantum dynamics simulations using Gaussian wavepackets: the vMCG method. Int. Rev. Phys. Chem. 34:2269–308
    [Google Scholar]
  79. 79. 
    Lasorne B, Robb MA, Worth GA. 2007. Direct quantum dynamics using variational multi-configuration Gaussian wavepackets. Implementation details and test case. Phys. Chem. Chem. Phys. 9:253210–27
    [Google Scholar]
  80. 80. 
    Burghardt I, Meyer H-D, Cederbaum LS. 1999. Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J. Chem. Phys. 111:72927–39
    [Google Scholar]
  81. 81. 
    Worth GA, Meyer H-D, Köppel H, Cederbaum LS, Burghardt I. 2008. Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic dynamics. Int. Rev. Phys. Chem. 27:3569–606
    [Google Scholar]
  82. 82. 
    Mukherjee B, Naskar K, Mukherjee S, Ghosh S, Sahoo T, Adhikari S. 2019. Beyond Born-Oppenheimer theory for spectroscopic and scattering processes. Int. Rev. Phys. Chem. 38:3–4287–341
    [Google Scholar]
  83. 83. 
    Naskar K, Mukherjee S, Mukherjee B, Ravi S, Mukherjee S et al. 2020. ADT: a generalized algorithm and program for beyond Born-Oppenheimer equations of “N” dimensional sub-Hilbert space. J. Chem. Theory Comput. 16:31666–80
    [Google Scholar]
  84. 84. 
    Baer M. 2006. Beyond Born-Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  85. 85. 
    Köppel H, Domcke W, Cederbaum LS 2007. Multimode molecular dynamics beyond the Born-Oppenheimer approximation. Advances in Chemical Physics, Vol. 57 I Prigogine, S Rice 59–246 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  86. 86. 
    Lévêque C, Taïeb R, Köppel H. 2014. Communication: Theoretical prediction of the importance of the 3B2 state in the dynamics of sulfur dioxide. J. Chem. Phys. 140:9091101
    [Google Scholar]
  87. 87. 
    Penfold TJ, Spesyvtsev R, Kirkby OM, Minns RS, Parker DSN et al. 2012. Quantum dynamics study of the competing ultrafast intersystem crossing and internal conversion in the “channel 3” region of benzene. J. Chem. Phys. 137:20204310
    [Google Scholar]
  88. 88. 
    Capano G, Chergui M, Rothlisberger U, Tavernelli I, Penfold TJ. 2014. A quantum dynamics study of the ultrafast relaxation in a prototypical Cu(I)-phenanthroline. J. Phys. Chem. A 118:429861–69
    [Google Scholar]
  89. 89. 
    Eng J, Gourlaouen C, Gindensperger E, Daniel C. 2015. Spin-vibronic quantum dynamics for ultrafast excited-state processes. Acc. Chem. Res. 48:3809–17
    [Google Scholar]
  90. 90. 
    Falahati K, Tamura H, Burghardt I, Huix-Rotllant M. 2018. Ultrafast carbon monoxide photolysis and heme spin-crossover in myoglobin via nonadiabatic quantum dynamics. Nat. Commun. 9:4502
    [Google Scholar]
  91. 91. 
    Domcke W, Mishra S, Poluyanov LV. 2006. The relativistic E × E Jahn-Teller effect revisited. Chem. Phys. 322:3405–10
    [Google Scholar]
  92. 92. 
    Poluyanov LV, Domcke W. 2008. The 3E × E, 4E × E and 5E × E Jahn-Teller Hamiltonians of trigonal systems. Chem. Phys. 352:1–3125–34
    [Google Scholar]
  93. 93. 
    Mondal P, Opalka D, Poluyanov LV, Domcke W. 2011. Jahn-Teller and spin-orbit coupling effects in transition-metal trifluorides. Chem. Phys. 387:1–356–65
    [Google Scholar]
  94. 94. 
    Weike T, Eisfeld W. 2016. Development of multi-mode diabatic spin-orbit models at arbitrary order. J. Chem. Phys. 144:10104108
    [Google Scholar]
  95. 95. 
    Poluyanov LV, Domcke W, Mishra S. 2019. Spin-orbit vibronic coupling in 4Π states of linear triatomic molecules. J. Chem. Phys. 151:13134103
    [Google Scholar]
  96. 96. 
    Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F et al. 2018. Multireference approaches for excited states of molecules. Chem. Rev. 118:157293–361
    [Google Scholar]
  97. 97. 
    Mai S, Atkins AJ, Plasser F, González L. 2019. The influence of the electronic structure method on intersystem crossing dynamics. The case of thioformaldehyde. J. Chem. Theory Comput. 15:63470–80
    [Google Scholar]
  98. 98. 
