1932

Abstract

Oxidant molecules are produced in biological systems and historically have been considered causal mediators of damage and disease. While oxidants may contribute to the pathogenesis of disease, evidence continues to emerge that shows these species also play important regulatory roles in health. A major mechanism of oxidant sensing and signaling involves their reaction with reactive cysteine thiols within proteins, inducing oxidative posttranslational modifications that can couple to altered function to enable homeostatic regulation. Protein kinase A and protein kinase G are regulated by oxidants in this way, and this review focuses on our molecular-level understanding of these events and their role in regulating cardiovascular physiology during health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114417
2019-02-10
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114417.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114417&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Burgoyne JR, Mongue-Din H, Eaton P, Shah AM 2012. Redox signaling in cardiac physiology and pathology. Circ. Res. 111:1091–106
    [Google Scholar]
  2. 2.  Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO 1954. Oxygen poisoning and X-irradiation: a mechanism in common. Science 119:623–26
    [Google Scholar]
  3. 3.  Harman D. 1956. Ageing: a theory based on free radical and radiation chemistry. J. Gerontol. 2:298–300
    [Google Scholar]
  4. 4.  Pauling L, Moertel C 1986. A proposition: megadoses of vitamin C are valuable in the treatment of cancer. Nutr. Rev. 44:28–32
    [Google Scholar]
  5. 5.  Pauling L. 1983. Vitamin C and longevity. Agressologie 24:317–19
    [Google Scholar]
  6. 6.  Pauling L. 1971. Vitamin C and common cold. JAMA 216:332
    [Google Scholar]
  7. 7.  Hemilä H. 2006. Do vitamins C and E affect respiratory infections? PhD Thesis, Univ Helsinki:
  8. 8.  Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ 1996. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347:781–86
    [Google Scholar]
  9. 9.  Chappell LC, Seed PT, Briley AL, Kelly FJ, Lee R et al. 1999. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial. Lancet 354:810–16
    [Google Scholar]
  10. 10.  Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C 2008. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2008:CD007176
    [Google Scholar]
  11. 11.  Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C 2007. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–57
    [Google Scholar]
  12. 12.  Bjelakovic G, Gluud C 2007. Surviving antioxidant supplements. J. Natl. Cancer Inst. 99:742–43
    [Google Scholar]
  13. 13.  Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E 2005. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 142:37–46
    [Google Scholar]
  14. 14. Alpha-Tocopherol Beta Carotene Cancer Prev. Study Group. 1994. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330:1029–35
    [Google Scholar]
  15. 15.  Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR et al. 1996. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J. Natl. Cancer Inst. 88:1550–59
    [Google Scholar]
  16. 16.  Gladyshev VN. 2014. The free radical theory of aging is dead. Long live the damage theory! Antioxid. Redox Signal 20:727–31
    [Google Scholar]
  17. 17.  Eaton P. 2006. Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic. Biol. Med. 40:1889–99
    [Google Scholar]
  18. 18.  Jia J, Arif A, Terenzi F, Willard B, Plow EF et al. 2014. Target-selective protein S-nitrosylation by sequence motif recognition. Cell 159:623–34
    [Google Scholar]
  19. 19.  Pearce LR, Komander D, Alessi DR 2010. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 11:9–22
    [Google Scholar]
  20. 20.  Winterbourn CC. 2008. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4:278–86
