1932

Abstract

Myostatin (GDF-8) was discovered 25 years ago as a new transforming growth factor-β family member that acts as a master regulator of skeletal muscle mass. Myostatin is made by skeletal myofibers, circulates in the blood, and acts back on myofibers to limit growth. Myostatin appears to have all of the salient properties of a chalone, which is a term proposed over a half century ago to describe hypothetical circulating, tissue-specific growth inhibitors that control tissue size. The elucidation of the molecular, cellular, and physiological mechanisms underlying myostatin activity suggests that myostatin functions as a negative feedback regulator of muscle mass and raises the question as to whether this type of chalone mechanism is unique to skeletal muscle or whether it also operates in other tissues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-012422-112116
2023-02-10
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-012422-112116.html?itemId=/content/journals/10.1146/annurev-physiol-012422-112116&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Huxley J. 1935. Chemical regulation and the hormone concept. Biol. Rev. 10:427–41
    [Google Scholar]
  2. 2.
    Bullough WS. 1962. The control of mitotic activity in adult mammalian tissues. Biol. Rev. Camb. Philos. Soc. 37:307–42
    [Google Scholar]
  3. 3.
    Swann MM. 1958. The control of cell division: a review. II. Special mechanisms. . Cancer Res. 18:101118–60
    [Google Scholar]
  4. 4.
    McPherron AC, Lawler AM, Lee SJ. 1997. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387:662883–90
    [Google Scholar]
  5. 5.
    Gamer LW, Wolfman NM, Celeste AJ, Hattersley G, Hewick R, Rosen V. 1999. A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos. Dev. Biol. 208:1222–32
    [Google Scholar]
  6. 6.
    Nakashima M, Toyono T, Akamine A, Joyner A. 1999. Expression of growth/differentiation factor 11, a new member of the BMP/TGFβ superfamily during mouse embryogenesis. Mech. Dev. 80:2185–89
    [Google Scholar]
  7. 7.
    McPherron AC, Lawler AM, Lee SJ. 1999. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat. Genet. 22:3260–64
    [Google Scholar]
  8. 8.
    McPherron AC, Lee SJ. 1997. Double muscling in cattle due to mutations in the myostatin gene. PNAS 94:2312457–61
    [Google Scholar]
  9. 9.
    Lee YS, Huynh TV, Lee SJ. 2016. Paracrine and endocrine modes of myostatin action. J. Appl. Physiol. 120:6592–98
    [Google Scholar]
  10. 10.
    Lee SJ, Huynh TV, Lee YS, Sebald SM, Wilcox-Adelman SA et al. 2012. Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway. PNAS 109:35E2353–60
    [Google Scholar]
  11. 11.
    Lee SJ, Lehar A, Liu Y, Ly CH, Pham QM et al. 2020. Functional redundancy of type I and type II receptors in the regulation of skeletal muscle growth by myostatin and activin A. PNAS 117:4930907–17
    [Google Scholar]
  12. 12.
    Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B et al. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17:171–74
    [Google Scholar]
  13. 13.
    Kambadur R, Sharma M, Smith TP, Bass JJ. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:9910–16
    [Google Scholar]
  14. 14.
    Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X et al. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38:7813–18
    [Google Scholar]
  15. 15.
    Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS et al. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLOS Genet. 3:5e79
    [Google Scholar]
  16. 16.
    Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T et al. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350:262682–88
    [Google Scholar]
  17. 17.
    Hill EW, Gu J, Eivers SS, Fonseca RG, McGivney BA et al. 2010. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLOS ONE 5:1e8645
    [Google Scholar]
  18. 18.
    Dall'Olio S, Fontanesi L, Nanni Costa L, Tassinari M, Minieri L, Falaschini A 2010. Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. J. Biomed. Biotechnol. 2010.542945
    [Google Scholar]
  19. 19.
