1932

Abstract

Light-driven phenomena in organic molecular aggregates underpin several mechanisms relevant to optoelectronic applications. Modeling these processes is essential for aiding the design of new materials and optimizing optoelectronic devices. In this review, we cover the use of different atomistic models, excited-state dynamics, and transport approaches for understanding light-activated phenomena in molecular aggregates, including radiative and nonradiative decay pathways. We consider both intra- and intermolecular mechanisms and focus on the role of conical intersections as facilitators of internal conversion. We explore the use of the exciton models for Frenkel and charge transfer states and the electronic structure methods and algorithms commonly applied for excited-state dynamics. Throughout the review, we analyze the approximations employed for the simulation of internal conversion, intersystem crossing, and reverse intersystem crossing rates and analyze the molecular processes behind single fission, triplet-triplet annihilation, Dexter energy transfer, and Förster energy transfer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-102822-100945
2023-04-24
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-102822-100945.html?itemId=/content/journals/10.1146/annurev-physchem-102822-100945&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ostroverkhova O. 2016. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 116:2213279–412
    [Google Scholar]
  2. 2.
    Hestand NJ, Spano FC. 2018. Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118:157069–163
    [Google Scholar]
  3. 3.
    He B, Zhang J, Zhang J, Zhang H, Wu X et al. 2021. Clusteroluminescence from cluster excitons in small heterocyclics free of aromatic rings. Adv. Sci. 8:72004299
    [Google Scholar]
  4. 4.
    Crespo-Otero R, Mardykov A, Sanchez-Garcia E, Sander W, Barbatti M. 2014. Photo-stability of peptide-bond aggregates: N-methylformamide dimers. Phys. Chem. Chem. Phys. 16:3518877–87
    [Google Scholar]
  5. 5.
    Crespo-Otero R, Kungwan N, Barbatti M. 2015. Stepwise double excited-state proton transfer is not possible in 7-azaindole dimer. Chem. Sci. 6:105762–67
    [Google Scholar]
  6. 6.
    De Sio A, Sommer E, Nguyen XT, Groß L, Popović D et al. 2020. Intermolecular conical intersections in molecular aggregates. Nat. Nanotechnol. 16:163–68
    [Google Scholar]
  7. 7.
    Lin Z, Kabe R, Wang K, Adachi C 2020. Influence of energy gap between charge-transfer and locally excited states on organic long persistence luminescence. Nat. Commun. 11:1191
    [Google Scholar]
  8. 8.
    Ito A, Meyer TJ. 2012. The golden rule. Application for fun and profit in electron transfer, energy transfer, and excited-state decay. Phys. Chem. Chem. Phys. 14:4013731–45
    [Google Scholar]
  9. 9.
    Rivera M, Dommett M, Crespo-Otero R. 2019. ONIOM(QM:QM′) electrostatic embedding schemes for photochemistry in molecular crystals. J. Chem. Theory Comput. 15:42504–16
    [Google Scholar]
  10. 10.
    Kasha M, Rawls HR, El-Bayoumi MA. 1965. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11:3–4371–92
    [Google Scholar]
  11. 11.
    You ZQ, Hsu CP. 2014. Theory and calculation for the electronic coupling in excitation energy transfer. Int. J. Quantum Chem. 114:2102–15
    [Google Scholar]
  12. 12.
    Aragó J, Troisi A. 2015. Dynamics of the excitonic coupling in organic crystals. Phys. Rev. Lett. 114:2026402
    [Google Scholar]
  13. 13.
    Tamura H. 2016. Diabatization for time-dependent density functional theory: exciton transfers and related conical intersections. J. Phys. Chem. A 120:469341–47
    [Google Scholar]
  14. 14.
    Sisto A, Glowacki DR, Martinez TJ. 2014. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework. Acc. Chem. Res. 47:92857–66
    [Google Scholar]
  15. 15.