    [Google Scholar]
  21. 21.  Salmeen A, Barford D 2005. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid. Redox Signal. 7:560–77
    [Google Scholar]
  22. 22.  Mallis RJ, Buss JE, Thomas JA 2001. Oxidative modification of H-ras: S-thiolation and S-nitrosylation of reactive cysteines. Biochem. J. 355:145–53
    [Google Scholar]
  23. 23.  Maller C, Schröder E, Eaton P 2011. Glyceraldehyde 3-phosphate dehydrogenase is unlikely to mediate hydrogen peroxide signaling: studies with a novel anti-dimedone sulfenic acid antibody. Antioxid. Redox Signal. 14:49–60
    [Google Scholar]
  24. 24.  Wood ZA, Poole LB, Karplus PA 2003. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–53
    [Google Scholar]
  25. 25.  Stöcker S, Maurer M, Ruppert T, Dick TP 2018. A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. Nat. Chem. Biol. 14:148–55
    [Google Scholar]
  26. 26.  Biteau B, Labarre J, Toledano MB 2003. ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–84
    [Google Scholar]
  27. 27.  Berndt C, Lillig CH, Holmgren A 2007. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am. J. Physiol. Heart. Circ. Physiol. 292:H1227–36
    [Google Scholar]
  28. 28.  Brennan JP, Wait R, Begum S, Bell JR, Dunn MJ, Eaton P 2004. Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J. Biol. Chem. 279:41352–60
    [Google Scholar]
  29. 29.  Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D 2004. Protein disulfide bond formation in the cytoplasm during oxidative stress. J. Biol. Chem. 279:21749–58
    [Google Scholar]
  30. 30.  Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schroder E et al. 2006. Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J. Biol. Chem. 281:21827–36
    [Google Scholar]
  31. 31.  Burgoyne JR, Eaton P 2009. Transnitrosylating nitric oxide species directly activate type I protein kinase A, providing a novel adenylate cyclase-independent cross-talk to β-adrenergic-like signaling. J. Biol. Chem. 284:29260–68
    [Google Scholar]
  32. 32.  Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP et al. 2007. Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317:1393–97
    [Google Scholar]
  33. 33.  Landgraf W, Regulla S, Meyer HE, Hofmann F 1991. Oxidation of cysteines activates cGMP-dependent protein kinase. J. Biol. Chem. 266:16305–11
    [Google Scholar]
  34. 34.  Ravnskjaer K, Madiraju A, Montminy M 2016. Role of the cAMP pathway in glucose and lipid metabolism. Handb. Exp. Pharmacol. 233:29–49
    [Google Scholar]
  35. 35.  Bossis I, Stratakis CA 2004. Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 145:5452–58
    [Google Scholar]
  36. 36.  Shabb JB. 2001. Physiological substrates of cAMP-dependent protein kinase. Chem. Rev. 101:2381–411
    [Google Scholar]
  37. 37.  Turnham RE, Scott JD 2016. Protein kinase A catalytic subunit isoform PRKACA; history, function and physiology. Gene 577:101–8
    [Google Scholar]
  38. 38.  Murthy KS. 2006. Signaling for contraction and relaxation in smooth muscle of the gut. Annu. Rev. Physiol. 68:345–74
    [Google Scholar]
  39. 39.  Kandel ER. 2012. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain 5:14
    [Google Scholar]
  40. 40.  Lissandron V, Zaccolo M 2006. Compartmentalized cAMP/PKA signalling regulates cardiac excitation-contraction coupling. J. Muscle Res. Cell Motil. 27:399–403
    [Google Scholar]
  41. 41.  Haynes J Jr., Robinson J, Saunders L, Taylor AE, Strada SJ. 1992. Role of cAMP-dependent protein kinase in cAMP-mediated vasodilation. Am. J. Physiol. Heart Circ. Physiol. 262:H511–16
    [Google Scholar]
  42. 42.  Pan L, Black TA, Shi Q, Jones CA, Petrovic N et al. 2001. Critical roles of a cyclic AMP responsive element and an E-box in regulation of mouse renin gene expression. J. Biol. Chem. 276:45530–38