    Hill EW, McGivney BA, Gu J, Whiston R, MacHugh DE 2010. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genom. 11:552
    [Google Scholar]
  20. 20.
    Tozaki T, Sato F, Hill EW, Miyake T, Endo Y et al. 2011. Sequence variants at the myostatin gene locus influence the body composition of Thoroughbred horses. J. Vet. Med. Sci. 73:121617–24
    [Google Scholar]
  21. 21.
    Rooney MF, Hill EW, Kelly VP, Porter RK. 2018. The “speed gene” effect of myostatin arises in Thoroughbred horses due to a promoter proximal SINE insertion. PLOS ONE 13:10e0205664
    [Google Scholar]
  22. 22.
    Lv Q, Yuan L, Deng J, Chen M, Wang Y et al. 2016. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci. Rep. 6:25029
    [Google Scholar]
  23. 23.
    Gu H, Cao Y, Qiu B, Zhou Z, Deng R et al. 2016. Establishment and phenotypic analysis of an Mstn knockout rat. Biochem. Biophys. Res. Commun. 477:1115–22
    [Google Scholar]
  24. 24.
    Wang K, Tang X, Xie Z, Zou X, Li M et al. 2017. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res. 26:6799–805
    [Google Scholar]
  25. 25.
    He Z, Zhang T, Jiang L, Zhou M, Wu D et al. 2018. Use of CRISPR/Cas9 technology efficiently targeted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci. Rep. 38:6BSR20180742
    [Google Scholar]
  26. 26.
    Acosta J, Carpio Y, Borroto I, González O, Estrada MP. 2005. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J. Biotechnol. 119:4324–31
    [Google Scholar]
  27. 27.
    Lee CY, Hu SY, Gong HY, Chen MH, Lu JK, Wu JL. 2009. Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem. Biophys. Res. Commun. 387:4766–71
    [Google Scholar]
  28. 28.
    Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A et al. 2017. Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci. Rep. 7:17301
    [Google Scholar]
  29. 29.
    Lee J, Kim DH, Lee K. 2020. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. Int. J. Mol. Sci. 21:41504
    [Google Scholar]
  30. 30.
    Kim GD, Lee JH, Song S, Kim SW, Han JS et al. 2020. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB J. 34:45688–96
    [Google Scholar]
  31. 31.
    Glass DJ. 2010. Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13:3225–29
    [Google Scholar]
  32. 32.
    Hoogaars WMH, Jaspers RT. 2018. Past, present, and future perspective of targeting myostatin and related signaling pathways to counteract muscle atrophy. Adv. Exp. Med. Biol. 1088:153–206
    [Google Scholar]
  33. 33.
    Rodgers BD, Ward CW. 2022. Myostatin/activin receptor ligands in muscle and the development status of attenuating drugs. Endocr. Rev. 43:2329–65
    [Google Scholar]
  34. 34.
    Girgenrath S, Song K, Whittemore LA. 2005. Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle. Muscle Nerve 31:134–40
    [Google Scholar]
  35. 35.
    Heineke J, Auger-Messier M, Xu J, Sargent M, York A et al. 2010. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 121:3419–25
    [Google Scholar]
  36. 36.
    Whittemore LA, Song K, Li X, Aghajanian J, Davies M et al. 2003. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 300:4965–71
    [Google Scholar]
  37. 37.
    Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA et al. 2002. Functional improvement of dystrophic muscle by myostatin blockade. Nature 420:6914418–21
    [Google Scholar]
  38. 38.
    Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA. 2007. Muscle growth after postdevelopmental myostatin gene knockout. Am. J. Physiol. Endocrinol. Metab. 292:4E985–91
    [Google Scholar]
  39. 39.
    Foster K, Graham IR, Otto A, Foster H, Trollet C et al. 2009. Adeno-associated virus-8-mediated intravenous transfer of myostatin propeptide leads to systemic functional improvements of slow but not fast muscle. Rejuvenation Res. 12:285–94
    [Google Scholar]
  40. 40.