    Rivera M, Dommett M, Sidat A, Rahim W, Crespo-Otero R. 2020. fromage: A library for the study of molecular crystal excited states at the aggregate scale. J. Comput. Chem. 41:1045–58
    [Google Scholar]
  16. 16.
    Hernández FJ, Crespo-Otero R. 2021. Excited state mechanisms in crystalline carbazole: the role of aggregation and isomeric defects. J. Mater. Chem. C 9:3511882–92
    [Google Scholar]
  17. 17.
    Hegger R, Binder R, Burghardt I. 2020. First-principles quantum and quantum-classical simulations of exciton diffusion in semiconducting polymer chains at finite temperature. J. Chem. Theory Comput. 16:95441–55
    [Google Scholar]
  18. 18.
    Popp W, Brey D, Binder R, Burghardt I. 2021. Quantum dynamics of exciton transport and dissociation in multichromophoric systems. Annu. Rev. Phys. Chem. 72:591–616
    [Google Scholar]
  19. 19.
    Difley S, Van Voorhis T. 2011. Exciton/charge-transfer electronic couplings in organic semiconductors. J. Chem. Theory Comput. 7:3594–601
    [Google Scholar]
  20. 20.
    Kaduk B, Kowalczyk T, Van Voorhis T. 2012. Constrained density functional theory. Chem. Rev. 112:1321–70
    [Google Scholar]
  21. 21.
    Li X, Parrish RM, Liu F, Kokkila Schumacher SIL, Martínez TJ 2017. An ab initio exciton model including charge-transfer excited states. J. Chem. Theory Comput. 13:83493–504
    [Google Scholar]
  22. 22.
    Cupellini L, Caprasecca S, Guido CA, Müh F, Renger T, Mennucci B. 2018. Coupling to charge transfer states is the key to modulate the optical bands for efficient light harvesting in purple bacteria. J. Phys. Chem. Lett. 9:236892–99
    [Google Scholar]
  23. 23.
    Green JA, Asha H, Santoro F, Improta R. 2021. Excitonic model for strongly coupled multichromophoric systems: the electronic circular dichroism spectra of guanine quadruplexes as test cases. J. Chem. Theory Comput. 17:1405–15
    [Google Scholar]
  24. 24.
    Li X, Parrish RM, Martínez TJ. 2020. An ab initio exciton model for singlet fission. J. Chem. Phys. 153:18184116
    [Google Scholar]
  25. 25.
    Morrison AF, You ZQ, Herbert JM. 2014. Ab initio implementation of the Frenkel–Davydov exciton model: a naturally parallelizable approach to computing collective excitations in crystals and aggregates. J. Chem. Theory Comput. 10:125366–76
    [Google Scholar]
  26. 26.
    An Z, Zheng C, Tao Y, Chen R, Shi H et al. 2015. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 14:7685–90
    [Google Scholar]
  27. 27.
    Sun C, Ran X, Wang X, Cheng Z, Wu Q et al. 2018. Twisted molecular structure on tuning ultralong organic phosphorescence. J. Phys. Chem. Lett. 9:2335–39
    [Google Scholar]
  28. 28.
    González L, Escudero D, Serrano-Andrés L. 2012. Progress and challenges in the calculation of electronic excited states. Chem. Phys. Chem. 13:128–51
    [Google Scholar]
  29. 29.
    Crespo-Otero R, Barbatti M 2018. Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics. Chem. Rev. 118:157026–68
    [Google Scholar]
  30. 30.
    Crespo-Otero R, Blancafort L 2022. A global potential energy surface approach to the photophysics of AIEgens. Handbook of Aggregation-Induced Emission Y Tang, BZ Tang 411–54. Hoboken, NJ: Wiley
    [Google Scholar]
  31. 31.
    Kronik L, Neaton JB. 2016. Excited-state properties of molecular solids from first principles. Annu. Rev. Phys. Chem. 67:587–616
    [Google Scholar]
  32. 32.
