1932

Abstract

Nonstatistical dynamics is important for many chemical reactions. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory of unimolecular kinetics assumes a reactant molecule maintains a statistical microcanonical ensemble of vibrational states during its dissociation so that its unimolecular dynamics are time independent. Such dynamics results when the reactant's atomic motion is chaotic or irregular. Intrinsic non-RRKM dynamics occurs when part of the reactant's phase space consists of quasiperiodic/regular motion and a bottleneck exists, so that the unimolecular rate constant is time dependent. Nonrandom excitation of a molecule may result in short-time apparent non-RRKM dynamics. For rotational activation, the 2J + 1 levels for a particular J may be highly mixed, making an active degree of freedom, or may be a good quantum number and an adiabatic degree of freedom. Nonstatistical dynamics is often important for bimolecular reactions and their intermediates and for product-energy partitioning of bimolecular and unimolecular reactions. Post–transition state dynamics is often highly complex and nonstatistical.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-112519-110208
2020-04-20
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-112519-110208.html?itemId=/content/journals/10.1146/annurev-physchem-112519-110208&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Davidson N. 1962. Statistical Mechanics New York: McGraw-Hill
    [Google Scholar]
  2. 2. 
    Lourderaj U, Hase WL. 2009. Theoretical and computational studies of non-RRKM unimolecular dynamics. J. Phys. Chem. A 113:2236–53
    [Google Scholar]
  3. 3. 
    Ma X, Hase WL. 2017. Perspective: Chemical dynamics simulations of non-statistical reaction dynamics. Philos. Trans. R. Soc. A 375:20160204
    [Google Scholar]
  4. 4. 
    Marcus RA, Rice OK. 1951. The kinetics of the recombination of methyl radicals and iodine atoms. J. Phys. Colloid Chem. 55:894–908
    [Google Scholar]
  5. 5. 
    Marcus RA. 1952. Unimolecular dissociations and free radical recombination reactions. J. Chem. Phys. 20:359–64
    [Google Scholar]
  6. 6. 
    Rosenstock HM, Wallenstein MB, Wahrhafting AL, Eyring H 1952. Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules. PNAS 38:667–78
    [Google Scholar]
  7. 7. 
    Baer T, Hase WL. 1996. Unimolecular Reaction Dynamics: Theory and Experiments New York: Oxford
    [Google Scholar]
  8. 8. 
    Farquhar IE. 1964. Ergodic Theory in Statistical Mechanics New York: Interscience
    [Google Scholar]
  9. 9. 
    Hase WL. 1986. Unimolecular and intramolecular dynamics: relationship to potential energy surface properties. J. Phys. Chem. 90:365–74
    [Google Scholar]
  10. 10. 
    Bunker DL, Hase WL. 1973. On non-RRKM unimolecular kinetics: molecules in general and CH3NC in particular. J. Chem. Phys. 59:4621–32
    [Google Scholar]
  11. 11. 
    Bunker DL. 1962. Monte Carlo calculation of triatomic dissociation rates. I. N2O and O3. J. Chem. Phys. 37:393–403
    [Google Scholar]
  12. 12. 
    Bunker DL. 1964. Monte Carlo calculations. IV. Further studies of unimolecular dissociation. J. Chem. Phys. 40:1946–57
    [Google Scholar]
  13. 13. 
    Rice OK 1930. Several remarks on the energy exchange within molecules and between molecules during collisions. Z. Phys. Chem. B 7:226. Quoted by Kassel LS. 1932. The Kinetics of Homogeneous Reactions New York: Chem. Cat.
    [Google Scholar]
  14. 14. 
    Noid DW, Koszykowski ML, Marcus RA 1977. A spectral analysis method of obtaining molecular spectra from classical trajectories. J. Chem. Phys. 67:404–8
    [Google Scholar]
  15. 15. 
    Lichtenberg AJ, Lieberman MA. 1983. Regular and Chaotic Dynamics New York: Springer-Verlag
    [Google Scholar]
  16. 16. 
    Brickmann J, Pfeiffer R, Schmidt PC 1984. The transition between regular and chaotic dynamics and its influence on the vibrational energy transfer in molecules after local preparation. Ber. Bunsenges. Phys. Chem. 88:382–97
    [Google Scholar]
  17. 17. 
    Paul AK, Kolakkandy S, Pratihar S, Hase WL 2014. Computation of intrinsic RRKM and non-RRKM unimolecular rate constants. Reaction Rate Constant Computations: Theories and Applications K Han, T Chu 494–529 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  18. 18. 
    Paranjothy M, Sun R, Paul AK, Hase WL 2013. Models for intrinsic non-RRKM dynamics. Decomposition of the SN2 intermediate Cl–CH3Br. Z. Phys. Chem. 227:1361–79
    [Google Scholar]
  19. 19. 
    Grebenshchikov SY, Schinke R, Hase WL 2003. State-specific dynamics of unimolecular dissociation. Unimolecular Kinetics Part 1. The Reaction Step NJB Green 105–242 New York: Elsevier
    [Google Scholar]
  20. 20. 