    Matsakas A, Foster K, Otto A, Macharia R, Elashry MI et al. 2009. Molecular, cellular and physiological investigation of myostatin propeptide-mediated muscle growth in adult mice. Neuromuscul. Disord. 19:7489–99
    [Google Scholar]
  41. 41.
    Cadena SM, Tomkinson KN, Monnell TE, Spaits MS, Kumar R et al. 2010. Administration of a soluble activin type IIB receptor promotes skeletal muscle growth independent of fiber type. J. Appl. Physiol. 109:3635–42
    [Google Scholar]
  42. 42.
    Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J et al. 2009. Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. PNAS 106:187479–84
    [Google Scholar]
  43. 43.
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. 2000. Pax7 is required for the specification of myogenic satellite cells. Cell 102:6777–86
    [Google Scholar]
  44. 44.
    Cornelison DD, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB. 2004. Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev. 18:182231–36
    [Google Scholar]
  45. 45.
    Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF et al. 2002. Induction of cachexia in mice by systemically administered myostatin. Science 296:55721486–88
    [Google Scholar]
  46. 46.
    Peng L, Gagliano-Jucá T, Pencina KM, Krishnan S, Li Z et al. 2021. Age trends in growth and differentiation factor-11 and myostatin levels in healthy men, measured using liquid chromatography tandem mass spectrometry: differential response to testosterone. J. Gerontol. A Biol. Sci. Med. Sci. 77:4763–69
    [Google Scholar]
  47. 47.
    Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM et al. 2002. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277:4340735–41
    [Google Scholar]
  48. 48.
    Lee SJ, McPherron AC. 2001. Regulation of myostatin activity and muscle growth. PNAS 98:169306–11
    [Google Scholar]
  49. 49.
    Thies RS, Chen T, Davies MV, Tomkinson KN, Pearson AA et al. 2001. GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 18:4251–59
    [Google Scholar]
  50. 50.
    Hayette S, Gadoux M, Martel S, Bertrand S, Tigaud I et al. 1998. FLRG (follistatin-related gene), a new target of chromosomal rearrangement in malignant blood disorders. Oncogene 16:222949–54
    [Google Scholar]
  51. 51.
    Schneyer A, Tortoriello D, Sidis Y, Keutmann H, Matsuzaki T, Holmes W. 2001. Follistatin-related protein (FSRP): a new member of the follistatin gene family. Mol. Cell. Endocrinol. 180:1–233–38
    [Google Scholar]
  52. 52.
    Tsuchida K, Arai KY, Kuramoto Y, Yamakawa N, Hasegawa Y, Sugino H. 2000. Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-β family. J. Biol. Chem. 275:5240788–96
    [Google Scholar]
  53. 53.
    Sidis Y, Mukherjee A, Keutmann H, Delbaere A, Sadatsuki M, Schneyer A. 2006. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins. Endocrinology 147:73586–97
    [Google Scholar]
  54. 54.
    Hill JJ, Qiu Y, Hewick RM, Wolfman NM. 2003. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol. Endocrinol. 17:61144–54
    [Google Scholar]
  55. 55.
    Trexler M, Bányai L, Patthy L. 2002. Distinct expression pattern of two related human proteins containing multiple types of protease-inhibitory modules. Biol. Chem. 383:1223–28
    [Google Scholar]
  56. 56.
    Sharma M, Kambadur R, Matthews KG, Somers WG, Devlin GP et al. 1999. Myostatin, a transforming growth factor-β superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell. Physiol. 180:11–9
    [Google Scholar]
  57. 57.
    Cook SA, Matsui T, Li L, Rosenzweig A. 2002. Transcriptional effects of chronic Akt activation in the heart. J. Biol. Chem. 277:2522528–33
    [Google Scholar]
  58. 58.
