1932

Abstract

Various organic reactions, including important synthetic reactions involving C–C, C–N, and C–O bond formation as well as reactions of biomolecules, are accelerated when the reagents are present in sprayed or levitated microdroplets or in thin films. The reaction rates increase by orders of magnitude with decreasing droplet size or film thickness. The effect is associated with reactions at the solution–air interface. A key factor is partial solvation of the reagents at the interface, which reduces the critical energy for reaction. This phenomenon is of intrinsic interest and potentially of practical value as a simple, rapid method of performing small-scale synthesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-121319-110654
2020-04-20
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-121319-110654.html?itemId=/content/journals/10.1146/annurev-physchem-121319-110654&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    de Hoffmann E, Stroobant V 2007. Mass Spectrometry: Principles and Applications Hoboken, NJ: Wiley, 3rd ed..
    [Google Scholar]
  2. 2. 
    Olmstead WN, Brauman JI. 1977. Gas-phase nucleophilic displacement reactions. J. Am. Chem. Soc. 99:4219–28
    [Google Scholar]
  3. 3. 
    Freriks IL, De Koning LJ, Nibbering NMM 1991. Gas-phase ambident reactivity of acyclic enolate anions. J. Am. Chem. Soc. 113:9119–24
    [Google Scholar]
  4. 4. 
    Eberlin MN, Cooks RG. 1993. Polar [4+2+] Diels-Alder cycloadditions of acylium ions in the gas phase. J. Am. Chem. Soc. 115:9226–33
    [Google Scholar]
  5. 5. 
    Gronert S. 2001. Mass spectrometric studies of organic ion/molecule reactions. Chem. Rev. 101:329–60
    [Google Scholar]
  6. 6. 
    Pellerite MJ, Brauman JI. 1980. Intrinsic barriers in nucleophilic displacements. J. Am. Chem. Soc. 102:5993–99
    [Google Scholar]
  7. 7. 
    Pellerite MJ, Brauman JI. 1983. Intrinsic barriers in nucleophilic displacements. A general model for intrinsic nucleophilicity toward methyl centers. J. Am. Chem. Soc. 105:2672–80
    [Google Scholar]
  8. 8. 
    Dodd JA, Brauman JI. 1986. Marcus theory applied to reactions with double-minimum potential surfaces. J. Phys. Chem. 90:3559–62
    [Google Scholar]
  9. 9. 
    Wladkowski BD, Wilbur JL, Brauman JI 1994. Intrinsic structure-reactivity relationships in gas-phase SN2 reactions: identity exchange of substituted benzyl chlorides with chloride ion. J. Am. Chem. Soc. 116:2471–80
    [Google Scholar]
  10. 10. 
    Lum RC, Grabowski JJ. 1993. Carbon versus phosphorus site selectivity in the gas-phase anion molecule reactions of dimethyl methylphosphonate. J. Am. Chem. Soc. 115:7823–32
    [Google Scholar]
  11. 11. 
    Denisov ET. 1974. Liquid-Phase Reaction Rate Constants New York: Springer
    [Google Scholar]
  12. 12. 
    Nelsen SF, Konradsson A, Jentzsch TL, O'Konek JJ, Pladziewicz JR 2001. Comparison of gas and solution phase intrinsic rate constants for electron transfer of tetraalkylhydrazines. J. Chem. Soc. Perkin Trans 2:91552–56
    [Google Scholar]
  13. 13. 
    Page JS, Kelly RT, Tang K, Smith RD 2007. Ionization and transmission efficiency in an electrospray ionization–mass spectrometry interface. J. Am. Soc. Mass Spectrom. 18:1582–90
    [Google Scholar]
  14. 14. 
    Yergey AL, Yergey AK. 1997. Preparative scale mass spectrometry: a brief history of the calutron. J. Am. Soc. Mass Spectrom. 8:943–53
    [Google Scholar]
  15. 15. 
    Siuzdak G, Bothner B, Yeager M, Brugidou C, Fauquet CM et al. 1996. Mass spectrometry and viral analysis. Chem. Biol. 3:45–48
    [Google Scholar]
  16. 16. 