    Conte R, Qu C, Houston PL, Bowman JM. 2020. Efficient generation of permutationally invariant potential energy surfaces for large molecules. J. Chem. Theory Comput. 16:53264–72
    [Google Scholar]
  99. 99. 
    Zhu X, Yarkony DR. 2014. Fitting coupled potential energy surfaces for large systems: method and construction of a 3-state representation for phenol photodissociation in the full 33 internal degrees of freedom using multireference configuration interaction determined data. J. Chem. Phys. 140:2024112
    [Google Scholar]
  100. 100. 
    Shen Y, Yarkony DR. 2020. Construction of quasi-diabatic Hamiltonians that accurately represent ab initio determined adiabatic electronic states coupled by conical intersections for systems on the order of 15 atoms. Application to cyclopentoxide photoelectron detachment in the full 39 degrees of freedom. J. Phys. Chem. A 124:224539–48
    [Google Scholar]
  101. 101. 
    Casanova D, Krylov AI. 2020. Spin-flip methods in quantum chemistry. Phys. Chem. Chem. Phys. 22:84326–42
    [Google Scholar]
  102. 102. 
    Schmidt MW, Gordon MS. 1998. The construction and interpretation of MCSCF wavefunctions. Annu. Rev. Phys. Chem. 49:233–66
    [Google Scholar]
  103. 103. 
    Frutos LM, Andruniow T, Santoro F, Ferre N, Olivucci M 2007. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. PNAS 104:197764–69
    [Google Scholar]
  104. 104. 
    Snyder JW, Parrish RM, Martínez TJ. 2017. α-CASSCF: an efficient, empirical correction for SA-CASSCF to closely approximate MS-CASPT2 potential energy surfaces. J. Phys. Chem. Lett. 8:112432–37
    [Google Scholar]
  105. 105. 
    Granucci G, Toniolo A. 2000. Molecular gradients for semiempirical CI wavefunctions with floating occupation molecular orbitals. Chem. Phys. Lett. 325:1–379–85
    [Google Scholar]
  106. 106. 
    Hollas D, Šištík L, Hohenstein EG, Martínez TJ, Slavíček P. 2018. Nonadiabatic ab initio molecular dynamics with the floating occupation molecular orbital-complete active space configuration interaction method. J. Chem. Theory Comput. 14:1339–50
    [Google Scholar]
  107. 107. 
    Peng W-T, Levine BG. 2019. Ab initio molecular dynamics study of the interaction between defects during nonradiative recombination. J. Phys. Chem. C 123:2716588–95
    [Google Scholar]
  108. 108. 
    Marian CM. 2012. Spin-orbit coupling and intersystem crossing in molecules. WIREs Comput. Mol. Sci. 2:2187–203
    [Google Scholar]
  109. 109. 
    Nakajima T, Hirao K. 2012. The Douglas-Kroll-Hess approach. Chem. Rev. 112:1385–402
    [Google Scholar]
  110. 110. 
    Roos BO, Malmqvist P. 2004. Relativistic quantum chemistry: the multiconfigurational approach. Phys. Chem. Chem. Phys. 6:112919–27
    [Google Scholar]
  111. 111. 
    Berning A, Schweizer M, Werner H-J, Knowles PJ, Palmieri P. 2000. Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions. Mol. Phys. 98:211823–33
    [Google Scholar]
  112. 112. 
    Franco de Carvalho F, Curchod BFE, Penfold TJ, Tavernelli I. 2014. Derivation of spin-orbit couplings in collinear linear-response TDDFT: a rigorous formulation. J. Chem. Phys. 140:14144103
    [Google Scholar]
  113. 113. 
    Chiodo SG, Leopoldini M. 2014. MolSOC: a spin–orbit coupling code. Comput. Phys. Commun. 185:2676–83
    [Google Scholar]
  114. 114. 
    Li Z, Suo B, Zhang Y, Xiao Y, Liu W 2013. Combining spin-adapted open-shell TD-DFT with spin-orbit coupling. Mol. Phys. 111:243741–55
    [Google Scholar]
  115. 115. 
    Neese F. 2005. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 122:3034107
    [Google Scholar]
  116. 116. 
    Pokhilko P, Epifanovsky E, Krylov AI. 2019. General framework for calculating spin-orbit couplings using spinless one-particle density matrices: theory and application to the equation-of-motion coupled-cluster wave functions. J. Chem. Phys. 151:3034106
    [Google Scholar]
  117. 117. 