    Morissette MR, Cook SA, Foo S, McKoy G, Ashida N et al. 2006. Myostatin regulates cardiomyocyte growth through modulation of Akt signaling. Circ. Res. 99:115–24
    [Google Scholar]
  59. 59.
    Shyu KG, Lu MJ, Wang BW, Sun HY, Chang H. 2006. Myostatin expression in ventricular myocardium in a rat model of volume-overload heart failure. Eur. J. Clin. Investig. 36:10713–19
    [Google Scholar]
  60. 60.
    Lenk K, Schur R, Linke A, Erbs S, Matsumoto Y et al. 2009. Impact of exercise training on myostatin expression in the myocardium and skeletal muscle in a chronic heart failure model. Eur. J. Heart Fail. 11:4342–48
    [Google Scholar]
  61. 61.
    George I, Bish LT, Kamalakkannan G, Petrilli CM, Oz MC et al. 2010. Myostatin activation in patients with advanced heart failure and after mechanical unloading. Eur. J. Heart Fail. 12:5444–53
    [Google Scholar]
  62. 62.
    Biesemann N, Mendler L, Wietelmann A, Hermann S, Schäfers M et al. 2014. Myostatin regulates energy homeostasis in the heart and prevents heart failure. Circ. Res. 115:2296–310
    [Google Scholar]
  63. 63.
    Kong X, Yao T, Zhou P, Kazak L, Tenen D et al. 2018. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab. 28:4631–43.e3
    [Google Scholar]
  64. 64.
    Lee SJ. 2007. Quadrupling muscle mass in mice by targeting TGF-β signaling pathways. PLOS ONE 2:8e789
    [Google Scholar]
  65. 65.
    Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK et al. 2007. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 67:209721–30
    [Google Scholar]
  66. 66.
    Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME et al. 2005. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. PNAS 102:5018117–22
    [Google Scholar]
  67. 67.
    Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN et al. 2014. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol. Cell. Biol. 34:4606–18
    [Google Scholar]
  68. 68.
    Hatakeyama S, Summermatter S, Jourdain M, Melly S, Minetti GC, Lach-Trifilieff E. 2016. ActRII blockade protects mice from cancer cachexia and prolongs survival in the presence of anti-cancer treatments. Skelet. Muscle 6:26
    [Google Scholar]
  69. 69.
    Morvan F, Rondeau JM, Zou C, Minetti G, Scheufler C et al. 2017. Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. PNAS 114:4712448–53
    [Google Scholar]
  70. 70.
    Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L 2003. Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. Mol. Cell. Biol. 23:207230–42
    [Google Scholar]
  71. 71.
    Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR et al. 1995. Functional analysis of activins during mammalian development. Nature 374:6520354–56
    [Google Scholar]
  72. 72.
    Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM et al. 2010. Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 24:101998–2008
    [Google Scholar]
  73. 73.
    Liu Y, Lehar A, Rydzik R, Chandok H, Lee YS et al. 2021. Local versus systemic control of bone and skeletal muscle mass by components of the transforming growth factor-β signaling pathway. PNAS 118:33e2111401118
    [Google Scholar]
  74. 74.
    Chen JL, Walton KL, Hagg A, Colgan TD, Johnson K et al. 2017. Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. PNAS 114:26E5266–75
    [Google Scholar]
  75. 75.
    Chen JL, Walton KL, Al-Musawi SL, Kelly EK, Qian H et al. 2015. Development of novel activin-targeted therapeutics. Mol. Ther. 23:3434–44
    [Google Scholar]
  76. 76.
    Latres E, Mastaitis J, Fury W, Miloscio L, Trejos J et al. 2017. Activin A more prominently regulates muscle mass in primates than does GDF8. Nat. Commun. 8:15153
    [Google Scholar]
  77. 77.
    Massagué J. 2012. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13:10616–30
    [Google Scholar]
  78. 78.
    Winbanks CE, Chen JL, Qian H, Liu Y, Bernardo BC et al. 2013. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J. Cell Biol. 203:2345–57
    [Google Scholar]
  79. 79.
    Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J et al. 2013. BMP signaling controls muscle mass. Nat. Genet. 45:111309–18
    [Google Scholar]
  80. 80.
    Zimmerman LB, De Jesús-Escobar JM, Harland RM. 1996. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:4599–606
    [Google Scholar]
  81. 81.
    Imamura T, Takase M, Nishihara A, Oeda E, Hanai J et al. 1997. Smad6 inhibits signalling by the TGF-β superfamily. Nature 389:6651622–26
    [Google Scholar]
  82. 82.
    Nagaoka T, Karasawa H, Castro NP, Rangel MC, Salomon DS, Bianco C. 2012. An evolving web of signaling networks regulated by Cripto-1. Growth Factors 30:113–21
    [Google Scholar]
  83. 83.
    Shen MM, Schier AF. 2000. The EGF-CFC gene family in vertebrate development. Trends Genet. 16:7303–09
    [Google Scholar]
  84. 84.
    Kemaladewi DU, de Gorter DJ, Aartsma-Rus A, van Ommen GJ, ten Dijke P et al. 2012. Cell-type specific regulation of myostatin signaling. FASEB J. 26:41462–72
    [Google Scholar]
  85. 85.
    Gray PC, Harrison CA, Vale W 2003. Cripto forms a complex with activin and type II activin receptors and can block activin signaling. PNAS 100:95193–98
    [Google Scholar]
  86. 86.
    Guardiola O, Lafuste P, Brunelli S, Iaconis S, Touvier T et al. 2012. Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. PNAS 109:47E3231–40
    [Google Scholar]
  87. 87.
    Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K et al. 2003. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. PNAS 100:2615842–46
    [Google Scholar]
  88. 88.
    Lee SJ. 2008. Genetic analysis of the role of proteolysis in the activation of latent myostatin. PLOS ONE 3:2e1628
    [Google Scholar]
  89. 89.
    Kondás K, Szláma G, Trexler M, Patthy L. 2008. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. J. Biol. Chem. 283:3523677–84
    [Google Scholar]
  90. 90.
    Lee YS, Lee SJ. 2013. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. PNAS 110:39E3713–22
    [Google Scholar]
  91. 91.
    Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A et al. 2008. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. PNAS 105:114318–22
    [Google Scholar]
  92. 92.
    Mukherjee A, Sidis Y, Mahan A, Raher MJ, Xia Y et al. 2007. FSTL3 deletion reveals roles for TGF-β family ligands in glucose and fat homeostasis in adults. PNAS 104:41348–53
    [Google Scholar]
  93. 93.
    Trexler M, Bányai L, Patthy L. 2001. A human protein containing multiple types of protease-inhibitory modules. PNAS 98:73705–9
    [Google Scholar]
  94. 94.
    Ueno N, Ling N, Ying SY, Esch F, Shimasaki S, Guillemin R. 1987. Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. PNAS 84:238282–86
    [Google Scholar]
  95. 95.
    Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H. 1990. Activin-binding protein from rat ovary is follistatin. Science 247:4944836–38
    [Google Scholar]
  96. 96.
    Yamashita H, ten Dijke P, Huylebroeck D, Sampath TK, Andries M et al. 1995. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J. Cell Biol. 130:1217–26
    [Google Scholar]
  97. 97.
    Fainsod A, Deissler K, Yelin R, Marom K, Epstein M et al. 1997. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech. Dev. 63:139–50
    [Google Scholar]
  98. 98.
    Iemura S, Yamamoto TS, Takagi C, Uchiyama H, Natsume T et al. 1998. Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. PNAS 95:169337–42
    [Google Scholar]
  99. 99.
    Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A. 1995. Multiple defects and perinatal death in mice deficient in follistatin. Nature 374:6520360–63
    [Google Scholar]
  100. 100.