    Badu-Tawiah AK, Wu C, Cooks RG 2011. Ambient ion soft landing. Anal. Chem. 83:2648–54
    [Google Scholar]
  17. 17. 
    Schwartz JC, Senko MW, Syka JEP 2002. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13:659–69
    [Google Scholar]
  18. 18. 
    Trauger SA, Junker T, Siuzdak G 2003. Investigating viral proteins and intact viruses with mass spectrometry. Modern Mass Spectrometry CA Schalley 265–82 Berlin/Heidelberg: Springer
    [Google Scholar]
  19. 19. 
    Blake TA, Zheng OY, Wiseman JM, Takats Z, Guymon AJ et al. 2004. Preparative linear ion trap mass spectrometer for separation and collection of purified proteins and peptides in arrays using ion soft landing. Anal. Chem. 76:6293–305
    [Google Scholar]
  20. 20. 
    Gologan B, Green JR, Alvarez J, Laskin J, Cooks RG 2005. Ion/surface reactions and ion soft-landing. Phys. Chem. Chem. Phys. 7:1490–500
    [Google Scholar]
  21. 21. 
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71
    [Google Scholar]
  22. 22. 
    Augusti R, Chen H, Eberlin LS, Nefliu M, Cooks RG 2006. Atmospheric pressure Eberlin transacetalization reactions in the heterogeneous liquid/gas phase. Int. J. Mass Spectrom. 253:281–87
    [Google Scholar]
  23. 23. 
    Cooks RG, Chen H, Eberlin MN, Zheng X, Tao WA 2006. Polar acetalization and transacetalization in the gas phase: the Eberlin reaction. Chem. Rev. 106:188–211
    [Google Scholar]
  24. 24. 
    Cotte-Rodriguez I, Chen H, Cooks RG 2006. Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization. Chem. Commun. 2006:953–55
    [Google Scholar]
  25. 25. 
    Chen H, Cotte-Rodriguez I, Cooks RG 2006. cis-Diol functional group recognition by reactive desorption electrospray ionization (DESI). Chem. Commun. 2006:597–99
    [Google Scholar]
  26. 26. 
    Wu C, Ifa DR, Manicke NE, Cooks RG 2009. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal. Chem. 81:7618–24
    [Google Scholar]
  27. 27. 
    Girod M, Moyano E, Campbell DI, Cooks RG 2011. Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem. Sci. 2:501–10
    [Google Scholar]
  28. 28. 
    Muller T, Badu-Tawiah A, Cooks RG 2012. Accelerated carbon–carbon bond-forming reactions in preparative electrospray. Angew. Chem. Int. Ed. 51:11832–35
    [Google Scholar]
  29. 29. 
    Badu-Tawiah AK, Campbell DI, Cooks RG 2012. Accelerated C–N bond formation in dropcast thin films on ambient surfaces. J. Am. Soc. Mass Spectrom. 23:1461–68
    [Google Scholar]
  30. 30. 
    Yan X, Augusti R, Li X, Cooks RG 2013. Chemical reactivity assessment using reactive paper spray ionization mass spectrometry: the Katritzky reaction. ChemPlusChem 78:1142–98
    [Google Scholar]
  31. 31. 
    Bain RM, Pulliam CJ, Yan X, Moore KF, Muller T, Cooks RG 2014. Mass spectrometry in organic synthesis: Claisen-Schmidt base-catalyzed condensation and Hammett correlation of substituent effects. J. Chem. Educ. 91:1985–89
    [Google Scholar]
  32. 32. 
    Bain RM, Pulliam CJ, Raab SA, Cooks G 2016. Chemical synthesis accelerated by paper spray: the haloform reaction. J. Chem. Educ. 93:340–44
    [Google Scholar]
  33. 33. 
    Li YF, Yan X, Cooks RG 2016. The role of the interface in thin film and droplet accelerated reactions studied by competitive substituent effects. Angew. Chem. Int. Ed. 55:3433–37
    [Google Scholar]
  34. 34. 
