Macrophage polarization refers to how macrophages have been activated at a given point in space and time. Polarization is not fixed, as macrophages are sufficiently plastic to integrate multiple signals, such as those from microbes, damaged tissues, and the normal tissue environment. Three broad pathways control polarization: epigenetic and cell survival pathways that prolong or shorten macrophage development and viability, the tissue microenvironment, and extrinsic factors, such as microbial products and cytokines released in inflammation. A plethora of advances have provided a framework for rationally purifying, describing, and manipulating macrophage polarization. Here, I assess the current state of knowledge about macrophage polarization and enumerate the major questions about how activated macrophages regulate the physiology of normal and damaged tissues.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. 1.  2015. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17:34–40 [Google Scholar]
  2. Martinez FO, Gordon S. 2.  2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13 [Google Scholar]
  3. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW. 3.  et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20 [Google Scholar]
  4. Varga T, Mounier R, Horvath A, Cuvellier S, Dumont F. 4.  et al. 2016. Highly dynamic transcriptional signature of distinct macrophage subsets during sterile inflammation, resolution and tissue repair. J. Immunol. 196:4771–82 [Google Scholar]
  5. Randolph GJ. 5.  2009. The fate of monocytes in atherosclerosis. J. Thromb. Haemost. 7:Suppl. 128–30 [Google Scholar]
  6. Varga T, Mounier R, Gogolak P, Poliska S, Chazaud B, Nagy L. 6.  2013. Tissue LyC6 macrophages are generated in the absence of circulating LyC6 monocytes and Nur77 in a model of muscle regeneration. J. Immunol. 191:5695–701 [Google Scholar]
  7. Barron L, Wynn TA. 7.  2011. Macrophage activation governs schistosomiasis-induced inflammation and fibrosis. Eur. J. Immunol. 41:2509–14 [Google Scholar]
  8. Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O. 8.  et al. 2013. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 6:498–510 [Google Scholar]
  9. Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CH. 9.  et al. 2015. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J. Exp. Med. 212:447–56 [Google Scholar]
  10. Yona S, Kim KW, Wolf Y, Mildner A, Varol D. 10.  et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91 [Google Scholar]
  11. Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT. 11.  et al. 2012. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37:1076–90 [Google Scholar]
  12. Morias Y, Abels C, Laoui D, Van Overmeire E, Guilliams M. 12.  et al. 2015. Ly6C monocytes regulate parasite-induced liver inflammation by inducing the differentiation of pathogenic Ly6C+ monocytes into macrophages. PLOS Pathog 11:e1004873 [Google Scholar]
  13. Shechter R, Miller O, Yovel G, Rosenzweig N, London A. 13.  et al. 2013. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–69 [Google Scholar]
  14. Amit I, Winter DR, Jung S. 14.  2015. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat. Immunol. 17:18–25 [Google Scholar]
  15. Nathan C, Ding A. 15.  2010. Nonresolving inflammation. Cell 140:871–82 [Google Scholar]
  16. Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A. 16.  et al. 2012. Origins of tumor-associated macrophages and neutrophils. PNAS 109:2491–96 [Google Scholar]
  17. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G. 17.  et al. 2010. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–39 [Google Scholar]
  18. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J. 18.  et al. 2011. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–25 [Google Scholar]
  19. Haverkamp JM, Smith AM, Weinlich R, Dillon CP, Qualls JE. 19.  et al. 2014. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. Immunity 41:947–59 [Google Scholar]
  20. Kratochvill F, Neale G, Haverkamp JM, Van de Velde LA, Smith AM. 20.  et al. 2015. TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep 12:1902–14 [Google Scholar]
  21. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A. 21.  et al. 2006. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood 107:2112–22 [Google Scholar]
  22. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR. 22.  et al. 2014. The cellular and molecular origin of tumor-associated macrophages. Science 344:921–25 [Google Scholar]
  23. Mackaness GB. 23.  1964. The immunological basis of acquired cellular resistance. J. Exp. Med. 120:105–20 [Google Scholar]