    Sugino K, Kurosawa N, Nakamura T, Takio K, Shimasaki S et al. 1993. Molecular heterogeneity of follistatin, an activin-binding protein. Higher affinity of the carboxyl-terminal truncated forms for heparan sulfate proteoglycans on the ovarian granulosa cell. J. Biol. Chem. 268:2115579–87
    [Google Scholar]
  101. 101.
    McPherron AC, Lee SJ. 2002. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Investig. 109:5595–601
    [Google Scholar]
  102. 102.
    Hamrick MW, Pennington C, Webb CN, Isales CM. 2006. Resistance to body fat gain in ‘double-muscled’ mice fed a high-fat diet. Int. J. Obes. 30:5868–70
    [Google Scholar]
  103. 103.
    LeBrasseur NK, Schelhorn TM, Bernardo BL, Cosgrove PG, Loria PM, Brown TA. 2009. Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice. J. Gerontol. A Biol. Sci. Med. Sci. 64:9940–48
    [Google Scholar]
  104. 104.
    Akpan I, Goncalves MD, Dhir R, Yin X, Pistilli EE et al. 2009. The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity. Int. J. Obes. 33:111265–73
    [Google Scholar]
  105. 105.
    Koncarevic A, Cornwall-Brady M, Pullen A, Davies M, Sako D et al. 2010. A soluble activin receptor type IIb prevents the effects of androgen deprivation on body composition and bone health. Endocrinology 151:94289–300
    [Google Scholar]
  106. 106.
    Lee SJ. 2004. Regulation of muscle mass by myostatin. Annu. Rev. Cell Dev. Biol. 20:61–86
    [Google Scholar]
  107. 107.
    Lee SJ. 2021. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. J. Clin. Investig. 131:9e148372
    [Google Scholar]
  108. 108.
    Apgar JR, Mader M, Agostinelli R, Benard S, Bialek P et al. 2016. Beyond CDR-grafting: structure-guided humanization of framework and CDR regions of an anti-myostatin antibody. mAbs 8:71302–18
    [Google Scholar]
  109. 109.
    St Andre M, Johnson M, Bansal PN, Wellen J, Robertson A et al. 2017. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skelet. Muscle 7:125
    [Google Scholar]
  110. 110.
    Smith RC, Cramer MS, Mitchell PJ, Capen A, Huber L et al. 2015. Myostatin neutralization results in preservation of muscle mass and strength in preclinical models of tumor-induced muscle wasting. Mol. Cancer Ther. 14:71661–70
    [Google Scholar]
  111. 111.
    Latres E, Pangilinan J, Miloscio L, Bauerlein R, Na E et al. 2015. Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. Skelet. Muscle 5:34
    [Google Scholar]
  112. 112.
    Zhang L, Rajan V, Lin E, Hu Z, Han HQ et al. 2011. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J. 25:51653–63
    [Google Scholar]
  113. 113.
    Zhu Y, D'Arienzo C, Lou Z, Kozhich A, Madireddi M et al 2016. LC-MS/MS multiplexed assay for the quantitation of a therapeutic protein BMS-986089 and the target protein Myostatin. Bioanalysis 8:3193–204
    [Google Scholar]
  114. 114.
    Pirruccello-Straub M, Jackson J, Wawersik S, Webster MT, Salta L et al. 2018. Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci. Rep. 8:12292
    [Google Scholar]
  115. 115.
    Long KK, O'Shea KM, Khairallah RJ, Howell K, Paushkin S et al. 2019. Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. Hum. Mol. Genet. 28:71076–89
    [Google Scholar]
  116. 116.
    Dagbay KB, Treece E, Streich FC Jr., Jackson JW, Faucette RR et al. 2020. Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015. J. Biol. Chem. 295:165404–18
    [Google Scholar]
  117. 117.
    Muramatsu H, Kuramochi T, Katada H, Ueyama A, Ruike Y et al. 2021. Novel myostatin-specific antibody enhances muscle strength in muscle disease models. Sci. Rep. 11:12160
    [Google Scholar]
  118. 118.