    [Google Scholar]
  43. 43.  Liu F, Verin AD, Borbiev T, Garcia JG 2001. Role of cAMP-dependent protein kinase A activity in endothelial cell cytoskeleton rearrangement. Am. J. Physiol. Lung. Cell Mol. Physiol. 280:L1309–17
    [Google Scholar]
  44. 44.  Goddard LM, Iruela-Arispe ML 2013. Cellular and molecular regulation of vascular permeability. Thromb. Haemost. 109:407–15
    [Google Scholar]
  45. 45.  Kim S, Bakre M, Yin H, Varner JA 2002. Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J. Clin. Investig. 110:933–41
    [Google Scholar]
  46. 46.  Smith FD, Esseltine JL, Nygren PJ, Veesler D, Byrne DP et al. 2017. Local protein kinase A action proceeds through intact holoenzymes. Science 356:1288–93
    [Google Scholar]
  47. 47.  Dalton GD, Dewey WL 2006. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 40:23–34
    [Google Scholar]
  48. 48.  Rusnak F, Reiter T 2000. Sensing electrons: protein phosphatase redox regulation. Trends Biochem. Sci. 25:527–29
    [Google Scholar]
  49. 49.  Clegg CH, Cadd GG, McKnight GS 1988. Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase. PNAS 85:3703–7
    [Google Scholar]
  50. 50.  Amieux PS, Cummings DE, Motamed K, Brandon EP, Wailes LA et al. 1997. Compensatory regulation of RIα protein levels in protein kinase A mutant mice. J. Biol. Chem. 272:3993–98
    [Google Scholar]
  51. 51.  Amieux PS, Howe DG, Knickerbocker H, Lee DC, Su T et al. 2002. Increased basal cAMP-dependent protein kinase activity inhibits the formation of mesoderm-derived structures in the developing mouse embryo. J. Biol. Chem. 277:27294–304
    [Google Scholar]
  52. 52.  Skålhegg BS, Huang Y, Su T, Idzerda RL, McKnight GS, Burton KA 2002. Mutation of the Cα subunit of PKA leads to growth retardation and sperm dysfunction. Mol. Endocrinol. 16:630–39
    [Google Scholar]
  53. 53.  Kirschner LS. 2009. Use of mouse models to understand the molecular basis of tissue-specific tumorigenesis in the Carney complex. J. Intern. Med. 266:60–68
    [Google Scholar]
  54. 54.  Kirschner LS, Kusewitt DF, Matyakhina L, Towns WH 2nd, Carney JA et al. 2005. A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res 65:4506–14
    [Google Scholar]
  55. 55.  Boikos SA, Stratakis CA 2006. Carney complex: pathology and molecular genetics. Neuroendocrinology 83:189–99
    [Google Scholar]
  56. 56.  Banky P, Roy M, Newlon MG, Morikis D, Haste NM et al. 2003. Related protein-protein interaction modules present drastically different surface topographies despite a conserved helical platform. J. Mol. Biol. 330:1117–29
    [Google Scholar]
  57. 57.  Newlon MG, Roy M, Hausken ZE, Scott JD, Jennings PA 1997. The A-kinase anchoring domain of type IIα cAMP-dependent protein kinase is highly helical. J. Biol. Chem. 272:23637–44
    [Google Scholar]
  58. 58.  Michel JJ, Scott JD 2002. AKAP mediated signal transduction. Annu. Rev. Pharmacol. Toxicol. 42:235–57
    [Google Scholar]
  59. 59.  Krall J, Taskén K, Staheli J, Jahnsen T, Movsesian MA 1999. Identification and quantitation of cAMP-dependent protein kinase R subunit isoforms in subcellular fractions of failing human myocardium. J. Mol. Cell. Cardiol. 31:971–80
    [Google Scholar]
  60. 60.  Cheley S, Panchal RG, Carr DW, Scott JD, Bayley H 1994. Type II regulatory subunits of cAMP-dependent protein kinase and their binding proteins in the nervous system of Aplysia californica. J. Biol. Chem. 269:2911–20
    [Google Scholar]
  61. 61.  Banky P, Huang LJ, Taylor SS 1998. Dimerization/docking domain of the type Iα regulatory subunit of cAMP-dependent protein kinase. Requirements for dimerization and docking are distinct but overlapping. J. Biol. Chem. 273:35048–55
    [Google Scholar]
  62. 62.  Huang LJ, Durick K, Weiner JA, Chun J, Taylor SS 1997. D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. PNAS 94:11184–89