    Hase WL, Schinke R. 2005. Role of computational chemistry in the theory of unimolecular reaction rates. Theory and Applications of Computational Chemistry: The First Forty Years CE Dykstra, G Frenking, KS Kim, GE Scuseria 397–423 New York: Elsevier
    [Google Scholar]
  21. 21. 
    Crim FF. 1984. Selective excitation of unimolecular reaction dynamics. Annu. Rev. Phys. Chem. 35:659–91
    [Google Scholar]
  22. 22. 
    Rynbrandt JD, Rabinovitch BS. 1971. Direct demonstration of nonrandomization of internal energy in reacting molecules. Rate of intramolecular energy relaxation. J. Chem. Phys. 54:2275–76
    [Google Scholar]
  23. 23. 
    Rynbrandt JD, Rabinovitch BS. 1971. Intramolecular energy relaxation. Nonrandom decomposition of hexafluorobicyclopropyl. J. Phys. Chem. 75:2164–71
    [Google Scholar]
  24. 24. 
    Zhu L, Hase WL. 1990. Comparison of models for calculating the RRKM unimolecular rate constant k(E, J). Chem. Phys. Lett. 175:117–23
    [Google Scholar]
  25. 25. 
    Zhu L, Chen W, Hase WL, Kaiser EW 1993. Comparison of models for treating angular momentum in RRKM calculations with vibrator transition states. Pressure and temperature dependence of Cl + C2H2 association. J. Phys. Chem. 97:311–22
    [Google Scholar]
  26. 26. 
    Chen WC, Marcus RA. 2005. On the theory of the CO + OH reaction, including H and C kinetic isotope effects. J. Chem. Phys. 123:094307
    [Google Scholar]
  27. 27. 
    Hase WL. 1998. Some recent advances and remaining questions regarding unimolecular rate theory. Acc. Chem. Res. 31:659–65
    [Google Scholar]
  28. 28. 
    Hase WL. 1972. Theoretical critical configuration for ethane decomposition and methyl radical association. J. Chem. Phys. 57:730–33
    [Google Scholar]
  29. 29. 
    Hase WL. 1983. Variational unimolecular rate theory. Acc. Chem. Res. 16:258–64
    [Google Scholar]
  30. 30. 
    Song K, Sun L, Hase WL, Grebenshchikov SY, Schinke R 2002. Relationship between mode specific and thermal unimolecular rate constants for HOCl → OH + Cl dissociation. J. Phys. Chem. A 106:8339–44
    [Google Scholar]
  31. 31. 
    Schneider FW, Rabinovitch BS. 1962. The thermal unimolecular isomerization of methyl isocyanide. Fall-off behavior. J. Am. Chem. Soc. 84:4215–30
    [Google Scholar]
  32. 32. 
    Song K, Hase WL. 1988. Role of state specificity in the temperature and pressure dependent unimolecular rate constants for HO2 → H + O2. J. Phys. Chem. A 102:1292–96
    [Google Scholar]
  33. 33. 
    Kryvohuz M, Marcus RA. 2010. Coriolis coupling as a source of non-RRKM effects in triatomic near-symmetric top molecules: diffusive intramolecular energy exchange between rotational and vibrational degrees of freedom. J. Chem. Phys. 132:224304
    [Google Scholar]
  34. 34. 
    Kryvohuz M, Marcus RA. 2010. Coriolis coupling as a source of non-RRKM effects in ozone molecule: lifetime statistics of vibrationally excited ozone molecules. J. Chem. Phys. 132:224305
    [Google Scholar]
  35. 35. 
    Ghaderi N, Marcus RA. 2014. Bimolecular recombination reactions: K-adiabatic and K-active forms of RRKM theory, nonstatistical aspects, low-pressure rates, and time-dependent survival probabilities with application to ozone. J. Phys. Chem. A 118:10166–78
    [Google Scholar]
  36. 36. 
    Ma X, Tan X, Hase WL 2018. Effects of vibrational and rotational energies on the lifetime of the pre-reaction complex for the F + CH3I SN2 reaction. Int. J. Mass Spectrom. 429:127–35
    [Google Scholar]
  37. 37. 
    Pratihar S, Ma X, Homayoon Z, Barnes GL, Hase WL 2017. Direct chemical dynamics simulations. J. Am. Chem. Soc. 139:3570–90
    [Google Scholar]
  38. 38. 
    Miller RE. 1988. The vibrational spectroscopy and dynamics of weakly bound neutral complexes. Science 240:447–53
    [Google Scholar]
  39. 39. 
    Huang ZS, Jucks KW, Miller RE 1986. The vibrational predissociation lifetime of the HF dimer upon exciting the “free-HF” stretching vibration. J. Chem. Phys. 85:3338–41
    [Google Scholar]
  40. 40. 