    Dawson W, Degomme A, Stella M, Nakajima T, Ratcliff LE, Genovese L. 2022. Density functional theory calculations of large systems: interplay between fragments, observables, and computational complexity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12:3e1574
    [Google Scholar]
  33. 33.
    Levine BG, Ko C, Quenneville J, MartÍnez TJ 2006. Conical intersections and double excitations in time-dependent density functional theory. Mol. Phys. 104:5–71039–51
    [Google Scholar]
  34. 34.
    Barbatti M, Crespo-Otero R. 2016. Surface hopping dynamics with DFT excited states. Top. Curr. Chem. 368:415–44
    [Google Scholar]
  35. 35.
    Maitra NT. 2022. Double and charge-transfer excitations in time-dependent density functional theory. Annu. Rev. Phys. Chem. 73:117–40
    [Google Scholar]
  36. 36.
    Marian CM, Heil A, Kleinschmidt M. 2019. The DFT/MRCI method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 9:2e1394
    [Google Scholar]
  37. 37.
    Zhou C, Hermes MR, Wu D, Bao JJ, Pandharkar R et al. 2022. Electronic structure of strongly correlated systems: recent developments in multiconfiguration pair-density functional theory and multiconfiguration nonclassical-energy functional theory. Chem. Sci. 13:267685–706
    [Google Scholar]
  38. 38.
    Stein T, Kronik L, Baer R. 2009. Reliable prediction of charge transfer excitations in molecular complexesusing time-dependent density functional theory. J. Am. Chem. Soc. 131:82818–20
    [Google Scholar]
  39. 39.
    Manna AK, Refaely-Abramson S, Reilly AM, Tkatchenko A, Neaton JB, Kronik L. 2018. Quantitative prediction of optical absorption in molecular solids from an optimally tuned screened range-separated hybrid functional. J. Chem. Theory Comput. 14:62919–29
    [Google Scholar]
  40. 40.
    Jones LO, Mosquera MA, Schatz GC, Ratner MA. 2020. Embedding methods for quantum chemistry: applications from materials to life sciences. J. Am. Chem. Soc. 142:73281–95
    [Google Scholar]
  41. 41.
    Wasserman A, Pavanello M. 2020. Quantum embedding electronic structure methods. Int. J. Quantum Chem. 120:21e26495
    [Google Scholar]
  42. 42.
    Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. 2018. Combining wave function methods with density functional theory for excited states. Chem. Rev. 118:157249–92
    [Google Scholar]
  43. 43.
    Kaplan F, Harding ME, Seiler C, Weigend F, Evers F, Van Setten MJ. 2016. Quasi-particle self-consistent GW for molecules. J. Chem. Theory Comput. 12:62528–41
    [Google Scholar]
  44. 44.
    Casanova D. 2018. Theoretical modeling of singlet fission. Chem. Rev. 118:157164–207
    [Google Scholar]
  45. 45.
    Zimmerman PM, Zhang Z, Musgrave CB. 2010. Singlet fission in pentacene through multi-exciton quantum states. Nat. Chem. 2:8648–52
    [Google Scholar]
  46. 46.
    Loos PF, Boggio-Pasqua M, Scemama A, Caffarel M, Jacquemin D. 2019. Reference energies for double excitations. J. Chem. Theory Comput. 15:31939–56
    [Google Scholar]
  47. 47.
    Stein CJ, Reiher M. 2016. Automated selection of active orbital spaces. J. Chem. Theory Comput. 12:41760–71
    [Google Scholar]
  48. 48.
    Jeong WS, Stoneburner SJ, King D, Li R, Walker A et al. 2020. Automation of active space selection for multireference methods via machine learning on chemical bond dissociation. J. Chem. Theory Comput. 16:42389–99
    [Google Scholar]
  49. 49.
    Golub P, Antalik A, Veis L, Brabec J. 2021. Machine learning-assisted selection of active spaces for strongly correlated transition metal systems. J. Chem. Theory Comput. 17:106053–72
    [Google Scholar]
  50. 50.