    [Google Scholar]
  63. 63.  Sarma GN, Kinderman FS, Kim C, von Daake S, Chen LR et al. 2010. Structure of D-AKAP2:PKA RI complex: insights into AKAP specificity and selectivity. Structure 18:155–66
    [Google Scholar]
  64. 64.  Humphries KM, Juliano C, Taylor SS 2002. Regulation of cAMP-dependent protein kinase activity by glutathionylation. J. Biol. Chem. 277:43505–11
    [Google Scholar]
  65. 65.  Humphries KM, Deal MS, Taylor SS 2005. Enhanced dephosphorylation of cAMP-dependent protein kinase by oxidation and thiol modification. J. Biol. Chem. 280:2750–58
    [Google Scholar]
  66. 66.  Cheng X, Ma Y, Moore M, Hemmings BA, Taylor SS 1998. Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. PNAS 95:9849–54
    [Google Scholar]
  67. 67.  Moore MJ, Kanter JR, Jones KC, Taylor SS 2002. Phosphorylation of the catalytic subunit of protein kinase A. Autophosphorylation versus phosphorylation by phosphoinositide-dependent kinase-1. J. Biol. Chem. 277:47878–84
    [Google Scholar]
  68. 68.  Humphries KM, Pennypacker JK, Taylor SS 2007. Redox regulation of cAMP-dependent protein kinase signaling: kinase versus phosphatase inactivation. J. Biol. Chem. 282:22072–79
    [Google Scholar]
  69. 69.  First EA, Taylor SS 1984. Induced interchain disulfide bonding in cAMP-dependent protein kinase II. J. Biol. Chem. 259:4011–14
    [Google Scholar]
  70. 70.  de Piña MZ, Vázquez-Meza H, Pardo JP, Rendón JL, Villalobos-Molina R et al. 2008. Signaling the signal, cyclic AMP-dependent protein kinase inhibition by insulin-formed H2O2 and reactivation by thioredoxin. J. Biol. Chem. 283:12373–86
    [Google Scholar]
  71. 71.  Zick SK, Taylor SS 1982. Interchain disulfide bonding in the regulatory subunit of cAMP-dependent protein kinase I. J. Biol. Chem. 257:2287–93
    [Google Scholar]
  72. 72.  Bubis J, Vedvick TS, Taylor SS 1987. Antiparallel alignment of the two protomers of the regulatory subunit dimer of cAMP-dependent protein kinase I. J. Biol. Chem. 262:14961–66
    [Google Scholar]
  73. 73.  Leon DA, Herberg FW, Banky P, Taylor SS 1997. A stable α-helical domain at the N terminus of the RIα subunits of cAMP-dependent protein kinase is a novel dimerization/docking motif. J. Biol. Chem. 272:28431–37
    [Google Scholar]
  74. 74.  Burgoyne JR, Rudyk O, Cho HJ, Prysyazhna O, Hathaway N et al. 2015. Deficient angiogenesis in redox-dead Cys17Ser PKARIα knock-in mice. Nat. Commun. 6:7920
    [Google Scholar]
  75. 75.  Wolhuter K, Whitwell HJ, Switzer CH, Burgoyne JR, Timms JF, Eaton P 2018. Evidence against stable protein S-nitrosylation as a widespread mechanism of post-translational regulation. Mol. Cell 69:438–50.e5
    [Google Scholar]
  76. 76.  Jarnæss E, Ruppelt A, Stokka AJ, Lygren B, Scott JD, Taskén K 2008. Dual specificity A-kinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase A type I. J. Biol. Chem. 283:33708–18
    [Google Scholar]
  77. 77.  Jarnæss E, Stokka AJ, Kvissel AK, Skålhegg BS, Torgersen KM et al. 2009. Splicing factor arginine/serine-rich 17A (SFRS17A) is an A-kinase anchoring protein that targets protein kinase A to splicing factor compartments. J. Biol. Chem. 284:35154–64
    [Google Scholar]
  78. 78.  Means CK, Lygren B, Langeberg LK, Jain A, Dixon RE et al. 2011. An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. PNAS 108:E1227–35
    [Google Scholar]
  79. 79.  Sumandea CA, Garcia-Cazarin ML, Bozio CH, Sievert GA, Balke CW, Sumandea MP 2011. Cardiac troponin T, a sarcomeric AKAP, tethers protein kinase A at the myofilaments. J. Biol. Chem. 286:530–41
    [Google Scholar]
  80. 80.  Kurosu T, Hernandez AI, Wolk J, Liu J, Schwartz JH 2009. α/β-Tubulin are A kinase anchor proteins for type I PKA in neurons. Brain Res 1251:53–64
    [Google Scholar]