    Polik WF, Guyer DR, Moore CB 1990. Stark level-crossing spectroscopy of S0 formaldehyde eigenstates at the dissociation threshold. J. Chem. Phys. 92:3453–70
    [Google Scholar]
  41. 41. 
    Dertinger S, Geers A, Kappert J, Weibrecht J, Temps F 1995. Rotation-vibration state-resolved unimolecular dynamics of highly excited CH3O(X2E). Part 3. State-specific dissociation rates from spectroscopic line profiles and time-resolved measurements. Faraday Discuss. Chem. Soc. 102:31–52
    [Google Scholar]
  42. 42. 
    Reiche F, Abel B, Beck RD, Rizzo TR 2002. Double-resonance overtone photofragment spectroscopy of trans-HONO. II. State- and time-resolved dissociation and OH-product state distributions. J. Chem. Phys. 116:10267–76
    [Google Scholar]
  43. 43. 
    Hase WL, Cho S-W, Lu D-H, Swamy KN 1989. The role of state specificity in unimolecular rate theory. Chem. Phys. 139:1–13
    [Google Scholar]
  44. 44. 
    Swamy KN, Hase WL, Garrett BC, McCurdy CW, McNutt JF 1986. Mode specificity in the model unimolecular reaction H-C-C → H + C = C. J. Phys. Chem. 90:3517–24
    [Google Scholar]
  45. 45. 
    Hase WL. 1982. Semiclassical vibrational energy levels for a model H-C-C → H + C = C Hamiltonian. J. Phys. Chem. 86:2873–79
    [Google Scholar]
  46. 46. 
    Tobiason JD, Dunlop JR, Rohlfing EA 1995. The unimolecular dissociation of HCO: a spectroscopic study of resonance energies and widths. J. Chem. Phys. 103:1448–69
    [Google Scholar]
  47. 47. 
    Wang D, Bowman JM. 1995. Complex L2 calculations of bound states and resonances of HCO and DCO. Chem. Phys. Lett. 235:277–85
    [Google Scholar]
  48. 48. 
    Weiss J, Hauschildt J, Schinke R, Hann O, Skokov S et al. 2001. The unimolecular dissociation of the OH stretching states of HOCl: comparison with experimental data. J. Chem. Phys. 115:8880–87
    [Google Scholar]
  49. 49. 
    Skokov S, Bowman JM. 1999. Variation of the resonance width of HOCl (6νOH) with total angular momentum: comparison between ab initio theory and experiment. J. Chem. Phys. 110:9789–92
    [Google Scholar]
  50. 50. 
    Hose G, Taylor HA. 1982. A quantum analog to the classical quasiperiodic motion. J. Chem. Phys. 76:5356–64
    [Google Scholar]
  51. 51. 
    Moiseyev N, Wyatt RE. 1986. Natural expansion of multimode vibrational wavefunctions. Chem. Phys. Lett. 132:396–400
    [Google Scholar]
  52. 52. 
    Waite BA, Miller WH. 1980. Model studies of mode specificity in unimolecular reaction dynamics. J. Chem. Phys. 73:3713–21
    [Google Scholar]
  53. 53. 
    Stumpf M, Dobbyn AJ, Keller H-M, Hase WL, Schinke R 1995. Quantum mechanical study of the unimolecular dissociation of HO2: a rigorous test of RRKM theory. J. Chem. Phys. 102:5867–70
    [Google Scholar]
  54. 54. 
    Dobbyn AJ, Stumpf M, Keller H-M, Schinke R 1996. Theoretical study of the unimolecular dissociation HO2 → H + O2. II. Calculation of resonance states, dissociation rates, and O2 product state distributions. J. Chem. Phys. 104:8357–81
    [Google Scholar]
  55. 55. 
    Porter CE, Thomas RG. 1956. Fluctuations of nuclear reaction widths. Phys. Rev. 104:483–91
    [Google Scholar]
  56. 56. 
    Levine RD. 1988. Fluctuations in spectral intensities and transition rates. Adv. Chem. Phys. 70:53–95
    [Google Scholar]
  57. 57. 
    Lu D-H, Hase WL. 1989. Sensitivity of unimolecular lifetime distributions and energy dependent rate constants to fluctuations in state specific rate constants. J. Chem. Phys. 90:1557–63
    [Google Scholar]
  58. 58. 
    Lu D-H, Hase WL. 1989. Monoenergetic unimolecular rate constants and their dependence on pressure and fluctuations in state-specific unimolecular rate constants. J. Phys. Chem. 93:1681–83
    [Google Scholar]
  59. 59. 
    Malpathak S, Hase WL. 2019. Unimolecular rate constants versus energy and pressure as a convolution of unimolecular lifetime and collision deactivation probabilities: analyses of intrinsic non-RRKM dynamics. J. Phys. Chem. A 123:1923–28
    [Google Scholar]
  60. 60. 
    Miller WH. 1988. Effect of fluctuations in state-specific unimolecular rate constants on the pressure dependence of the average unimolecular rate. J. Phys. Chem. 92:4261–63
    [Google Scholar]
  61. 61. 