    Casanova D, Krylov AI. 2020. Spin-flip methods in quantum chemistry. Phys. Chem. Chem. Phys. 22:84326–42
    [Google Scholar]
  51. 51.
    Carreras A, Uranga-Barandiaran O, Castet F, Casanova D. 2019. Photophysics of molecular aggregates from excited state diabatization. J. Chem. Theory Comput. 15:42320–30
    [Google Scholar]
  52. 52.
    Shu Y, Varga Z, Kanchanakungwankul S, Zhang L, Truhlar DG. 2022. Diabatic states of molecules. J. Phys. Chem. A 126:7992–1018
    [Google Scholar]
  53. 53.
    Tamura H, Huix-Rotllant M, Burghardt I, Olivier Y, Beljonne D. 2015. First-principles quantum dynamics of singlet fission: coherent versus thermally activated mechanisms governed by molecular π stacking. Phys. Rev. Lett. 115:10107401
    [Google Scholar]
  54. 54.
    Berkelbach TC, Hybertsen MS, Reichman DR. 2014. Microscopic theory of singlet exciton fission. III. Crystalline pentacene. J. Chem. Phys. 141:7074705
    [Google Scholar]
  55. 55.
    Yao Y. 2016. Coherent dynamics of singlet fission controlled by nonlocal electron-phonon coupling. Phys. Rev. B 93:11115426
    [Google Scholar]
  56. 56.
    Akimov AV, Prezhdo OV. 2014. Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/c60 interface. J. Am. Chem. Soc. 136:41599–608
    [Google Scholar]
  57. 57.
    Duan H-G, Jha A, Li X, Tiwari V, Ye H et al. 2020. Intermolecular vibrations mediate ultrafast singlet fission. Sci. Adv. 6:38eabb0052
    [Google Scholar]
  58. 58.
    Keevers TL, McCamey DR. 2016. Theory of triplet-triplet annihilation in optically detected magnetic resonance. Phys. Rev. B 93:4045210
    [Google Scholar]
  59. 59.
    Saxena R, Meier T, Athanasopoulos S, Bässler H, Köhler A. 2020. Kinetic Monte Carlo study of triplet-triplet annihilation in conjugated luminescent materials. Phys. Rev. Appl. 14:3034050
    [Google Scholar]
  60. 60.
    Bonafé FP, Hernández FJ, Aradi B, Frauenheim T, Sánchez CG. 2018. Fully atomistic real-time simulations of transient absorption spectroscopy. J. Phys. Chem. Lett. 9:154355–59
    [Google Scholar]
  61. 61.
    Hernández FJ, Bonafé FP, Aradi B, Frauenheim T, Sánchez CG. 2019. Simulation of impulsive vibrational spectroscopy. J. Phys. Chem. A 123:102065–72
    [Google Scholar]
  62. 62.
    Cardozo TM, Galliez AP, Borges I, Plasser F, Aquino AJ et al. 2019. Dynamics of benzene excimer formation from the parallel-displaced dimer. Phys. Chem. Chem. Phys. 21:2613916–24
    [Google Scholar]
  63. 63.
    Gil ES, Granucci G, Persico M. 2021. Surface hopping dynamics with the Frenkel exciton model in a semiempirical framework. J. Chem. Theory Comput. 17:127373–83
    [Google Scholar]
  64. 64.
    Giannini S, Peng W-T, Cupellini L, Padula D, Carof A, Blumberger J. 2022. Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization. Nat. Commun. 13:12755
    [Google Scholar]
  65. 65.
    Menger MF, Plasser F, Mennucci B, González L. 2018. Surface hopping within an exciton picture. An electrostatic embedding scheme. J. Chem. Theory Comput. 14:126139–48
    [Google Scholar]
  66. 66.
    Pieroni C, Agostini F. 2021. Nonadiabatic dynamics with coupled trajectories. J. Chem. Theory Comput. 17:105969–91
    [Google Scholar]
  67. 67.