  81. 81.  Li H, Adamik R, Pacheco-Rodriguez G, Moss J, Vaughan M 2003. Protein kinase A-anchoring (AKAP) domains in brefeldin A-inhibited guanine nucleotide-exchange protein 2 (BIG2). PNAS 100:1627–32
    [Google Scholar]
  82. 82.  Burgers PP, Bruystens J, Burnley RJ, Nikolaev VO, Keshwani M et al. 2016. Structure of smAKAP and its regulation by PKA-mediated phosphorylation. FEBS J 283:2132–48
    [Google Scholar]
  83. 83.  Belenguer P, Pellegrini L 2013. The dynamin GTPase OPA1: more than mitochondria?. Biochim. Biophys. Acta 1833:176–83
    [Google Scholar]
  84. 84.  Vigil D, Blumenthal DK, Brown S, Taylor SS, Trewhella J 2004. Differential effects of substrate on type I and type II PKA holoenzyme dissociation. Biochemistry 43:5629–36
    [Google Scholar]
  85. 85.  Viste K, Kopperud RK, Christensen AE, Døskeland SO 2005. Substrate enhances the sensitivity of type I protein kinase A to cAMP. J. Biol. Chem. 280:13279–84
    [Google Scholar]
  86. 86.  Meyer AJ, Dick TP 2010. Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13:621–50
    [Google Scholar]
  87. 87.  Pidoux G, Witczak O, Jarnæss E, Myrvold L, Urlaub H et al. 2011. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J 30:4371–86
    [Google Scholar]
  88. 88.  Chu DT, Tao Y, Taskén K 2017. OPA1 in lipid metabolism: function of OPA1 in lipolysis and thermogenesis of adipocytes. Horm. Metab. Res. 49:276–85
    [Google Scholar]
  89. 89.  Yang L, Liu G, Zakharov SI, Bellinger AM, Mongillo M, Marx SO 2007. Protein kinase G phosphorylates Cav1.2 α1c and β2 subunits. Circ. Res. 101:465–74
    [Google Scholar]
  90. 90.  Haushalter KJ, Casteel DE, Raffeiner A, Stefan E, Patel HH, Taylor SS 2018. Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells. J. Biol. Chem. 293:4411–21
    [Google Scholar]
  91. 91.  Worner R, Lukowski R, Hofmann F, Wegener JW 2007. cGMP signals mainly through cAMP kinase in permeabilized murine aorta. Am. J. Physiol. Heart. Circ. Physiol. 292:H237–44
    [Google Scholar]
  92. 92.  Hofmann F, Ammendola A, Schlossmann J 2000. Rising behind NO: cGMP-dependent protein kinases. J. Cell Sci. 113:Pt. 101671–76
    [Google Scholar]
  93. 93.  Feil R, Lohmann SM, de Jonge H, Walter U, Hofmann F 2003. Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ. Res. 93:907–16
    [Google Scholar]
  94. 94.  Hofmann F. 2005. The biology of cyclic GMP-dependent protein kinases. J. Biol. Chem. 280:1–4
    [Google Scholar]
  95. 95.  Hofmann F, Feil R, Kleppisch T, Schlossmann J 2006. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol. Rev. 86:1–23
    [Google Scholar]
  96. 96.  Francis SH, Busch JL, Corbin JD, Sibley D 2010. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 62:525–63
    [Google Scholar]
  97. 97.  Lee E, Hayes DB, Langsetmo K, Sundberg EJ, Tao TC 2007. Interactions between the leucine-zipper motif of cGMP-dependent protein kinase and the C-terminal region of the targeting subunit of myosin light chain phosphatase. J. Mol. Biol. 373:1198–212
    [Google Scholar]
  98. 98.  Sharma AK, Zhou GP, Kupferman J, Surks HK, Christensen EN et al. 2008. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Iα and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem. 283:32860–69
    [Google Scholar]
  99. 99.  Ruth P, Landgraf W, Keilbach A, May B, Egleme C, Hofmann F 1991. The activation of expressed cGMP-dependent protein kinase isozymes Iα and Iβ is determined by the different amino-termini. Eur. J. Biochem. 202:1339–44
    [Google Scholar]
  100. 100.  Vaandrager AB, Ehlert EM, Jarchau T, Lohmann SM, de Jonge HR 1996. N-terminal myristoylation is required for membrane localization of cGMP-dependent protein kinase type II. J. Biol. Chem. 271:7025–29
    [Google Scholar]
  101. 101.  Geiselhöringer A, Gaisa M, Hofmann F, Schlossmann J 2004. Distribution of IRAG and cGKI-isoforms in murine tissues. FEBS Lett 575:19–22