  24. Stein M, Keshav S, Harris N, Gordon S. 24.  1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176:287–92 [Google Scholar]
  25. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS. 25.  et al. 1995. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641–50 [Google Scholar]
  26. Stuehr DJ, Nathan CF. 26.  1989. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169:1543–55 [Google Scholar]
  27. Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB. 27.  et al. 2015. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. Cell 162:1309–21 [Google Scholar]
  28. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT. 28.  et al. 2013. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–40 [Google Scholar]
  29. Junkin M, Kaestli AJ, Cheng Z, Jordi C, Albayrak C. 29.  et al. 2016. High-content quantification of single-cell immune dynamics. Cell Rep 15:411–22 [Google Scholar]
  30. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W. 30.  et al. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–88 [Google Scholar]
  31. Mills CD. 31.  2012. M1 and M2 macrophages: oracles of health and disease. Crit. Rev. Immunol. 32:463–88 [Google Scholar]
  32. Campbell L, Saville CR, Murray PJ, Cruickshank SM, Hardman MJ. 32.  2013. Local arginase 1 activity is required for cutaneous wound healing. J. Invest. Dermatol. 133:2461–70 [Google Scholar]
  33. El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW. 33.  et al. 2008. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 9:1399–406 [Google Scholar]
  34. Qualls JE, Neale G, Smith AM, Koo MS, DeFreitas AA. 34.  et al. 2010. Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling. Sci. Signal. 3:ra62 [Google Scholar]
  35. Murray PJ. 35.  2016. Amino acid auxotrophy as a system of immunological control nodes. Nat. Immunol. 17:132–39 [Google Scholar]
  36. Wynn TA, Vannella KM. 36.  2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–62 [Google Scholar]
  37. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC. 37.  et al. 2009. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLOS Pathog 5:e1000371 [Google Scholar]
  38. Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L. 38.  et al. 2012. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 12:313–23 [Google Scholar]
  39. Edwards JP, Zhang X, Frauwirth KA, Mosser DM. 39.  2006. Biochemical and functional characterization of three activated macrophage populations. J. Leukoc. Biol. 80:1298–307 [Google Scholar]
  40. Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ. 40.  2002. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169:2253–63 [Google Scholar]
  41. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J. 41.  et al. 2014. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat. Immunol. 15:423–30 [Google Scholar]
  42. Munder M, Eichmann K, Modolell M. 42.  1998. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160:5347–54 [Google Scholar]
  43. Munder M, Eichmann K, Moran JM, Centeno F, Soler G, Modolell M. 43.  1999. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J. Immunol. 163:3771–77 [Google Scholar]
  44. Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA. 44.  2009. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J. Leukoc. Biol. 86:411–21 [Google Scholar]
  45. Lacey DC, Achuthan A, Fleetwood AJ, Dinh H, Roiniotis J. 45.  et al. 2012. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J. Immunol. 188:5752–65 [Google Scholar]
  46. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM. 46.  et al. 2014. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–63 [Google Scholar]
  47. El Kasmi KC, Pugliese SC, Riddle SR, Poth JM, Anderson AL. 47.  et al. 2014. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J. Immunol. 193:597–609 [Google Scholar]
  48. El Kasmi KC, Stenmark KR. 48.  2015. Contribution of metabolic reprogramming to macrophage plasticity and function. Semin. Immunol. 27:267–75 [Google Scholar]
  49. Lavin Y, Mortha A, Rahman A, Merad M. 49.  2015. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 15:731–44 [Google Scholar]
  50. Perdiguero EG, Geissmann F. 50.  2015. The development and maintenance of resident macrophages. Nat. Immunol. 17:2–8 [Google Scholar]
  51. Ginhoux F, Guilliams M. 51.  2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:439–49 [Google Scholar]
  52. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, de Bruijn M. 52.  et al. 2015. The origin of tissue-resident macrophages: when an erythro-myeloid progenitor is an erythro-myeloid progenitor. Immunity 43:1023–24 [Google Scholar]