    Wei ZW, Wleklinski M, Ferreira C, Cooks RG 2017. Reaction acceleration in thin films with continuous product deposition for organic synthesis. Angew. Chem. Int. Ed. 56:9386–90
    [Google Scholar]
  35. 35. 
    Iyer K, Yi J, Bogdan A, Talaty N, Djuric SW, Cooks RG 2018. Accelerated multi-reagent copper catalysed coupling reactions in micro droplets and thin films. React. Chem. Eng. 3:206–9
    [Google Scholar]
  36. 36. 
    Wei ZW, Zhang XC, Wang JY, Zhang SC, Zhang XR, Cooks RG 2018. High yield accelerated reactions in nonvolatile microthin films: chemical derivatization for analysis of single-cell intracellular fluid. Chem. Sci. 9:7779–86
    [Google Scholar]
  37. 37. 
    Bain RM, Pulliam CJ, Cooks RG 2015. Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chem. Sci. 6:397–401
    [Google Scholar]
  38. 38. 
    Banerjee S, Zare RN. 2015. Syntheses of isoquinoline and substituted quinolines in charged microdroplets. Angew. Chem. Int. Ed. 54:14795–99
    [Google Scholar]
  39. 39. 
    Lee JK, Banerjee S, Nam HG, Zare RN 2015. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48:437–44
    [Google Scholar]
  40. 40. 
    Bain RM, Pulliam CJ, Ayrton ST, Bain K, Cooks RG 2016. Accelerated hydrazone formation in charged microdroplets. Rapid Commun. Mass Spectrom. 30:1875–78
    [Google Scholar]
  41. 41. 
    Bain RM, Ayrton ST, Cooks RG 2017. Fischer indole synthesis in the gas phase, the solution phase, and at the electrospray droplet interface. J. Am. Soc. Mass Spectrom. 28:1359–64
    [Google Scholar]
  42. 42. 
    Chen XS, Cooks RG. 2018. Accelerated reactions in field desorption mass spectrometry. J. Mass Spectrom. 53:942–46
    [Google Scholar]
  43. 43. 
    Lai YH, Sathyamoorthi S, Bain RM, Zare RN 2018. Microdroplets accelerate ring opening of epoxides. J. Am. Soc. Mass Spectrom. 29:1036–43
    [Google Scholar]
  44. 44. 
    Lee JK, Samanta D, Nam HG, Zare RN 2018. Spontaneous formation of gold nanostructures in aqueous microdroplets. Nat. Commun. 9:1562
    [Google Scholar]
  45. 45. 
    Nam I, Nam HG, Zare RN 2018. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. PNAS 115:36–40
    [Google Scholar]
  46. 46. 
    Lee JK, Kim S, Nam HG, Zare RN 2015. Microdroplet fusion mass spectrometry for fast reaction kinetics. PNAS 112:3898–903
    [Google Scholar]
  47. 47. 
    Lee JK, Nam HG, Zare RN 2017. Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation. Q. Rev. Biophys. 50:e2
    [Google Scholar]
  48. 48. 
    Bain RM, Pulliam CJ, Thery F, Cooks RG 2016. Accelerated chemical reactions and organic synthesis in Leidenfrost droplets. Angew. Chem. Int. Ed. 55:10478–82
    [Google Scholar]
  49. 49. 
    Crawford EA, Esen C, Volmer DA 2016. Real time monitoring of containerless microreactions in acoustically levitated droplets via ambient ionization mass spectrometry. Anal. Chem. 88:8396–403
    [Google Scholar]
  50. 50. 
    Li YJ, Liu Y, Gao H, Helmy R, Wuelfing WP et al. 2018. Accelerated forced degradation of pharmaceuticals in levitated microdroplet reactors. Chem. Eur. J. 24:7349–53
    [Google Scholar]
  51. 51. 
    Yan X, Cheng HY, Zare RN 2017. Two-phase reactions in microdroplets without the use of phase-transfer catalysts. Angew. Chem. Int. Ed. 56:3562–65
    [Google Scholar]
  52. 52. 