    Hippler H, Krasteva N, Striebel F 2004. The thermal unimolecular decomposition of HCO: effects of specific rate constants on the thermal rate constant. Phys. Chem. Chem. Phys. 6:3383–88
    [Google Scholar]
  62. 62. 
    Duchovic RJ, Swamy KN, Hase WL 1984. Semiclassical vibrational eigenvalues of a three-dimensional Hamiltonian. J. Chem. Phys. 80:1462–68
    [Google Scholar]
  63. 63. 
    Wolf RJ, Hase WL. 1980. Quasiperiodic trajectories for a multidimensional anharmonic classical Hamiltonian excited above the unimolecular threshold. J. Chem. Phys. 73:3779–90
    [Google Scholar]
  64. 64. 
    Gutzwiller MC. 1990. Chaos in Classical and Quantum Mechanics New York: Springer-Verlag
    [Google Scholar]
  65. 65. 
    Jaffé C, Reinhardt WP. 1982. Uniform semiclassical quantization of regular and chaotic classical dynamics on the Hénon-Heiles surface. J. Chem. Phys. 77:5191–203
    [Google Scholar]
  66. 66. 
    Shirts RB, Reinhardt WP. 1982. Approximate constants of motion for classically chaotic vibrational dynamics: vague tori, semiclassical quantization, and classical intramolecular energy flow. J. Chem. Phys. 77:5204–17
    [Google Scholar]
  67. 67. 
    Carpenter BK. 2005. Nonstatistical dynamics in thermal reactions of polyatomic molecules. Annu. Rev. Phys. Chem. 56:57–89
    [Google Scholar]
  68. 68. 
    Hase WL. 1994. Simulations of gas-phase chemical reactions: applications to SN2 nucleophilic substitution. Science 266:998–1002
    [Google Scholar]
  69. 69. 
    Manikandan P, Zhang J, Hase WL 2012. Chemical dynamics simulations of X + CH3Y → XCH3 + Y gas-phase SN2 nucleophilic substitution reactions. Nonstatistical dynamics and nontraditional reaction mechanisms. J. Phys. Chem. A 116:3061–80
    [Google Scholar]
  70. 70. 
    Xie J, Hase WL. 2016. Rethinking the SN2 reaction. Science 352:32–33
    [Google Scholar]
  71. 71. 
    Mikosch J, Trippel S, Eichhorn C, Otto R, Lourderaj U et al. 2008. Imaging nucleophilic substitution dynamics. Science 319:183–86
    [Google Scholar]
  72. 72. 
    Vande Linde SR, Hase WL 1990. Trajectory studies of SN2 nucleophilic substitution. I. Dynamics of Cl + CH3Cl reactive collisions. J. Chem. Phys. 93:7962–80
    [Google Scholar]
  73. 73. 
    Peslherbe GH, Wang H, Hase WL 1995. Unimolecular dynamics of Cl…CH3Cl intermolecular complexes formed by Cl+CH3Cl association. J. Chem. Phys. 102:5626–35
    [Google Scholar]
  74. 74. 
    Mikosch J, Otto R, Trippel S, Eichhorn C, Weidemüller M, Wester R 2008. Inverse temperature dependent lifetimes of transient SN2 ion-dipole complexes. J. Phys. Chem. A 112:10448–52
    [Google Scholar]
  75. 75. 
    Li C, Ross P, Szulejko JE, McMahon TB 1996. High-pressure mass spectrometric investigations of the potential energy surfaces of gas-phase SN2 reactions. J. Am. Chem. Soc. 118:9360–67
    [Google Scholar]
  76. 76. 
    Wester R, Bragg AE, Davis AV, Neumark DM 2003. Time-resolved study of the symmetric SN2 reaction I + CH3I. J. Chem. Phys. 119:10032–39
    [Google Scholar]
  77. 77. 
    Ma X, Di Liberto G, Conte R, Hase WL, Ceotto M 2018. A quantum mechanical insight into SN2 reactions: semiclassical initial value representation calculations of vibrational features of the Cl⋯CH3Cl pre-reaction complex with the VENUS suite of codes. J. Chem. Phys. 149:164113
    [Google Scholar]
  78. 78. 
    Viggiano AA, Morris RA, Paschkewitz JS, Paulson JF 1992. Kinetics of the gas-phase reactions of Cl with CH3Br and CD3Br: experimental evidence for nonstatistical behavior. J. Am. Chem. Soc. 114:10477–82
    [Google Scholar]
  79. 79. 
    Craig SL, Brauman JI. 1997. Phase-shifting acceleration of ions in an ion cyclotron resonance spectrometer: kinetic energy distribution and reaction dynamics. J. Phys. Chem. A 101:4745–52
    [Google Scholar]
  80. 80. 