  53. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E. 53.  et al. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–51 [Google Scholar]
  54. Hoeffel G, Ginhoux F. 54.  2015. Ontogeny of tissue-resident macrophages. Front. Immunol. 6:486 [Google Scholar]
  55. Gibbings SL, Goyal R, Desch AN, Leach SM, Prabagar M. 55.  et al. 2015. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 126:1357–66 [Google Scholar]
  56. Bain CC, Bravo-Blas A, Scott CL, Gomez Perdiguero E, Geissmann F. 56.  et al. 2014. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15:929–37 [Google Scholar]
  57. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB. 57.  et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804 [Google Scholar]
  58. Wang J, Wegener JE, Huang TW, Sripathy S, De Jesus-Cortes H. 58.  et al. 2015. Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature 521:E1–4 [Google Scholar]
  59. van de Laar L, Saelens W, De Prijck S, Martens L, Scott CL. 59.  et al. 2016. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44:755–68 [Google Scholar]
  60. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H. 60.  et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–26 [Google Scholar]
  61. Gundra UM, Girgis NM, Ruckerl D, Jenkins S, Ward LN. 61.  et al. 2014. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood 123:e110–22 [Google Scholar]
  62. Hamilton JA, Achuthan A. 62.  2013. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 34:81–89 [Google Scholar]
  63. Glass CK, Natoli G. 63.  2015. Molecular control of activation and priming in macrophages. Nat. Immunol. 17:26–33 [Google Scholar]
  64. Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A. 64.  et al. 2013. Latent enhancers activated by stimulation in differentiated cells. Cell 152:157–71 [Google Scholar]
  65. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H. 65.  et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12:231–38 [Google Scholar]
  66. Saliba DG, Heger A, Eames HL, Oikonomopoulos S, Teixeira A. 66.  et al. 2014. IRF5:RelA interaction targets inflammatory genes in macrophages. Cell Rep 8:1308–17 [Google Scholar]
  67. Weiss M, Byrne AJ, Blazek K, Saliba DG, Pease JE. 67.  et al. 2015. IRF5 controls both acute and chronic inflammation. PNAS 112:11001–6 [Google Scholar]
  68. Date D, Das R, Narla G, Simon DI, Jain MK, Mahabeleshwar GH. 68.  2014. Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization. J. Biol. Chem. 289:10318–29 [Google Scholar]
  69. Biswas SK, Mantovani A. 69.  2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11:889–96 [Google Scholar]
  70. Gajewski TF, Schreiber H, Fu YX. 70.  2013. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14:1014–22 [Google Scholar]
  71. Noy R, Pollard JW. 71.  2014. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61 [Google Scholar]
  72. Duffield JS, Lupher M, Thannickal VJ, Wynn TA. 72.  2013. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8:241–76 [Google Scholar]
  73. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. 73.  2000. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164:6166–73 [Google Scholar]
  74. Chen F, Wu W, Millman A, Craft JF, Chen E. 74.  et al. 2014. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15:938–46 [Google Scholar]
  75. Schleicher U, Paduch K, Debus A, Obermeyer S, König T. 75.  et al. 2016. TNF-mediated restriction of arginase 1 expression in myeloid cells triggers type 2 NO synthase activity at the site of infection. Cell Rep 15:1062–75 [Google Scholar]
  76. Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X. 76.  et al. 2014. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157:1292–308 [Google Scholar]
  77. Kroner A, Greenhalgh AD, Zarruk JG, Passos dos Santos R, Gaestel M, David S. 77.  2014. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83:1098–116 [Google Scholar]
  78. Tundup S, Srivastava L, Nagy T, Harn D. 78.  2014. CD14 influences host immune responses and alternative activation of macrophages during Schistosoma mansoni infection. Infect. Immun. 82:3240–51 [Google Scholar]
  79. Vos AC, Wildenberg ME, Arijs I, Duijvestein M, Verhaar AP. 79.  et al. 2012. Regulatory macrophages induced by infliximab are involved in healing in vivo and in vitro. Inflamm. Bowel Dis. 18:401–8 [Google Scholar]
  80. Vos AC, Wildenberg ME, Duijvestein M, Verhaar AP, van den Brink GR, Hommes DW. 80.  2011. Anti-tumor necrosis factor-α antibodies induce regulatory macrophages in an Fc region-dependent manner. Gastroenterology 140:221–30 [Google Scholar]