    Mortensen DN, Williams ER. 2014. Theta-glass capillaries in electrospray ionization: rapid mixing and short droplet lifetimes. Anal. Chem. 86:9315–21
    [Google Scholar]
  53. 53. 
    Ingram AJ, Boeser CL, Zare RN 2016. Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids. Chem. Sci. 7:39–55
    [Google Scholar]
  54. 54. 
    Hollerbach A, Logsdon D, Iyer K, Li AY, Schaber JA, Cooks RG 2018. Sizing sub-diffraction limit electrosprayed droplets by structured illumination microscopy. Analyst 143:232–40
    [Google Scholar]
  55. 55. 
    Zhou ZP, Yan X, Lai YH, Zare RN 2018. Fluorescence polarization anisotropy in microdroplets. J. Phys. Chem. Lett. 9:2928–32
    [Google Scholar]
  56. 56. 
    Fallah-Araghi A, Meguellati K, Baret JC, El Harrak A, Mangeat T et al. 2014. Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. Phys. Rev. Lett. 112:028301
    [Google Scholar]
  57. 57. 
    Houle FA, Wiegel AA, Wilson KR 2018. Changes in reactivity as chemistry becomes confined to an interface. The case of free radical oxidation of C30H62 alkane by OH. J. Phys. Chem. Lett. 9:1053–57
    [Google Scholar]
  58. 58. 
    Mondal S, Acharya S, Biswas R, Bagchi B, Zare RN 2018. Enhancement of reaction rate in small-sized droplets: a combined analytical and simulation study. J. Chem. Phys. 148:244704
    [Google Scholar]
  59. 59. 
    Yan X, Bain RM, Cooks RG 2016. Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. 55:12960–72
    [Google Scholar]
  60. 60. 
    Cooks RG, Yan X. 2018. Mass spectrometry for synthesis and analysis. Annu. Rev. Anal. Chem. 11:1–28
    [Google Scholar]
  61. 61. 
    Stroberg W, Schnell S. 2018. Do cellular condensates accelerate biochemical reactions? Lessons from microdroplet chemistry. Biophys. J. 115:3–8
    [Google Scholar]
  62. 62. 
    Dole M, Mack LL, Hines RL 1968. Molecular beams of macroions. J. Chem. Phys. 49:2240–49
    [Google Scholar]
  63. 63. 
    Chen H, Eberlin LS, Nefliu M, Augusti R, Cooks RG 2008. Organic reactions of ionic intermediates promoted by atmospheric-pressure thermal activation. Angew. Chem. Int. Ed. 47:3422–25
    [Google Scholar]
  64. 64. 
    Konermann L, Ahadi E, Rodriguez AD, Vahidi S 2013. Unraveling the mechanism of electrospray ionization. Anal. Chem. 85:2–9
    [Google Scholar]
  65. 65. 
    Kenny JA, Versluis K, Heck AJR, Walsgrove T, Wills M 2000. The detection of intermediates in the ruthenium(II) catalysed asymmetric hydrogenation of ketones using electrospray ionisation mass spectrometry. Chem. Commun. 2000:99–100
    [Google Scholar]
  66. 66. 
    Furmeier S, Metzger JO. 2004. Detection of transient radical cations in electron transfer-initiated Diels-Alder reactions by electrospray ionization mass spectrometry. J. Am. Chem. Soc. 126:14485–92
    [Google Scholar]
  67. 67. 
    Marquez CA, Fabbretti F, Metzger JO 2007. Electrospray ionization mass spectrometric study on the direct organocatalytic α-halogenation of aldehydes. Angew. Chem. Int. Ed. 46:6915–17
    [Google Scholar]
  68. 68. 
    Yan X, Sokol E, Li X, Li GT, Xu SQ, Cooks RG 2014. On-line reaction monitoring and mechanistic studies by mass spectrometry: Negishi cross-coupling, hydrogenolysis, and reductive amination. Angew. Chem. Int. Ed. 53:5931–35
    [Google Scholar]
  69. 69. 