    [Google Scholar]
  102. 102.  Takio K, Wade RD, Smith SB, Krebs EG, Walsh KA, Titani K 1984. Guanosine cyclic 3′,5′-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry 23:4207–18
    [Google Scholar]
  103. 103.  Kalyanaraman H, Zhuang S, Pilz RB, Casteel DE 2017. The activity of cGMP-dependent protein kinase Iα is not directly regulated by oxidation-induced disulfide formation at cysteine 43. J. Biol. Chem. 292:8262–68
    [Google Scholar]
  104. 104.  Qin L, Reger AS, Guo E, Yang MP, Zwart P et al. 2015. Structures of cGMP-dependent protein kinase (PKG) Iα leucine zippers reveal an interchain disulfide bond important for dimer stability. Biochemistry 54:4419–22
    [Google Scholar]
  105. 105.  Osborne BW, Wu J, McFarland CJ, Nickl CK, Sankaran B et al. 2011. Crystal structure of cGMP-dependent protein kinase reveals novel site of interchain communication. Structure 19:1317–27
    [Google Scholar]
  106. 106.  Akashi S, Ahmed KA, Sawa T, Ono K, Tsutsuki H et al. 2016. Persistent activation of cGMP-dependent protein kinase by a nitrated cyclic nucleotide via site specific protein S-guanylation. Biochemistry 55:751–61
    [Google Scholar]
  107. 107.  Müller PM, Gnügge R, Dhayade S, Thunemann M, Krippeit-Drews P et al. 2012. H2O2 lowers the cytosolic Ca2+ concentration via activation of cGMP-dependent protein kinase Iα. Free Radic. Biol. Med. 53:1574–83
    [Google Scholar]
  108. 108.  Donzelli S, Goetz M, Schmidt K, Wolters M, Stathopoulou K et al. 2017. Oxidant sensor in the cGMP-binding pocket of PKGIα regulates nitroxyl-mediated kinase activity. Sci. Rep. 7:9938
    [Google Scholar]
  109. 109.  Burgoyne JR, Prysyazhna O, Richards D, Eaton P 2017. Proof of principle for a novel class of anti-hypertensives that target the oxidative activation of PKG Iα (protein kinase G Iα). Hypertension 70:577–86
    [Google Scholar]
  110. 110.  Lee JH, Li S, Liu T, Hsu S, Kim C et al. 2011. The amino terminus of cGMP-dependent protein kinase Iβ increases the dynamics of the protein's cGMP-binding pockets. Int. J. Mass Spectrom. 302:44–52
    [Google Scholar]
  111. 111.  Burgoyne JR, Prysyazhna O, Rudyk O, Eaton P 2012. cGMP-dependent activation of protein kinase G precludes disulfide activation: implications for blood pressure control. Hypertension 60:1301–8
    [Google Scholar]
  112. 112.  Prysyazhna O, Burgoyne JR, Scotcher J, Grover S, Kass D, Eaton P 2016. Phosphodiesterase 5 inhibition limits doxorubicin-induced heart failure by attenuating protein kinase G Iα oxidation. J. Biol. Chem. 291:17427–36
    [Google Scholar]
  113. 113.  Rudyk O, Prysyazhna O, Burgoyne JR, Eaton P 2012. Nitroglycerin fails to lower blood pressure in redox-dead Cys42Ser PKG1α knock-in mouse. Circulation 126:287–95
    [Google Scholar]
  114. 114.  Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P 2014. Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 64:1344–51
    [Google Scholar]
  115. 115.  Yao Q, Huang Y, Liu AD, Zhu M, Liu J et al. 2016. The vasodilatory effect of sulfur dioxide via SGC/cGMP/PKG pathway in association with sulfhydryl-dependent dimerization. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310:R1073–80
    [Google Scholar]
  116. 116.  Piwkowska A, Rogacka D, Angielski S, Jankowski M 2014. Insulin stimulates glucose transport via protein kinase G type I α-dependent pathway in podocytes. Biochem. Biophys. Res. Commun. 446:328–34
    [Google Scholar]
  117. 117.  Piwkowska A, Rogacka D, Audzeyenka I, Angielski S, Jankowski M 2014. High glucose increases glomerular filtration barrier permeability by activating protein kinase G type Iα subunits in a Nox4-dependent manner. Exp. Cell Res. 320:144–52
    [Google Scholar]