    Min SK, Agostini F, Tavernelli I, Gross EK. 2017. Ab initio nonadiabatic dynamics with coupled trajectories: a rigorous approach to quantum (de)coherence. J. Phys. Chem. Lett. 8:133048–55
    [Google Scholar]
  68. 68.
    Giannini S, Carof A, Ellis M, Yang H, Ziogos OG et al. 2019. Quantum localization and delocalization of charge carriers in organic semiconducting crystals. Nat. Commun. 10:13843
    [Google Scholar]
  69. 69.
    Giannini S, Blumberger J. 2022. Charge transport in organic semiconductors: the perspective from nonadiabatic molecular dynamics. Acc. Chem. Res. 55:6819–30
    [Google Scholar]
  70. 70.
    Peng W-T, Brey D, Giannini S, Dell'Angelo D, Burghardt I, Blumberger J. 2022. Exciton dissociation in a model organic interface: excitonic state-based surface hopping versus multiconfigurational time-dependent Hartree. J. Phys. Chem. Lett. 13:317105–12
    [Google Scholar]
  71. 71.
    Sisto A, Stross C, Van Der Kamp MW, O'Connor M, McIntosh-Smith S et al. 2017. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated: ab initio exciton model. Phys. Chem. Chem. Phys. 19:2314924–36
    [Google Scholar]
  72. 72.
    Westermayr J, Marquetand P. 2021. Machine learning for electronically excited states of molecules. Chem. Rev. 121:169873–926
    [Google Scholar]
  73. 73.
    Dral PO, Barbatti M. 2021. Molecular excited states through a machine learning lens. Nat. Rev. Chem. 5:6388–405
    [Google Scholar]
  74. 74.
    Englman R, Jortner J. 1970. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18:2145–64
    [Google Scholar]
  75. 75.
    Crespo-Otero R, Li Q, Blancafort L 2019. Exploring potential energy surfaces for aggregation-induced emission—from solution to crystal. Chem. Asian J. 14:6700–14
    [Google Scholar]
  76. 76.
    Yin S, Peng Q, Shuai Z, Fang W, Wang YH, Luo Y. 2006. Aggregation-enhanced luminescence and vibronic coupling of silole molecules from first principles. Phys. Rev. B 73:20205409
    [Google Scholar]
  77. 77.
    Niu Y, Peng Q, Deng C, Gao X, Shuai Z. 2010. Theory of excited state decays and optical spectra: application to polyatomic molecules. J. Phys. Chem. A 114:307817–31
    [Google Scholar]
  78. 78.
    Li W, Zhu L, Shi Q, Ren J, Peng Q, Shuai Z. 2017. Excitonic coupling effect on the nonradiative decay rate in molecular aggregates: formalism and application. Chem. Phys. Lett. 683:507–14
    [Google Scholar]
  79. 79.
    Luo J, Xie Z, Xie Z, Lam JW, Cheng L et al. 2001. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 18:1740–41
    [Google Scholar]
  80. 80.
    Peng Q, Shuai Z. 2021. Molecular mechanism of aggregation-induced emission. Aggregate 2:5e91
    [Google Scholar]
  81. 81.
    Leung NLC, Xie N, Yuan W, Liu Y, Wu Q et al. 2014. Restriction of intramolecular motions: the general mechanism behind aggregation-induced emission. Chem. Eur. J. 20:4715349–53
    [Google Scholar]
  82. 82.
    Yarkony DR. 1998. Conical intersections: diabolical and often misunderstood. Acc. Chem. Res. 31:8511–18
    [Google Scholar]
  83. 83.
    Stojanović L, Crespo-Otero R. 2019. Understanding aggregation induced emission in a propeller-shaped blue emitter. ChemPhotoChem 3:9907–15
    [Google Scholar]
  84. 84.
    Stojanović L, Crespo-Otero R. 2022. Emission quenching in tetraphenylfuran crystal: why this propeller-shaped molecule does not emit in the condensed phase. Molecules 27:2522
    [Google Scholar]
  85. 85.