    Wang H, Hase WL. 1995. Statistical rate theory calculations of the Cl + CH3Br → ClCH3 + Br rate constant versus temperature, translational energy, and H(D) isotopic substitution. J. Am. Chem. Soc. 117:9347–56
    [Google Scholar]
  81. 81. 
    Tonner DS, McMahon TB. 2000. Non-statistical effects in the gas phase SN2 reaction. J. Am. Chem. Soc. 122:8783–84
    [Google Scholar]
  82. 82. 
    Wang H, Peslherbe GH, Hase WL 1994. Trajectory studies of SN2 nucleophilic substitution. 4. Intramolecular and unimolecular dynamics of the Cl—CH3Br and ClCH3—Br complexes. J. Am. Chem. Soc. 116:9644–51
    [Google Scholar]
  83. 83. 
    Osterheld TH, Brauman JI. 1993. Infrared multiple-photon dissociation of the acetone enol radical cation. Dependence of nonstatistical dissociation on internal energy. J. Am. Chem. Soc. 115:10311–16
    [Google Scholar]
  84. 84. 
    Nummela JA, Carpenter BK. 2002. Nonstatistical dynamics in deep potential wells: a quasiclassical trajectory study of methyl loss from the acetone radical cation. J. Am. Chem. Soc. 124:8512–13
    [Google Scholar]
  85. 85. 
    Quijano LMM, Singleton DA. 2011. Competition between reaction and intramolecular energy redistribution in solution: observation and nature of nonstatistical dynamics in the ozonolysis of vinyl ethers. J. Am. Chem. Soc. 133:824–27
    [Google Scholar]
  86. 86. 
    Vayner G, Addepalli SV, Song K, Hase WL 2006. Post-transition state dynamics for propene ozonolysis: intramolecular and unimolecular dynamics of molozonide. J. Chem. Phys. 125:014317
    [Google Scholar]
  87. 87. 
    Dian BC, Brown GG, Douglass KO, Pate BH 2008. Measuring picosecond isomerization kinetics via broadband microwave spectroscopy. Science 320:924–28
    [Google Scholar]
  88. 88. 
    Borchardt DB, Bauer SH. 1986. Intramolecular conversions over low barriers. VII. The aziridine inversion–intrinsically non-RRKM. J. Chem. Phys. 85:4980–88
    [Google Scholar]
  89. 89. 
    Lee CY, Pate BH. 1997. Dressed states of molecules and microwave-infrared double-resonance spectroscopic techniques employing an electric quadrupole focusing field. J. Chem. Phys. 107:10430–39
    [Google Scholar]
  90. 90. 
    McWhorter DA, Hudspeth E, Pate BH 1999. The rotational spectra of single molecular eigenstates of 2-fluoroethanol: measurement of the conformational isomerization rate at 2980 cm−1. J. Chem. Phys. 110:2000–9
    [Google Scholar]
  91. 91. 
    Baer T, Potts AR. 2000. Non-statistical chemical reactions: the isomerization over low barriers in methyl and ethyl cyclohexanones. J. Phys. Chem. A 104:9397–402
    [Google Scholar]
  92. 92. 
    Dian BC, Longarte A, Zwier TS 2002. Conformational dynamics in a dipeptide after single-mode vibrational excitation. Science 296:2369–73
    [Google Scholar]
  93. 93. 
    Evans DA, Wales DJ, Dian DC, Zwier TS 2004. The dynamics of conformational isomerization in flexible biomolecules. II. Simulating isomerizations in a supersonic free jet with master equation dynamics. J. Chem. Phys. 120:148–57
    [Google Scholar]
  94. 94. 
    Schanz R, Botan V, Hamm P 2005. A femtosecond study of the infrared-driven cis-trans isomerization of nitrous acid (HONO). J. Chem. Phys. 122:044509
    [Google Scholar]
  95. 95. 
    Malpathak S, Ma X, Hase WL 2018. Direct dynamics simulations of the unimolecular dissociation of dioxetane: probing the non-RRKM dynamics. J. Chem. Phys. 148:164309
    [Google Scholar]
  96. 96. 
    Sun R, Park K, de Jong WA, Lischka H, Windus TL, Hase WL 2012. Direct dynamics simulation of dioxetane formation and decomposition via the singlet ⋅O–O–CH2–CH2⋅ biradical: non-RRKM dynamics. J. Chem. Phys. 137:044305
    [Google Scholar]
  97. 97. 
    Lendvay G. 1997. Gateway modes in the collisional energy transfer from highly vibrationally excited CS2. J. Phys. Chem. A 101:9217–23
    [Google Scholar]
  98. 98. 
    Nguyen TL, Thorpe JH, Bross DH, Ruscic B, Stanton JF 2018. Unimolecular reaction of methyl isocyanide to acetonitrile: a high-level theoretical study. Phys. Chem. Lett. 9:2532–38
    [Google Scholar]
  99. 99. 
    Olmstead WM, Brauman JI. 1977. Gas-phase nucleophilic displacement reactions. J. Am. Chem. Soc. 99:4219–28
    [Google Scholar]
  100. 100. 