  81. Salgame P, Yap GS, Gause WC. 81.  2013. Effect of helminth-induced immunity on infections with microbial pathogens. Nat. Immunol. 14:1118–26 [Google Scholar]
  82. Rafi W, Bhatt K, Gause WC, Salgame P. 82.  2015. Neither primary nor memory immunity to Mycobacterium tuberculosis infection is compromised in mice with chronic enteric helminth infection. Infect. Immun. 83:1217–23 [Google Scholar]
  83. Potian JA, Rafi W, Bhatt K, McBride A, Gause WC, Salgame P. 83.  2011. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J. Exp. Med. 208:1863–74 [Google Scholar]
  84. Duque-Correa MA, Kühl AA, Rodriguez PC, Zedler U, Schommer-Leitner S. 84.  et al. 2014. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. PNAS 111:E4024–32 [Google Scholar]
  85. Monin L, Griffiths KL, Lam WY, Gopal R, Kang DD. 85.  et al. 2015. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis. J. Clin. Invest. 125:4699–713 [Google Scholar]
  86. Reese TA, Wakeman BS, Choi HS, Hufford MM, Huang SC. 86.  et al. 2014. Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter. Science 345:573–77 [Google Scholar]
  87. O'Neill LA, Pearce EJ. 87.  2016. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213:15–23 [Google Scholar]
  88. Biswas SK. 88.  2015. Metabolic reprogramming of immune cells in cancer progression. Immunity 43:435–49 [Google Scholar]
  89. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y. 89.  et al. 2015. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:419–30 [Google Scholar]
  90. Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M. 90.  et al. 2014. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15:846–55 [Google Scholar]
  91. Abram CL, Roberge GL, Hu Y, Lowell CA. 91.  2014. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J. Immunol. Methods 408:89–100 [Google Scholar]
  92. Stadtfeld M, Ye M, Graf T. 92.  2007. Identification of interventricular septum precursor cells in the mouse embryo. Dev. Biol. 302:195–207 [Google Scholar]
  93. Ye M, Iwasaki H, Laiosa CV, Stadtfeld M, Xie H. 93.  et al. 2003. Hematopoietic stem cells expressing the myeloid lysozyme gene retain long-term, multilineage repopulation potential. Immunity 19:689–99 [Google Scholar]
  94. Orthgiess J, Gericke M, Immig K, Schulz A, Hirrlinger J. 94.  et al. 2016. Neurons exhibit Lyz2 promoter activity in vivo: implications for using LysM-Cre mice in myeloid cell research. Eur. J. Immunol. 46:1529–32 [Google Scholar]
  95. Kratochvill F, Gratz N, Qualls JE, Van De Velde LA, Chi H. 95.  et al. 2015. Tristetraprolin limits inflammatory cytokine production in tumor-associated macrophages in an mRNA decay-independent manner. Cancer Res 75:3054–64 [Google Scholar]
  96. Vannella KM, Barron L, Borthwick LA, Kindrachuk KN, Narasimhan PB. 96.  et al. 2014. Incomplete deletion of IL-4Rα by LysMCre reveals distinct subsets of M2 macrophages controlling inflammation and fibrosis in chronic schistosomiasis. PLOS Pathog 10:e1004372 [Google Scholar]
  97. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K. 97.  et al. 2014. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25:846–59 [Google Scholar]
  98. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L. 98.  et al. 2013. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19:1264–72 [Google Scholar]
  99. Murray PJ, Wynn TA. 99.  2011. Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol. 89:557–63 [Google Scholar]
  100. Herbert DR, Holscher C, Mohrs M, Arendse B, Schwegmann A. 100.  et al. 2004. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20:623–35 [Google Scholar]
  101. Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ. 101.  2001. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J. Immunol. 166:2173–77 [Google Scholar]
  102. Zimmermann N, King NE, Laporte J, Yang M, Mishra A. 102.  et al. 2003. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J. Clin. Invest. 111:1863–74 [Google Scholar]
  103. Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y. 103.  et al. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11:936–44 [Google Scholar]
  104. Chawla A. 104.  2010. Control of macrophage activation and function by PPARs. Circ. Res. 106:1559–69 [Google Scholar]
  105. Liao X, Sharma N, Kapadia F, Zhou G, Lu Y. 105.  et al. 2011. Krüppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121:2736–49 [Google Scholar]