    Forde A, Inerbaev T, Kilin D. 2018. Spinor dynamics in pristine and Mn2+-doped CsPbBr3 NC: role of spin-orbit coupling in ground- and excited-state dynamics. J. Phys. Chem. C 122:4526196–213
    [Google Scholar]
  118. 118. 
    Valentine AJS, Li X. 2019. Toward the evaluation of intersystem crossing rates with variational relativistic methods. J. Chem. Phys. 151:8084107
    [Google Scholar]
  119. 119. 
    Rosaleny LE, Zinovjev K, Tuñón I, Gaita-Ariño A. 2019. A first peek into sub-picosecond dynamics of spin energy levels in magnetic biomolecules. Phys. Chem. Chem. Phys. 21:2110908–13
    [Google Scholar]
  120. 120. 
    Bellonzi N, Medders GR, Epifanovsky E, Subotnik JE. 2019. Configuration interaction singles with spin-orbit coupling: constructing spin-adiabatic states and their analytical nuclear gradients. J. Chem. Phys. 150:1014106
    [Google Scholar]
  121. 121. 
    Bellonzi N, Alguire E, Fatehi S, Shao Y, Subotnik JE. 2020. TD-DFT spin-adiabats with analytic nonadiabatic derivative couplings. J. Chem. Phys. 152:4044112
    [Google Scholar]
  122. 122. 
    Xie C, Hu X, Zhou L, Xie D, Guo H. 2013. Ab initio determination of potential energy surfaces for the first two UV absorption bands of SO2. J. Chem. Phys. 139:014305
    [Google Scholar]
  123. 123. 
    Mai S, Marquetand P, González L. 2014. Non-adiabatic and intersystem crossing dynamics in SO2. II. The role of triplet states in the bound state dynamics studied by surface-hopping simulations. J. Chem. Phys. 140:20204302
    [Google Scholar]
  124. 124. 
    Franco de Carvalho F, Tavernelli I. 2015. Nonadiabatic dynamics with intersystem crossings: a time-dependent density functional theory implementation. J. Chem. Phys. 143:22224105
    [Google Scholar]
  125. 125. 
    Plasser F, Gómez S, Menger MFSJ, Mai S, González L. 2019. Highly efficient surface hopping dynamics using a linear vibronic coupling model. Phys. Chem. Chem. Phys. 21:157–69
    [Google Scholar]
  126. 126. 
    Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N et al. 2020. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 152:15154102
    [Google Scholar]
  127. 127. 
    Fedorov DG, Gordon MS. 2000. A study of the relative importance of one and two-electron contributions to spin-orbit coupling. J. Chem. Phys. 112:135611–23
    [Google Scholar]
  128. 128. 
    Snyder JW, Curchod BFE, Martínez TJ. 2016. GPU-accelerated state-averaged complete active space self-consistent field interfaced with ab initio multiple spawning unravels the photodynamics of provitamin D3. J. Phys. Chem. Lett. 7:132444–49
    [Google Scholar]
  129. 129. 
    Mai S, Marquetand P, Richter M, González-Vázquez J, González L. 2013. Singlet and triplet excited-state dynamics study of the keto and enol tautomers of cytosine. Chem. Phys. Chem. 14:132920–31
    [Google Scholar]
  130. 130. 
    Richter M, Mai S, Marquetand P, González L. 2014. Ultrafast intersystem crossing dynamics in uracil unravelled by ab initio molecular dynamics. Phys. Chem. Chem. Phys. 16:4424423–36
    [Google Scholar]
  131. 131. 
    Crespo-Hernández CE, Martínez-Fernández L, Rauer C, Reichardt C, Mai S et al. 2015. Electronic and structural elements that regulate the excited-state dynamics in purine nucleobase derivatives. J. Am. Chem. Soc. 137:134368–81
    [Google Scholar]
  132. 132. 
    Marazzi M, Mai S, Roca-Sanjuán D, Delcey MG, Lindh R et al. 2016. Benzophenone ultrafast triplet population: revisiting the kinetic model by surface-hopping dynamics. J. Phys. Chem. Lett. 7:4622–26
    [Google Scholar]
  133. 133. 
    Atkins AJ, González L. 2017. Trajectory surface-hopping dynamics including intersystem crossing in [Ru(bpy)3]2+. J. Phys. Chem. Lett. 8:163840–45
    [Google Scholar]
  134. 134. 
    Mai S, Richter M, Marquetand P, González L. 2017. The DNA nucleobase thymine in motion—intersystem crossing simulated with surface hopping. Chem. Phys. 482:9–15
    [Google Scholar]
  135. 135. 