    Parson JM, Lee YT. 1972. Crossed molecular beam study of F + C2H4, C2D4. J. Chem. Phys. 56:4658–66
    [Google Scholar]
  101. 101. 
    Hase WL, Bhalla KC. 1981. A classical trajectory study of the F + C2H4 → C2H4F → H + C2H3F reaction dynamics. J. Chem. Phys. 75:2807–19
    [Google Scholar]
  102. 102. 
    Hase WL, Buckowski DG, Swamy KN 1983. Dynamics of ethyl radical decomposition. III. Effect of chemical activation versus microcanonical sampling. J. Phys. Chem. 87:2754–63
    [Google Scholar]
  103. 103. 
    Pratihar S, Muniz MCB, Ma X, Borges I Jr., Hase WL 2019. Pronounced changes in atomistic mechanisms for the Cl + CH3I SN2 reaction with increasing collision energy. Phys. Chem. Chem. Phys. 21:2039–45
    [Google Scholar]
  104. 104. 
    Carrascosa E, Meyer J, Michaelsen T, Stei M, Wester R 2018. Conservation of direct dynamics in sterically hindered SN2/E2 reactions. Chem. Sci. 9:693–701
    [Google Scholar]
  105. 105. 
    Xie J, Sun R, Siebert MR, Otto R, Wester R, Hase WL 2013. Direct dynamics simulations of the product channels and atomistic mechanisms for the OH + CH3I reaction. Comparison with experiment. J. Phys. Chem. A 117:7162–78
    [Google Scholar]
  106. 106. 
    Xie J, Kohale S, Hase WL, Ard SJ, Melko JJ et al. 2013. Temperature dependence of the OH + CH3I reaction kinetics. Experimental and simulation studies, and atomic-level dynamics. J. Phys. Chem. A 117:14019–27
    [Google Scholar]
  107. 107. 
    Lakshmanan S, Pratihar S, Hase WL 2019. Direct dynamics simulations of the CH2 +O2 reaction on the ground- and excited-state singlet surfaces. J. Phys. Chem. A 123:4360–69
    [Google Scholar]
  108. 108. 
    Sun L, Hase WL. 2004. Ab initio direct dynamics simulation of C2H5F → C2H4 + HF product energy partitioning. J. Chem. Phys. 121:8831–45
    [Google Scholar]
  109. 109. 
    Dong E, Setser DW, Hase WL, Song K 2006. Comparison of levels of electronic structure theory in direct dynamics simulations of C2H5F → HF + C2H4 product energy partitioning. J. Phys. Chem. A 110:1484–90
    [Google Scholar]
  110. 110. 
    Sun L, Park K, Song K, Setser DW, Hase WL 2006. Use of a single trajectory to study product energy partitioning in unimolecular dissociation: mass effects for halogenated alkanes. J. Chem. Phys. 124:064313
    [Google Scholar]
  111. 111. 
    Pechukas P, Light JC. 1965. On detailed balancing and statistical theories of chemical kinetics. J. Chem. Phys. 42:3281–91
    [Google Scholar]
  112. 112. 
    Klots CE. 1971. Reformulation of the quasi equilibrium theory of ionic fragmentation. J. Phys. Chem. 75:1526–32
    [Google Scholar]
  113. 113. 
    Chesnavich WJ, Bowers MT. 1977. Statistical phase space theory of polyatomic systems: rigorous energy and angular momentum conservation in reactions involving symmetric polyatomic species. J. Chem. Phys. 66:2306–15
    [Google Scholar]
  114. 114. 
    Peslherbe GH, Hase WL. 1994. A comparison of classical trajectory and statistical unimolecular rate theory calculations of Al3 decomposition. J. Chem. Phys. 101:8535–53
    [Google Scholar]
  115. 115. 
    Quack M, Troe J. 1975. Complex formation in reactive and inelastic scattering: statistical adiabatic channel model of unimolecular processes. III. Ber. Bunsenges. Phys. Chem. 79:170–83
    [Google Scholar]
  116. 116. 
    Klippenstein SJ, Marcus RA. 1989. Application of unimolecular rate theory for highly flexible transition states to the dissociation of CH2CO to CH2 and CO. J. Chem. Phys. 91:2280–92
    [Google Scholar]
  117. 117. 
    Schlegel HB, Bhalla KC, Hase WL 1982. Ab initio molecular orbital studies of H + C2H4 and F + C2H4. 2. Comparison of the energetics. J. Phys. Chem. 86:4883–88
    [Google Scholar]
  118. 118. 
    Bolton K, Hase WL, Schlegel HB, Song K 1998. A direct dynamics study of the F + C2H4 → C2H3F + H product energy distributions. Chem. Phys. Lett. 288:621–27
    [Google Scholar]
  119. 119. 
    Zhang J, Lourderaj U, Sun R, Mikosch J, Wester R, Hase WL 2013. Simulation studies of the Cl + CH3I SN2 nucleophilic substitution reaction: comparison with ion imaging experiments. J. Chem. Phys. 138:114309
    [Google Scholar]
  120. 120. 