  118. 118.  Rudyk O, Eaton P 2017. Examining a role for PKG Iα oxidation in the pathogenesis of cardiovascular dysfunction during diet-induced obesity. Free Radic. Biol. Med. 110:390–98
    [Google Scholar]
  119. 119.  Rudyk O, Phinikaridou A, Prysyazhna O, Burgoyne JR, Botnar RM, Eaton P 2013. Protein kinase G oxidation is a major cause of injury during sepsis. PNAS 110:9909–13
    [Google Scholar]
  120. 120.  Nakamura T, Ranek MJ, Lee DI, Shalkey Hahn V, Kim C et al. 2015. Prevention of PKG1α oxidation augments cardioprotection in the stressed heart. J. Clin. Investig. 125:2468–72
    [Google Scholar]
  121. 121.  Nakamura T, Zhu G, Ranek MJ, Kokkonen-Simon K, Zhang M et al. 2018. Prevention of PKG-1α oxidation suppresses antihypertrophic/antifibrotic effects from PDE5 inhibition but not sGC stimulation. Circ. Heart Fail. 11:e004740
    [Google Scholar]
  122. 122.  Shah AM, Prendergast BD, Grocott-Mason R, Lewis MJ, Paulus WJ 1995. The influence of endothelium-derived nitric oxide on myocardial contractile function. Int. J. Cardiol. 50:225–31
    [Google Scholar]
  123. 123.  Scotcher J, Prysyazhna O, Boguslavskyi A, Kistamas K, Hadgraft N et al. 2016. Disulphide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank–Starling response. Nat. Commun. 7:13187
    [Google Scholar]
  124. 124.  Prysyazhna O, Rudyk O, Eaton P 2012. Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat. Med. 18:286–90
    [Google Scholar]
  125. 125.  Kirchberber MA, Tada M, Katz AM 1975. Phospholamban: a regulatory protein of the cardiac sarcoplasmic reticulum. Recent Adv. Stud. Cardiac. Struct. Metab. 5:103–15
    [Google Scholar]
  126. 126.  Limbu S, Hoang-Trong TM, Prosser BL, Lederer WJ, Jafri MS 2015. Modeling local X-ROS and calcium signaling in the heart. Biophys. J. 109:2037–50
    [Google Scholar]
  127. 127.  Prosser BL, Khairallah RJ, Ziman AP, Ward CW, Lederer WJ 2013. X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca2+]i. J. Mol. Cell. Cardiol. 58:172–81
    [Google Scholar]
  128. 128.  Prosser BL, Ward CW, Lederer WJ 2013. X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovasc. Res. 98:307–14
    [Google Scholar]
  129. 129.  Prosser BL, Ward CW, Lederer WJ 2011. X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333:1440–45
    [Google Scholar]
  130. 130.  Takimoto E, Champion HC, Li M, Belardi D, Ren S et al. 2005. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med. 11:214–22
    [Google Scholar]
  131. 131.  Lukowski R, Krieg T, Rybalkin SD, Beavo J, Hofmann F 2014. Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends Pharmacol. Sci. 35:404–13
    [Google Scholar]
  132. 132.  Lukowski R, Rybalkin SD, Loga F, Leiss V, Beavo JA, Hofmann F 2010. Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. PNAS 107:5646–51
    [Google Scholar]
  133. 133.  Patrucco E, Domes K, Sbroggio M, Blaich A, Schlossmann J et al. 2014. Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. PNAS 111:12925–29
    [Google Scholar]
  134. 134.  Piwkowska A, Rogacka D, Jankowski M, Kocbuch K, Angielski S 2012. Hydrogen peroxide induces dimerization of protein kinase G type Iα subunits and increases albumin permeability in cultured rat podocytes. J. Cell Physiol. 227:1004–16
    [Google Scholar]
  135. 135.  Piwkowska A, Rogacka D, Kasztan M, Angielski S, Jankowski M 2013. Insulin increases glomerular filtration barrier permeability through dimerization of protein kinase G type Iα subunits. Biochim. Biophys. Acta 1832:791–804
    [Google Scholar]
  136. 136.  Rogacka D, Audzeyenka I, Rachubik P, Rychlowski M, Kasztan M et al. 2017. Insulin increases filtration barrier permeability via TRPC6-dependent activation of PKGIα signaling pathways. Biochim. Biophys. Acta 1863:1312–25
    [Google Scholar]
  137. 137.  Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS et al. 2012. H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ. Res. 110:471–80