    Dommett M, Rivera M, Crespo-Otero R. 2017. How inter- and intramolecular processes dictate aggregation-induced emission in crystals undergoing excited-state proton transfer. J. Phys. Chem. Lett. 8:6148–53
    [Google Scholar]
  86. 86.
    Peng WT, Fales BS, Shu Y, Levine BG. 2018. Dynamics of recombination: via conical intersection in a semiconductor nanocrystal. Chem. Sci. 9:3681–87
    [Google Scholar]
  87. 87.
    Duan HG, Nalbach P, Miller RJ, Thorwart M. 2019. Ultrafast energy transfer in excitonically coupled molecules induced by a nonlocal Peierls phonon. J. Phys. Chem. Lett. 10:61206–11
    [Google Scholar]
  88. 88.
    Rivera M, Stojanović L, Crespo-Otero R. 2021. Role of conical intersections on the efficiency of fluorescent organic molecular crystals. J. Phys. Chem. A 125:41012–24
    [Google Scholar]
  89. 89.
    Aldaz CR, Martinez TJ, Zimmerman PM. 2020. The mechanics of the bicycle pedal photoisomerization in crystalline cis,cis-1,4-diphenyl-1,3-butadiene. J. Phys. Chem. A 124:438897–906
    [Google Scholar]
  90. 90.
    Cavaletto SM, Keefer D, Rouxel JR, Aleotti F, Segatta F et al. 2021. Unveiling the spatial distribution of molecular coherences at conical intersections by covariance X-ray diffraction signals. PNAS 118:22e2105046118
    [Google Scholar]
  91. 91.
    Li Q, Blancafort L. 2013. A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chem. Commun. 49:535966–68
    [Google Scholar]
  92. 92.
    Musser AJ, Liebel M, Schnedermann C, Wende T, Kehoe TB et al. 2015. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11:4352–57
    [Google Scholar]
  93. 93.
    Sun K, Xu Q, Chen L, Gelin MF, Zhao Y. 2020. Temperature effects on singlet fission dynamics mediated by a conical intersection. J. Chem. Phys. 153:19194106
    [Google Scholar]
  94. 94.
    Gudem M, Kowalewski M. 2022. Triplet-triplet annihilation dynamics of naphthalene. Chemistry 28:40e202200781
    [Google Scholar]
  95. 95.
    Baryshnikov G, Minaev B, Ågren H. 2017. Theory and calculation of the phosphorescence phenomenon. Chem. Rev. 117:96500–37
    [Google Scholar]
  96. 96.
    Penfold TJ, Gindensperger E, Daniel C, Marian CM. 2018. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118:156975–7025
    [Google Scholar]
  97. 97.
    Marian CM. 2021. Understanding and controlling intersystem crossing in molecules. Annu. Rev. Phys. Chem. 72:617–40
    [Google Scholar]
  98. 98.
    Marcus RA. 1984. Nonadiabatic processes involving quantum-like and classical-like coordinates with applications to nonadiabatic electron transfers. J. Chem. Phys. 81:104494–500
    [Google Scholar]
  99. 99.
    Kasha M. 1952. Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. J. Chem. Phys. 20:171–74
    [Google Scholar]
  100. 100.
    McGlynn SP, Daigre J, Smith FJ. 1963. External heavy-atom spinorbital coupling effect. IV. Intersystem crossing. J. Chem. Phys. 39:3675–79
    [Google Scholar]
  101. 101.
    Wang J, Gu X, Ma H, Peng Q, Huang X et al. 2018. A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nat. Commun. 9:12963
    [Google Scholar]
  102. 102.
    Cai S, Shi H, Tian D, Ma H, Cheng Z et al. 2018. Enhancing ultralong organic phosphorescence by effective π-type halogen bonding. Adv. Funct. Mater. 28:91705045
    [Google Scholar]
  103. 103.