    Lourderaj U, Park K, Hase WL 2008. Classical trajectory simulations of post-transition state dynamics. Int. Rev. Phys. Chem. 27:361–403
    [Google Scholar]
  121. 121. 
    Graul ST, Bowers MT. 1991. The nonstatistical dissociation dynamics of Cl(CH3Br): evidence for vibrational excitation in the products of gas-phase SN2 reactions. J. Am. Chem. Soc. 113:9696–97
    [Google Scholar]
  122. 122. 
    Graul ST, Bowers MT. 1994. Vibrational excitation in products of nucleophilic substitution: the dissociation of metastable X(CH3Y) in the gas phase. J. Am. Chem. Soc. 116:3875–83
    [Google Scholar]
  123. 123. 
    Barnes GL, Hase WL. 2009. Transition state analysis: bent out of shape. Nat. Chem. 1:103–4
    [Google Scholar]
  124. 124. 
    Polanyi JC. 1972. Concepts in reaction dynamics. Acc. Chem. Res. 5:161–68
    [Google Scholar]
  125. 125. 
    Liu J, Song K, Hase WL, Anderson SL 2004. Direct dynamics trajectory study of vibrational effects: Can Polanyi rules be generalized to a polyatomic system. J. Am. Chem. Soc. 126:8602–3
    [Google Scholar]
  126. 126. 
    Czakó G, Bowman JM. 2011. Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface. Science 334:343–46
    [Google Scholar]
  127. 127. 
    Jiang B, Guo H. 2013. Relative efficiency of vibrational versus translational excitation in promoting atom-diatom reactivity: rigorous examination of Polanyi's rules and proposition of sudden vector projection (SVP) model. J. Chem. Phys. 138:234104
    [Google Scholar]
  128. 128. 
    Guo H, Jiang B. 2014. The sudden vector projection method for reactivity: mode specificity and bond selectivity made simple. Acc. Chem. Res. 47:3679–85
    [Google Scholar]
  129. 129. 
    Xu L, Doubleday CE, Houk KN 2009. Dynamics of 1,3-dipolar cycloaddition reactions of diazonium betaines to acetylene and ethylene: Bending vibrations facilitate reaction. Angew. Chem. Int. Ed. 48:2746–48
    [Google Scholar]
  130. 130. 
    Quaytman SL, Schwartz SD. 2007. Reaction coordinate of an enzymatic reaction revealed by transition path sampling. PNAS 104:12253–58
    [Google Scholar]
  131. 131. 
    Antoniou D, Schwartz SD. 2011. Protein dynamics and enzymatic chemical barrier passage. J. Phys. Chem. B 115:15147–58
    [Google Scholar]
  132. 132. 
    Steinfeld JI, Francisco JS, Hase WL 1998. Chemical Kinetics and Dynamics Upper Saddle River, NJ: Prentice Hall, 2nd ed..
    [Google Scholar]
  133. 133. 
    Carpenter BK. 1992. Intramolecular dynamics for the organic chemist. Acc. Chem. Res. 25:520–28
    [Google Scholar]
  134. 134. 
    Mann DJ, Hase WL. 2002. Ab initio dynamics study of cyclopropyl radical ring opening. J. Am. Chem. Soc. 124:3208–9
    [Google Scholar]
  135. 135. 
    Fukui K. 1970. Formulation of the reaction coordinate. J. Phys. Chem. 74:4161–63
    [Google Scholar]
  136. 136. 
    Chandrasekhar J, Smith SF, Jorgensen WL 1984. SN2 reaction profiles in the gas phase and aqueous solution. J. Am. Chem. Soc. 106:3049–50
    [Google Scholar]
  137. 137. 
    Gao J, Truhlar DG. 2002. Quantum mechanical methods for enzyme kinetics. Annu. Rev. Phys. Chem. 53:467–505
    [Google Scholar]
  138. 138. 
    Thomas JB, Waas JR, Harmata M, Singleton DA 2008. Control elements in dynamically determined selectivity on a bifurcating surface. J. Am. Chem. Soc. 230:14544–55
    [Google Scholar]
  139. 139. 
    Siebert MR, Manikandan P, Sun R, Tantillo DJ, Hase WL 2012. Gas-phase chemical dynamics simulation on the bifurcating pathway of the pimaradienyl cation rearrangement: role of enzymatic steering in abietic acid biosynthesis. J. Chem. Theory Comput 8:1212–22
    [Google Scholar]
  140. 140. 
    Kramer ZC, Carpenter BK, Ezra GS, Wiggins S 2015. Reaction path bifurcation in an electrocyclic reaction: ring-opening of the cyclopropyl radical. J. Phys. Chem. A 119:6611–30
    [Google Scholar]
  141. 141. 