    [Google Scholar]
  138. 138.  Webb DJ, Freestone S, Allen MJ, Muirhead GJ 1999. Sildenafil citrate and blood-pressure-lowering drugs: results of drug interaction studies with an organic nitrate and a calcium antagonist. Am. J. Cardiol. 83:21C–28C
    [Google Scholar]
  139. 139.  Jackson G, Benjamin N, Jackson N, Allen MJ 1999. Effects of sildenafil citrate on human hemodynamics. Am. J. Cardiol. 83:13C–20C
    [Google Scholar]
  140. 140.  Cohen AH, Hanson K, Morris K, Fouty B, McMurty IF et al. 1996. Inhibition of cyclic 3′-5′-guanosine monophosphate-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats. J. Clin. Investig. 97:172–79
    [Google Scholar]
  141. 141.  Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ et al. 1996. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res. 8:47–52
    [Google Scholar]
  142. 142.  Matoba T, Shimokawa H 2003. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J. Pharmacol. Sci. 92:1–6
    [Google Scholar]
  143. 143.  Shimokawa H, Matoba T 2004. Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pharmacol. Res. 49:543–49
    [Google Scholar]
  144. 144.  Shimokawa H, Morikawa K 2005. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J. Mol. Cell. Cardiol. 39:725–32
    [Google Scholar]
  145. 145.  Khavandi K, Baylie RL, Sugden SA, Ahmed M, Csato V et al. 2016. Pressure-induced oxidative activation of PKG enables vasoregulation by Ca2+ sparks and BK channels. Sci. Signal. 9:ra100
    [Google Scholar]
  146. 146.  Hill MA, Braun AP 2016. Oxidant signaling underlies PKGIα modulation of Ca2+ sparks and BKCa in myogenically active arterioles. Sci. Signal. 9:fs15
    [Google Scholar]
  147. 147.  Neo BH, Kandhi S, Wolin MS 2011. Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia. Am. J. Physiol. Heart Circ. Physiol. 301:H2295–304
    [Google Scholar]
  148. 148.  Miller TW, Cherney MM, Lee AJ, Francoleon NE, Farmer PJ et al. 2009. The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols. J. Biol. Chem. 284:21788–96
    [Google Scholar]
  149. 149.  Andrews KL, Irvine JC, Tare M, Apostolopoulos J, Favaloro JL et al. 2009. A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Br. J. Pharmacol. 157:540–50
    [Google Scholar]
  150. 150.  Favaloro JL, Kemp-Harper BK 2007. The nitroxyl anion (HNO) is a potent dilator of rat coronary vasculature. Cardiovasc. Res. 73:587–96
    [Google Scholar]
  151. 151.  Donzelli S, Fischer G, King BS, Niemann C, DuMond JF et al. 2013. Pharmacological characterization of 1-nitrosocyclohexyl acetate, a long-acting nitroxyl donor that shows vasorelaxant and antiaggregatory effects. J. Pharmacol. Exp. Ther. 344:339–47
    [Google Scholar]
  152. 152.  Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T et al. 2001. Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. PNAS 98:10463–68
    [Google Scholar]
  153. 153.  Sabbah HN, Tocchetti CG, Wang M, Daya S, Gupta RC et al. 2013. Nitroxyl (HNO): a novel approach for the acute treatment of heart failure. Circ. Heart Fail. 6:1250–58
    [Google Scholar]
  154. 154.  Gao WD, Murray CI, Tian Y, Zhong X, DuMond JF et al. 2012. Nitroxyl-mediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function. Circ. Res. 111:1002–11
    [Google Scholar]
  155. 155.  Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ et al. 2015. Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension 65:385–92
    [Google Scholar]
  156. 156.  Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V et al. 2013. HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid. Redox Signal. 19:1185–97
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114417
Loading
/content/journals/10.1146/annurev-physiol-020518-114417
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error