    Sidat A, Hernández FJ, Stojanović L, Misquitta AJ, Crespo-Otero R. 2022. Competition between ultralong organic phosphorescence and thermally activated delayed fluorescence in dichloro derivatives of 9-benzoylcarbazole. Phys. Chem. Chem. Phys. 24:4829437–50
    [Google Scholar]
  104. 104.
    Samanta PK, Kim D, Coropceanu V, Brédas JL. 2017. Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: impact of the nature of singlet versus triplet excited states. J. Am. Chem. Soc. 139:114042–51
    [Google Scholar]
  105. 105.
    Gan L, Gao K, Cai X, Chen D, Su SJ 2018. Achieving efficient triplet exciton utilization with large δest and nonobvious delayed fluorescence by adjusting excited state energy levels. J. Phys. Chem. Lett. 9:164725–31
    [Google Scholar]
  106. 106.
    Eng J, Penfold TJ. 2020. Understanding and designing thermally activated delayed fluorescence emitters: beyond the energy gap approximation. Chem. Rec. 20:8831–56
    [Google Scholar]
  107. 107.
    de Silva P, Kim CA, Zhu T, Van Voorhis T. 2019. Extracting design principles for efficient thermally activated delayed fluorescence (TADF) from a simple four-state model. Chem. Mater. 31:176995–7006
    [Google Scholar]
  108. 108.
    Penfold TJ, Dias FB, Monkman AP. 2018. The theory of thermally activated delayed fluorescence for organic light emitting diodes. Chem. Commun. 54:323926–35
    [Google Scholar]
  109. 109.
    Marian CM. 2011. Spin-orbit coupling and intersystem crossing in molecules. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2:2187–203
    [Google Scholar]
  110. 110.
    Ogiwara T, Wakikawa Y, Ikoma T. 2015. Mechanism of intersystem crossing of thermally activated delayed fluorescence molecules. J. Phys. Chem. A 119:143415–18
    [Google Scholar]
  111. 111.
    Perrin F. 1929. La fluorescence des solutions. Ann. Phys. 10:12169–275
    [Google Scholar]
  112. 112.
    Chen XK, Kim D, Brédas JL. 2018. Thermally activated delayed fluorescence (TADF) path toward efficient electroluminescence in purely organic materials: molecular level insight. Acc. Chem. Res. 51:92215–24
    [Google Scholar]
  113. 113.
    Godumala M, Choi S, Cho MJ, Choi DH. 2019. Recent breakthroughs in thermally activated delayed fluorescence organic light emitting diodes containing non-doped emitting layers. J. Mater. Chem. C 7:82172–98
    [Google Scholar]
  114. 114.
    Data P, Takeda Y. 2019. Recent advancements in and the future of organic emitters: TADF- and RTP-active multifunctional organic materials. Chem. Asian J. 14:101613–36
    [Google Scholar]
  115. 115.
    Singh S, Jones WJ, Siebrand W, Stoicheff BP, Schneider WG. 1965. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 42:1330–42
    [Google Scholar]
  116. 116.
    Hanna MC, Nozik AJ. 2006. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100:7 074510
    [Google Scholar]
  117. 117.
    Dexter DL. 1953. A theory of sensitized luminescence in solids. J. Chem. Phys. 21:5836–50
    [Google Scholar]
  118. 118.
    Yost SR, Lee J, Wilson MWB, Wu T, McMahon DP et al. 2014. A transferable model for singlet-fission kinetics. Nat. Chem. 6:6492–97
    [Google Scholar]
  119. 119.
    Xie X, Troisi A. 2022. Evaluating the electronic structure of coexisting excitonic and multiexcitonic states in periodic systems: significance for singlet fission. J. Chem. Theory Comput. 18:1394–405
    [Google Scholar]
  120. 120.
    Berkelbach TC, Hybertsen MS, Reichman DR. 2013. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. J. Chem. Phys. 138:11114103
    [Google Scholar]
  121. 121.
    Kepler RG, Caris JC, Avakian P, Abramson E 1963. Triplet excitons and delayed fluorescence in anthracene crystals. Phys. Rev. Lett. 10:9400–2
    [Google Scholar]
  122. 122.