    Cadena SM, Tomkinson KN, Monnell TE, Spaits MS, Kumar R et al. 2010. Administration of a soluble activin type IIB receptor promotes skeletal muscle growth independent of fiber type. J. Appl. Physiol. 109:3635–42
    [Google Scholar]
  119. 119.
    Pearsall RS, Davies MV, Cannell M, Li J, Widrick J, Mulivor AW et al. 2019. Follistatin-based ligand trap ACE-083 induces localized hypertrophy of skeletal muscle with functional improvement in models of neuromuscular disease. Sci. Rep. 9:111392
    [Google Scholar]
  120. 120.
    Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K et al. 2008. A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann. Neurol. 63:5561–71
    [Google Scholar]
  121. 121.
    Wagner KR, Abdel-Hamid HZ, Mah JK, Campbell C, Guglieri M et al. 2020. Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy. Neuromuscul. Disord. 30:6492–502
    [Google Scholar]
  122. 122.
    Campbell C, McMillan HJ, Mah JK, Tarnopolsky M, Selby K et al. 2017. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: results of a randomized, placebo-controlled clinical trial. Muscle Nerve 55:4458–64
    [Google Scholar]
  123. 123.
    Amato AA, Sivakumar K, Goyal N, David WS, Salajegheh M et al. 2014. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology 83:242239–46
    [Google Scholar]
  124. 124.
    Hanna MG, Badrising UA, Benveniste O, Lloyd TE, Needham M et al. 2019. Safety and efficacy of intravenous bimagrumab in inclusion body myositis (RESILIENT): a randomised, double-blind, placebo-controlled phase 2b trial. Lancet Neurol. 18:9834–44
    [Google Scholar]
  125. 125.
    Sivakumar K, Cochrane TI, Sloth B, Ashar H, Laurent D et al. 2020. Long-term safety and tolerability of bimagrumab (BYM338) in sporadic inclusion body myositis. Neurology 95:14e1971–78
    [Google Scholar]
  126. 126.
    Rooks D, Praestgaard J, Hariry S, Laurent D, Petricoul O et al. 2017. Treatment of sarcopenia with bimagrumab: results from a phase II, randomized, controlled, proof-of-concept study. J. Am. Geriatr. Soc. 65:91988–95
    [Google Scholar]
  127. 127.
    Rooks D, Swan T, Goswami B, Filosa LA, Bunte O et al. 2020. Bimagrumab versus optimized standard of care for treatment of sarcopenia in community-dwelling older adults: a randomized clinical trial. JAMA Netw. Open 3:10e2020836
    [Google Scholar]
  128. 128.
    Woodhouse L, Gandhi R, Warden SJ, Poiraudeau S, Myers SL et al. 2016. A phase 2 randomized study investigating the efficacy and safety of myostatin antibody LY2495655 versus placebo in patients undergoing elective total hip arthroplasty. J. Frailty Aging 5:162–70
    [Google Scholar]
  129. 129.
    Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA et al. 2015. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3:12948–57
    [Google Scholar]
  130. 130.
    Golan T, Geva R, Richards D, Madhusudan S, Lin BK et al. 2018. LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomized, phase 2 trial. J Cachexia Sarcopenia Muscle 9:5871–79
    [Google Scholar]
  131. 131.
    Polkey MI, Praestgaard J, Berwick A, Franssen FME, Singh D et al. 2019. Activin type II receptor blockade for treatment of muscle depletion in chronic obstructive pulmonary disease. A randomized trial. Am. J. Respir. Crit. Care Med. 199:3313–20
    [Google Scholar]
  132. 132.
    Heymsfield SB, Coleman LA, Miller R, Rooks DS, Laurent D et al. 2021. Effect of Bimagrumab versus placebo on body fat mass among adults with type 2 diabetes and obesity: a phase 2 randomized clinical trial. JAMA Netw. Open 4:1e2033457
    [Google Scholar]
  133. 133.