  106. Dalmas E, Toubal A, Alzaid F, Blazek K, Eames HL. 106.  et al. 2015. Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat. Med. 21:610–18 [Google Scholar]
  107. Covarrubias AJ, Aksoylar HI, Horng T. 107.  2015. Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin. Immunol. 27:286–96 [Google Scholar]
  108. Festuccia WT, Pouliot P, Bakan I, Sabatini DM, Laplante M. 108.  2014. Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLOS ONE 9:e95432 [Google Scholar]
  109. Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K. 109.  et al. 2012. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. PNAS 109:9517–22 [Google Scholar]
  110. Zheng C, Yang Q, Xu C, Shou P, Cao J. 110.  et al. 2015. CD11b regulates obesity-induced insulin resistance via limiting alternative activation and proliferation of adipose tissue macrophages. PNAS 112:E7239–48 [Google Scholar]
  111. Tao B, Jin W, Xu J, Liang Z, Yao J. 111.  et al. 2014. Myeloid-specific disruption of tyrosine phosphatase Shp2 promotes alternative activation of macrophages and predisposes mice to pulmonary fibrosis. J. Immunol. 193:2801–11 [Google Scholar]
  112. Rauh MJ, Ho V, Pereira C, Sham A, Sly LM. 112.  et al. 2005. SHIP represses the generation of alternatively activated macrophages. Immunity 23:361–74 [Google Scholar]
  113. Yue S, Rao J, Zhu J, Busuttil RW, Kupiec-Weglinski JW. 113.  et al. 2014. Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation. J. Immunol. 192:5343–53 [Google Scholar]
  114. Sahin E, Haubenwallner S, Kuttke M, Kollmann I, Halfmann A. 114.  et al. 2014. Macrophage PTEN regulates expression and secretion of arginase I modulating innate and adaptive immune responses. J. Immunol. 193:1717–27 [Google Scholar]
  115. Adamson SE, Griffiths R, Moravec R, Senthivinayagam S, Montgomery G. 115.  et al. 2016. Disabled homolog 2 controls macrophage phenotypic polarization and adipose tissue inflammation. J. Clin. Invest. 126:1311–22 [Google Scholar]
  116. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF. 116.  et al. 2012. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15:813–26 [Google Scholar]
  117. Mounier R, Théret M, Arnold L, Cuvellier S, Bultot L. 117.  et al. 2013. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18:251–64 [Google Scholar]
  118. Sag D, Carling D, Stout RD, Suttles J. 118.  2008. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181:8633–41 [Google Scholar]
  119. Yang J, Zhang Z, Chen C, Liu Y, Si Q. 119.  et al. 2014. MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene 33:3014–23 [Google Scholar]
  120. Wang Z, Brandt S, Medeiros A, Wang S, Wu H. 120.  et al. 2015. MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLOS ONE 10:e0115855 [Google Scholar]
  121. Banerjee S, Xie N, Cui H, Tan Z, Yang S. 121.  et al. 2013. MicroRNA let-7c regulates macrophage polarization. J. Immunol. 190:6542–49 [Google Scholar]
  122. Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B. 122.  et al. 2015. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest. 125:4334–48 [Google Scholar]
  123. Ying W, Tseng A, Chang RC, Morin A, Brehm T. 123.  et al. 2015. MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J. Clin. Invest. 125:4149–59 [Google Scholar]
  124. Cudejko C, Wouters K, Fuentes L, Hannou SA, Paquet C. 124.  et al. 2011. p16INK4a deficiency promotes IL-4-induced polarization and inhibits proinflammatory signaling in macrophages. Blood 118:2556–66 [Google Scholar]
  125. Fontana MF, Baccarella A, Pancholi N, Pufall MA, Herbert DR, Kim CC. 125.  2015. JUNB is a key transcriptional modulator of macrophage activation. J. Immunol. 194:177–86 [Google Scholar]
  126. Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P. 126.  et al. 2009. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. PNAS 106:14978–83 [Google Scholar]
  127. Bonavita E, Gentile S, Rubino M, Maina V, Papait R. 127.  et al. 2015. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell 160:700–14 [Google Scholar]
  128. Ma G, Pan PY, Eisenstein S, Divino CM, Lowell CA. 128.  et al. 2011. Paired immunoglobulin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34:385–95 [Google Scholar]
  129. Nicholson SE, Murray PJ. 129.  2014. Regulation of macrophage polarization by the STAT-SOCS signaling axis. Macrophages: Biology and Role in the Pathology of Diseases SK Biswas, A Mantovani 497–508 New York: Springer-Verlag [Google Scholar]
  130. Qualls JE, Murray PJ. 130.  2015. Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration. Semin. Immunopathol. 38:139–52 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error