    Martín-Sómer A, Yáñez M, Hase WL, Gaigeot MP, Spezia R 2016. Post-transition state dynamics in gas phase reactivity: the importance of bifurcations and rotational activation. J. Chem. Theory Comput. 12:974–82
    [Google Scholar]
  142. 142. 
    Debbert SL, Carpenter BK, Hrovat DA, Borden WT 2002. The iconoclastic dynamics of the 1,2,6-heptatriene rearrangement. J. Am. Chem. Soc. 124:7896–97
    [Google Scholar]
  143. 143. 
    Ammal SC, Yamataka H, Aida M, Dupuis M 2003. Dynamics-driven reaction pathway in an intramolecular rearrangement. Science 299:1555–57
    [Google Scholar]
  144. 144. 
    Marcy TP, Díaz RR, Heard D, Leone SR, Harding LB, Klippenstein SJ 2001. Theoretical and experimental investigation of the dynamics of the production of CO from the CH3 + O and CD3 + O reactions. J. Phys. Chem. A 105:8361–69
    [Google Scholar]
  145. 145. 
    Sun L, Song K, Hase WL 2002. A SN2 reaction that avoids its deep potential energy minimum. Science 296:875–78
    [Google Scholar]
  146. 146. 
    López JG, Vayner G, Lourderaj U, Addepalli SV, Kato S et al. 2007. A direct dynamics trajectory study of F + CH3OOH reactive collisions reveals a major non-IRC reaction path. J. Am. Chem. Soc. 129:9976–85
    [Google Scholar]
  147. 147. 
    Blanksby SJ, Ellison GB, Bierbaum BV, Kato S 2002. Direct evidence for base-mediated decomposition of alkyl hydroperoxides (ROOH) in the gas phase. J. Am. Chem. Soc. 124:3196–97
    [Google Scholar]
  148. 148. 
    Xie J, Otto R, Wester R, Hase WL 2015. Chemical dynamics simulations of the monohydrated OH(H2O) + CH3I reaction. Atomic-level mechanisms and comparison with experiment. J. Chem. Phys. 142:244308
    [Google Scholar]
  149. 149. 
    Zhang J, Yang L, Xie J, Hase WL 2016. Microsolvated F(H2O) + CH3I SN2 reaction dynamics. Insight into the suppressed formation of solvated products. J. Phys. Chem. Lett. 7:660–65
    [Google Scholar]
  150. 150. 
    Liu X, Xie J, Zhang J, Yang J, Hase WL 2017. Steric effects of solvent molecules on SN2 substitution dynamics. J. Phys. Chem. Lett. 8:1885–92
    [Google Scholar]
  151. 151. 
    Liu X, Zhang J, Yang L, Hase WL 2018. How a solvent molecule affects competing elimination and substitution dynamics. Insight into mechanism evolution with increased solvation. J. Am. Chem. Soc. 140:10995–1005
    [Google Scholar]
  152. 152. 
    Feng Y, Zhou L, Wan Q, Lin S, Guo H 2018. Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics. Chem. Sci. 9:5890–96
    [Google Scholar]
  153. 153. 
    Olasz B, Szabó I, Czakó G 2017. High-level ab-initio potential energy surface and dynamics of the F + CH3I SN2 and proton-transfer reactions. Chem. Sci. 8:3164–70
    [Google Scholar]
  154. 154. 
    Ma YT, Ma X, Li A, Guo H, Yang L et al. 2017. Potential energy surface stationary points and dynamics of the F + CH3I double inversion mechanism. Phys. Chem. Chem. Phys. 19:20127–36
    [Google Scholar]
  155. 155. 
    Bowman JM. 2014. Roaming. Mol. Phys. 112:2516–28
    [Google Scholar]
  156. 156. 
    Townsend D, Lahankar SA, Lee SK, Chambreau SD, Suits AG et al. 2004. The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306:1158–61
    [Google Scholar]
  157. 157. 
    Laidler KJ. 1987. Chemical Kinetics New York: Harper & Row, 3rd ed..
    [Google Scholar]
  158. 158. 
    Mauguière FAL, Collins P, Kramer ZC, Carpenter BK, Ezra GS et al. 2018. Phase space structures explain hydrogen atom roaming in formaldehyde decomposition. J. Phys. Chem. Lett. 6:4123–28
    [Google Scholar]
  159. 159. 
    Pratihar S, Barnes GL, Laskin J, Hase WL 2016. Dynamics of protonated peptide ion collisions with organic surfaces: consonance of simulation and experiment. J. Phys. Chem. Lett. 7:3142–50
    [Google Scholar]
  160. 160. 
    Homayoon Z, Macaluso V, Martin-Somer A, Barbosa-Muniz MCN, Borges I et al. 2018. Chemical dynamics simulations of peptide ion CID: comparisons between TIK(H+)2 and TLK(H+)2 fragmentation dynamics, and with thermal simulations. Phys. Chem. Chem. Phys. 20:3614–29
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-112519-110208
Loading
/content/journals/10.1146/annurev-physchem-112519-110208
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error