    Mai S, Pollum M, Martínez-Fernández L, Dunn N, Marquetand P et al. 2016. The origin of efficient triplet state population in sulfur-substituted nucleobases. Nat. Commun. 7:13077
    [Google Scholar]
  136. 136. 
    Hoffmann MR, Schatz GC. 2000. Theoretical studies of intersystem crossing effects in the O+H2 reaction. J. Chem. Phys. 113:219456–65
    [Google Scholar]
  137. 137. 
    Maiti B, Schatz GC, Lendvay G. 2004. Importance of intersystem crossing in the S(3P, 1D) + H2 → SH + H reaction. J. Phys. Chem. A 108:418772–81
    [Google Scholar]
  138. 138. 
    Czakó G, Shepler BC, Braams BJ, Bowman JM. 2009. Accurate ab initio potential energy surface, dynamics, and thermochemistry of the F + CH4 → HF + CH3 reaction. J. Chem. Phys. 130:8084301
    [Google Scholar]
  139. 139. 
    Fu B, Shepler BC, Bowman JM. 2011. Three-state trajectory surface hopping studies of the photodissociation dynamics of formaldehyde on ab initio potential energy surfaces. J. Am. Chem. Soc. 133:207957–68
    [Google Scholar]
  140. 140. 
    Fu B, Han YC, Bowman JM, Angelucci L, Balucani N et al. 2012. Intersystem crossing and dynamics in O(3P) + C2H4 multichannel reaction: experiment validates theory. PNAS 109:259733–38
    [Google Scholar]
  141. 141. 
    Balucani N, Leonori F, Casavecchia P, Fu B, Bowman JM. 2015. Crossed molecular beams and quasiclassical trajectory surface hopping studies of the multichannel nonadiabatic O(3P) + ethylene reaction at high collision energy. J. Phys. Chem. A 119:5012498–511
    [Google Scholar]
  142. 142. 
    Fumanal M, Gindensperger E, Daniel C. 2017. Ultrafast excited-state decays in [Re(CO)3(N,N)(L)]n+: nonadiabatic quantum dynamics. J. Chem. Theory Comput. 13:31293–306
    [Google Scholar]
  143. 143. 
    Alexander MH, Capecchi G, Werner H-J. 2002. Theoretical study of the validity of the Born-Oppenheimer approximation in the Cl + H2 → HCl + H reaction. Science 296:5568715–18
    [Google Scholar]
  144. 144. 
    Althorpe SC, Clary DC. 2003. Quantum scattering calculations on chemical reactions. Annu. Rev. Phys. Chem. 54:493–529
    [Google Scholar]
  145. 145. 
    Marthe U, Capecchi G, Werner HJ. 2004. The effect of spin-orbit coupling on the thermal rate constant of the H2 + Cl → H + HCl reaction. Phys. Chem. Chem. Phys. 6:215026–30
    [Google Scholar]
  146. 146. 
    Che L, Ren Z, Wang X, Dong W, Dai D et al. 2007. Breakdown of the Born-Oppenheimer approximation in the F + o-D2 → DF + D reaction. Science 317:58411061–64
    [Google Scholar]
  147. 147. 
    Alexander MH, Manolopoulos DE, Werner H-J. 2000. An investigation of the F+H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom. J. Chem. Phys. 113:2411084–100
    [Google Scholar]
  148. 148. 
    Li G, Werner H-J, Lique F, Alexander MH. 2007. New ab initio potential energy surfaces for the F + H2 reaction. J. Chem. Phys. 127:17174302
    [Google Scholar]
  149. 149. 
    Chen J, Sun Z, Zhang DH. 2015. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method. J. Chem. Phys. 142:2024303
    [Google Scholar]
  150. 150. 
    Tzeng Y-R, Alexander MH. 2004. Role of the F spin-orbit excited state in the F+HD reaction: contributions to the dynamical resonance. J. Chem. Phys. 121:115183–90
    [Google Scholar]
  151. 151. 
    Zhang Y, Xie T-X, Han K-L, Zhang JZH. 2004. The investigation of spin-orbit effect for the F(2P) + HD reaction. J. Chem. Phys. 120:136000–4
    [Google Scholar]
  152. 152. 
    Lique F, Alexander MH, Li G, Werner H-J, Nizkorodov SA et al. 2008. Evidence for excited spin-orbit state reaction dynamics in F + H2: theory and experiment. J. Chem. Phys. 128:8084313
    [Google Scholar]
  153. 153. 
    Tscherbul TV, Kłos J. 2020. Magnetic tuning of ultracold barrierless chemical reactions. Phys. Rev. Res. 2:1013117
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-101419-012625
Loading
/content/journals/10.1146/annurev-physchem-101419-012625
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error