    Perry RH, Cahill TJ, Roizen JL, Du Bois J, Zare RN 2012. Capturing fleeting intermediates in a catalytic C–H amination reaction cycle. PNAS 109:18295–99
    [Google Scholar]
  70. 70. 
    Perry RH, Brownell KR, Chingin K, Cahill TJ, Waymouth RM, Zare RN 2012. Transient Ru-methyl formate intermediates generated with bifunctional transfer hydrogenation catalysts. PNAS 109:2246–50
    [Google Scholar]
  71. 71. 
    Mortensen DN, Williams ER. 2016. Ultrafast (1 μs) mixing and fast protein folding in nanodrops monitored by mass spectrometry. J. Am. Chem. Soc. 138:3453–60
    [Google Scholar]
  72. 72. 
    Banerjee S, Gnanamani E, Yan X, Zare RN 2017. Can all bulk-phase reactions be accelerated in microdroplets. Analyst 142:1399–402
    [Google Scholar]
  73. 73. 
    Chen HW, Venter A, Cooks RG 2006. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun. 2006:2042–44
    [Google Scholar]
  74. 74. 
    Davis RD, Jacobs MI, Houle FA, Wilson KR 2017. Colliding-droplet microreactor: rapid on-demand inertial mixing and metal-catalyzed aqueous phase oxidation processes. Anal. Chem. 89:12494–501
    [Google Scholar]
  75. 75. 
    Takats Z, Wiseman JM, Gologan B, Cooks RG 2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–73
    [Google Scholar]
  76. 76. 
    Yan X, Lai YH, Zare RN 2018. Preparative microdroplet synthesis of carboxylic acids from aerobic oxidation of aldehydes. Chem. Sci. 9:5207–11
    [Google Scholar]
  77. 77. 
    Thomas DA, Wang LT, Goh B, Kim ES, Beauchamp JL 2015. Mass spectrometric sampling of a liquid surface by nanoliter droplet generation from bursting bubbles and focused acoustic pulses: application to studies of interfacial chemistry. Anal. Chem. 87:3336–44
    [Google Scholar]
  78. 78. 
    Jacobs MI, Davies JF, Lee L, Davis RD, Houle F, Wilson KR 2017. Exploring chemistry in microcompartments using guided droplet collisions in a branched quadrupole trap coupled to a single droplet, paper spray mass spectrometer. Anal. Chem. 89:12511–19
    [Google Scholar]
  79. 79. 
    Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB 2005. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44:3275–79
    [Google Scholar]
  80. 80. 
    Gibard C, Bhowmik S, Karki M, Kim EK, Krishnamurthy R 2018. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10:212–17
    [Google Scholar]
  81. 81. 
    Badu-Tawiah AK, Li AY, Jjunju FPM, Cooks RG 2012. Peptide cross-linking at ambient surfaces by reactions of nanosprayed molecular cations. Angew. Chem. Int. Ed. 51:9417–21
    [Google Scholar]
  82. 82. 
    Wleklinski M, Falcone CE, Loren BP, Jaman Z, Iyer K et al. 2016. Can accelerated reactions in droplets guide chemistry at scale. Eur. J. Org. Chem. 2016:5480–84
    [Google Scholar]
  83. 83. 
    Abdelaziz R, Disci-Zayed D, Hedayati MK, Pohls JH, Zillohu AU et al. 2013. Green chemistry and nanofabrication in a levitated Leidenfrost drop. Nat. Commun. 4:2400
    [Google Scholar]
  84. 84. 
    Li AY, Luo QJ, Park SJ, Cooks RG 2014. Synthesis and catalytic reactions of nanoparticles formed by electrospray ionization of coinage metals. Angew. Chem. Int. Ed. 53:3147–50
    [Google Scholar]
  85. 85. 
    Sahota N, AbuSalim DI, Wang ML, Brown CJ, Zhang ZCH et al. 2019. A microdroplet-accelerated Biginelli reaction: mechanisms and separation of isomers using IMS-MS. Chem. Sci. 10:4822–27
    [Google Scholar]
  86. 86. 