    Attie KM, Borgstein NG, Yang Y, Condon CH, Wilson DM et al. 2013. A single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. Muscle Nerve 47:3416–23
    [Google Scholar]
  134. 134.
    Padhi D, Higano CS, Shore ND, Sieber P, Rasmussen E, Smith MR. 2014. Pharmacological inhibition of myostatin and changes in lean body mass and lower extremity muscle size in patients receiving androgen deprivation therapy for prostate cancer. J. Clin. Endocrinol. Metab. 99:10E1967–75
    [Google Scholar]
  135. 135.
    Rooks DS, Laurent D, Praestgaard J, Rasmussen S, Bartlett M, Tankó LB. 2017. Effect of bimagrumab on thigh muscle volume and composition in men with casting-induced atrophy. J. Cachexia Sarcopenia Muscle 8:5727–34
    [Google Scholar]
  136. 136.
    Garito T, Roubenoff R, Hompesch M, Morrow L, Gomez K et al. 2018. Bimagrumab improves body composition and insulin sensitivity in insulin-resistant individuals. Diabetes Obes. Metab. 20:194–102
    [Google Scholar]
  137. 137.
    Rooks D, Petricoul O, Praestgaard J, Bartlett M, Laurent D, Roubenoff R. 2020. Safety and pharmacokinetics of bimagrumab in healthy older and obese adults with body composition changes in the older cohort. J. Cachexia Sarcopenia Muscle 11:61525–34
    [Google Scholar]
  138. 138.
    Bullough WS. 1965. Mitotic and functional homeostasis: a speculative review. Cancer Res. 25:101683–727
    [Google Scholar]
  139. 139.
    Pearsall RS, Canalis E, Cornwall-Brady M, Underwood KW, Haigis B et al. 2008. A soluble activin type IIA receptor induces bone formation and improves skeletal integrity. PNAS 105:197082–87
    [Google Scholar]
  140. 140.
    Chiu CS, Peekhaus N, Weber H, Adamski S, Murray EM et al. 2013. Increased muscle force production and bone mineral density in ActRIIB-Fc-treated mature rodents. J. Gerontol. A Biol. Sci. Med. Sci. 68:101181–92
    [Google Scholar]
  141. 141.
    Bialek P, Parkington J, Li X, Gavin D, Wallace C et al. 2014. A myostatin and activin decoy receptor enhances bone formation in mice. Bone 60:162–71
    [Google Scholar]
  142. 142.
    DiGirolamo DJ, Singhal V, Chang X, Lee SJ, Germain-Lee EL. 2015. Administration of soluble activin receptor 2B increases bone and muscle mass in a mouse model of osteogenesis imperfecta. Bone Res 3:14042
    [Google Scholar]
  143. 143.
    Guo W, Pencina KM, O'Connell K, Montano M, Peng L et al. 2017. Administration of an activin receptor IIB ligand trap protects male juvenile rhesus macaques from simian immunodeficiency virus-associated bone loss. Bone 97:209–15
    [Google Scholar]
  144. 144.
    Lee SJ, Lehar A, Meir JU, Koch C, Morgan A et al. 2020. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. PNAS 117:3823942–51
    [Google Scholar]
  145. 145.
    Lodberg A, van der Eerden BCJ, Boers-Sijmons B, Thomsen JS, Brüel A et al. 2019. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice. FASEB J. 33:56001–10
    [Google Scholar]
  146. 146.
    Goh BC, Singhal V, Herrera AJ, Tomlinson RE, Kim S et al. 2017. Activin receptor type 2A (ACVR2A) functions directly in osteoblasts as a negative regulator of bone mass. J. Biol. Chem. 292:3313809–22
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-012422-112116
Loading
/content/journals/10.1146/annurev-physiol-012422-112116
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error