    Chiang CJ, Kimyonok A, Etherington MK, Griffiths GC, Jankus V et al. 2012. Ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: the key role of triplet fusion. Adv. Funct. Mater. 23:6739–46
    [Google Scholar]
  123. 123.
    Cheng YY, Khoury T, Clady RGCR, Tayebjee MJY, Ekins-Daukes NJ et al. 2010. On the efficiency limit of triplet–triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12:166–71
    [Google Scholar]
  124. 124.
    Köhler A, Bässler H. 2009. Triplet states in organic semiconductors. Mater. Sci. Eng. R Rep. 66:4–671–109
    [Google Scholar]
  125. 125.
    Wang X, Tom R, Liu X, Congreve DN, Marom N. 2020. An energetics perspective on why there are so few triplet–triplet annihilation emitters. J. Mater. Chem. C 8:3110816–24
    [Google Scholar]
  126. 126.
    Ieuji R, Goushi K, Adachi C. 2019. Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nat. Commun. 10:15283
    [Google Scholar]
  127. 127.
    Han P, Lin C, Wang K, Qiu Y, Wu H et al. 2022. Aggregation-induced emission luminogen with excellent triplet–triplet upconversion efficiency for highly efficient non-doped blue organic light-emitting diodes. Mater. Horiz. 9:1376–82
    [Google Scholar]
  128. 128.
    Oberhofer H, Reuter K, Blumberger J. 2017. Charge transport in molecular materials: an assessment of computational methods. Chem. Rev. 117:1510319–57
    [Google Scholar]
  129. 129.
    Brédas JL, Norton JE, Cornil J, Coropceanu V. 2009. Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42:111691–99
    [Google Scholar]
  130. 130.
    Brédas JL, Beljonne D, Coropceanu V, Cornil J. 2004. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104:114971–5004
    [Google Scholar]
  131. 131.
    Brédas JL, Calbert JP, da Silva Filho DA, Cornil J 2002. Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. PNAS 99:95804–9
    [Google Scholar]
  132. 132.
    Wang Y, Ren J, Li W, Shuai Z 2022. Hybrid quantum-classical boson sampling algorithm for molecular vibrationally resolved electronic spectroscopy with Duschinsky rotation and anharmonicity. J. Phys. Chem. Lett. 13:286391–99
    [Google Scholar]
  133. 133.
    Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D et al. 2016. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15:101120–27
    [Google Scholar]
  134. 134.
    Ullah A, Dral PO. 2022. Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics. Nat. Commun. 13:11930
    [Google Scholar]
  135. 135.
    Pinheiro M, Ge F, Ferré N, Dral PO, Barbatti M. 2021. Choosing the right molecular machine learning potential. Chem. Sci. 12:4314396–413
    [Google Scholar]
  136. 136.
    Blaskovits JT, Fumanal M, Vela S, Corminboeuf C. 2020. Designing singlet fission candidates from donor–acceptor copolymers. Chem. Mater. 32:156515–24
    [Google Scholar]
  137. 137.
    Zhao K, Omar OH, Nematiaram T, Padula D, Troisi A. 2021. Novel thermally activated delayed fluorescence materials by high-throughput virtual screening: going beyond donor–acceptor design. J. Mater. Chem. C 9:93324–33
    [Google Scholar]
  138. 138.
    Zhao ZW, del Cueto M, Troisi A. 2022. Limitations of machine learning models when predicting compounds with completely new chemistries: possible improvements applied to the discovery of new non-fullerene acceptors. Digital Discov. 1:3266–76
    [Google Scholar]
  139. 139.
    Omar OH, Nematiaram T, Troisi A, Padula D. 2022. Organic materials repurposing, a data set for theoretical predictions of new applications for existing compounds. Sci. Data 9:154
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-102822-100945
Loading
/content/journals/10.1146/annurev-physchem-102822-100945
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error