    Jansson ET, Lai YH, Santiago JG, Zare RN 2017. Rapid hydrogen-deuterium exchange in liquid droplets. J. Am. Chem. Soc. 139:6851–54
    [Google Scholar]
  87. 87. 
    Mortensen DN, Williams ER. 2015. Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal. Chem. 87:1281–87
    [Google Scholar]
  88. 88. 
    Fedick PW, Iyer K, Wei Z, Avramova L, Capek GO, Cooks RG 2019. Screening of the Suzuki cross-coupling reaction using desorption electrospray ionization in high-throughput and in Leidenfrost droplet experiments. J. Am. Soc. Mass Spectrom. 30:2144–51
    [Google Scholar]
  89. 89. 
    Caldwell G, Magnera TF, Kebarle P 1984. SN2 reactions in the gas phase. Temperature dependence of the rate constants and energies of the transition states. Comparison with solution. J. Am. Chem. Soc. 106:959–66
    [Google Scholar]
  90. 90. 
    Takashima K, Riveros JM. 1998. Gas-phase solvated negative ions. Mass Spectrom. Rev. 17:409–30
    [Google Scholar]
  91. 91. 
    Viggiano AA, Arnold ST, Morris RA, Ahrens AF, Hierl PM 1996. Temperature dependences of the rate constants and branching ratios for the reactions of OH(H2O)0–4 + CH3Br. J. Phys. Chem. 100:14397–402
    [Google Scholar]
  92. 92. 
    Seeley JV, Morris RA, Viggiano AA 1997. Temperature dependences of the rate constants and branching ratios for the reactions of F(H2O)0–5 with CH3Br. J. Phys. Chem. A 101:4598–601
    [Google Scholar]
  93. 93. 
    Yang X, Castleman AW. 1991. Chemistry of large hydrated anion clusters X(H2O)n, n = 0–59 and X = OH, O, O2, and O3. 1. Reaction of CO2 and possible application in understanding of enzymatic-reaction dynamics. J. Am. Chem. Soc. 113:6766–71
    [Google Scholar]
  94. 94. 
    Yang X, Zhang X, Castleman AW 1991. Chemistry of large hydrated anion clusters X(H2O)n, n = 0–59 and X = OH, O, O2, and O3. 2. Reaction of Ch3CN. J. Phys. Chem. 95:8520–24
    [Google Scholar]
  95. 95. 
    Yang X, Castleman AW. 1991. Chemistry of large hydrated anion clusters X(H2O)n, n = 0–59 and X = OH, O, O2, and O3. 3. Reaction of SO2. J. Phys. Chem. 95:6182–86
    [Google Scholar]
  96. 96. 
    Nam I, Lee JK, Nam HG, Zare RN 2017. Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. PNAS 114:12396–400
    [Google Scholar]
  97. 97. 
    Toney MF, Howard JN, Richer J, Borges GL, Gordon JG et al. 1994. Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368:444–46
    [Google Scholar]
  98. 98. 
    Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P et al. 2018. Anomalously low dielectric constant of confined water. Science 360:1339–42
    [Google Scholar]
  99. 99. 
    Kalinin SV. 2018. Feel the dielectric force. Science 360:1302
    [Google Scholar]
  100. 100. 
    Nisisako T. 2016. Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface Sci. 25:1–12
    [Google Scholar]
  101. 101. 
    Chiu DT, Lorenz RM, Jeffries GDM 2009. Droplets for ultrasmall-volume analysis. Anal. Chem. 81:5111–18
    [Google Scholar]
  102. 102. 
    Chiu DT, Wilson CF, Ryttsen F, Stromberg A, Farre C et al. 1999. Chemical transformations in individual ultrasmall biomimetic containers. Science 283:1892–95
    [Google Scholar]
  103. 103. 
    Han W, Lin ZQ. 2012. Learning from “coffee rings”: ordered structures enabled by controlled evaporative self-assembly. Angew. Chem. Int. Ed. 51:1534–46
    [Google Scholar]
  104. 104. 
    Scriven LE, Sternling CV. 1960. The Marangoni effects. Nature 187:186–88
    [Google Scholar]
  105. 105. 
    Sternling CV, Scriven LE. 1959. Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J 5:514–23
    [Google Scholar]
  106. 106. 
    Mackay GDM, Mason SG. 1961. The Marangoni effect and liquid/liquid coalescence. Nature 191:488
    [Google Scholar]
  107. 107. 
    Durey G, Kwon H, Magdelaine Q, Casiulis M, Mazet J et al. 2018. Marangoni bursting: evaporation-induced emulsification of a two-component droplet. Phys. Rev. Fluids 3:100501
    [Google Scholar]
  108. 108. 
    Sultan E, Boudaoud A, Ben Amar M 2005. Evaporation of a thin film: diffusion of the vapour and Marangoni instabilities. J. Fluid Mech. 543:183–202
    [Google Scholar]
  109. 109. 
    Fanton X, Cazabat AM, Quere D 1996. Thickness and shape of films driven by a Marangoni flow. Langmuir 12:5875–80
    [Google Scholar]
  110. 110. 
    Bouillant A, Mouterde T, Bourrianne P, Lagarde A, Clanet C, Quere D 2018. Leidenfrost wheels. Nat. Phys. 14:1188–92
    [Google Scholar]
  111. 111. 
    Banerjee S, Mazumdar S. 2012. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012:282574
    [Google Scholar]
  112. 112. 
    Gatlin CL, Turecek F. 1994. Acidity determination in droplets formed by electrospraying methanol-water solutions. Anal. Chem. 66:712–18
    [Google Scholar]
  113. 113. 
    Fenn JB. 1993. Ion formation from charged droplets: roles of geometry, energy, and time. J. Am. Soc. Mass Spectrom. 4:524–35
    [Google Scholar]
  114. 114. 
    Gray-Weale A, Beattie JK. 2009. An explanation for the charge on water's surface. Phys. Chem. Chem. Phys. 11:10994–1005
    [Google Scholar]
  115. 115. 
    Kathmann SM, Kuo IFW, Mundy CJ 2008. Electronic effects on the surface potential at the vapor-liquid interface of water. J. Am. Chem. Soc. 130:16556–61
    [Google Scholar]
  116. 116. 
    Li AY, Baird Z, Bag S, Sarkar D, Prabhath A et al. 2014. Using ambient ion beams to write nanostructured patterns for surface enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 53:12528–31
    [Google Scholar]
  117. 117. 
    Schrader RL, Fedick PW, Mehari TF, Cooks RG 2019. Accelerated chemical synthesis: three ways of performing the Katritzky transamination reaction. J. Chem. Educ. 96:360–65
    [Google Scholar]
  118. 118. 
    Zhu XT, Zhang WW, Lin QY, Ye MY, Xue LY et al. 2019. Direct microdroplet synthesis of carboxylic acids from alcohols by preparative paper spray ionization without phase transfer catalysts. ACS Sustain. Chem. Eng. 7:6486–91
    [Google Scholar]
  119. 119. 
    Sheldon RA. 2007. The E factor: fifteen years on. Green Chem 9:1273–83
    [Google Scholar]
  120. 120. 
    Van Berkel GJ, Zhou FM 1995. Electrospray as a controlled-current electrolytic cell: electrochemical ionization of neutral analytes for detection by electrospray mass spectrometry. Anal. Chem. 67:3958–64
    [Google Scholar]
  121. 121. 
    Van Berkel GJ, Zhou FM 1995. Characterization of an electrospray ion-source as a controlled-current electrolytic cell. Anal. Chem. 67:2916–23
    [Google Scholar]
  122. 122. 
    Sarkar D, Mahitha MK, Som A, Li AY, Wleklinski M et al. 2016. Metallic nanobrushes made using ambient droplet sprays. Adv. Mater. 28:2223–28
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-121319-110654
Loading
/content/journals/10.1146/annurev-physchem-121319-110654
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error