1932

Abstract

The carotid body (CB) is an arterial chemoreceptor organ located in the carotid bifurcation and has a well-recognized role in cardiorespiratory regulation. The CB contains neurosecretory sensory cells (glomus cells), which release transmitters in response to hypoxia, hypercapnia, and acidemia to activate afferent sensory fibers terminating in the respiratory and autonomic brainstem centers. Knowledge of the physiology of the CB has progressed enormously in recent years. Herein we review advances concerning the organization and function of the cellular elements of the CB, with emphasis on the molecular mechanisms of acute oxygen sensing by glomus cells. We introduce the modern view of the CB as a multimodal integrated metabolic sensor and describe the properties of the CB stem cell niche, which support CB growth during acclimatization to chronic hypoxia. Finally, we discuss the increasing medical relevance of CB dysfunction and its potential impact on the mechanisms of disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114427
2020-02-10
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-020518-114427.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114427&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    De Castro F. 1928. Sur la structure et l'innervation du sinus carotidien de l'homme et des mammiferes. Nouveaux faits sur l'innervation et la fonction du glomus caroticum. Trab. Lab. Investig. Biol. 25:331–80
    [Google Scholar]
  2. 2. 
    Heymans C, Bouckaert JJ, Dautrebande L 1930. Sinus carotidien et reflexes respiratoires. II. Influences respiratoires reflexes de l'acidose, de l'alcalose, de l'anhydride carbonique, de l'ion hydrogene et de l'anoxemie: sinus carotidiens et changes respiratoires dans le poumons et au delá des poumons. Arch. Int. Pharmacodyn. 39:400–48
    [Google Scholar]
  3. 3. 
    López-Barneo J, Ortega-Sáenz P, González-Rodríguez P, Fernández-Agüera MC, Macías D et al. 2016. Oxygen-sensing by arterial chemoreceptors: mechanisms and medical translation. Mol. Aspects Med. 47–48:90–108
    [Google Scholar]
  4. 4. 
    Eyzaguirre C, Koyano H. 1965. Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J. Physiol. 178:385–409
    [Google Scholar]
  5. 5. 
    Fidone S, González C, Yoshizaki K 1982. Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J. Physiol. 333:93–110
    [Google Scholar]
  6. 6. 
    Biscoe TJ, Stehbens WE. 1966. Ultrastructure of the carotid body. J. Cell Biol. 30:563–78
    [Google Scholar]
  7. 7. 
    Hellström S. 1975. Morphometric studies of dense-cored vesicles in type I cells of rat carotid body. J. Neurocytol. 4:77–86
    [Google Scholar]
  8. 8. 
    Fishman MC, Greene WL, Platika D 1985. Oxygen chemoreception by carotid body cells in culture. PNAS 82:1448–50
    [Google Scholar]
  9. 9. 
    Duchen MR, Caddy KW, Kirby GC, Patterson DL, Ponte J, Biscoe TJ 1988. Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience 26:291–311
    [Google Scholar]
  10. 10. 
    López-Barneo J, López-López JR, Ureña J, González C 1988. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241:580–82
    [Google Scholar]
  11. 11. 
    Ureña J, López-López J, González C, López-Barneo J 1989. Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body. J. Gen. Physiol. 93:979–99
    [Google Scholar]
  12. 12. 
    López-Barneo J, Pardal R, Ortega-Sáenz P 2001. Cellular mechanism of oxygen sensing. Annu. Rev. Physiol. 63:259–87
    [Google Scholar]
  13. 13. 
    Weir EK, López-Barneo J, Buckler KJ, Archer SL 2005. Acute oxygen-sensing mechanisms. N. Engl. J. Med. 353:2042–55
    [Google Scholar]
  14. 14. 
    López-Barneo J, Pardal R, Montoro RJ, Smani T, García-Hirschfeld J, Ureña J 1999. K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues. Respir. Physiol. 115:215–27
    [Google Scholar]
  15. 15. 
    Kemp PJ, Peers C. 2007. Oxygen sensing by ion channels. Essays Biochem 43:77–90
    [Google Scholar]
  16. 16. 
    Shimoda LA, Polak J. 2011. Hypoxia. 4. Hypoxia and ion channel function. Am. J. Physiol. Cell Physiol. 300:C951–67
    [Google Scholar]
  17. 17. 
    Buckler KJ, Vaughan-Jones RD. 1994. Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J. Physiol. 476:423–28
    [Google Scholar]
  18. 18. 
    Ureña J, Fernández-Chacón R, Benot AR, Alvarez de Toledo GA, López-Barneo J 1994. Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. PNAS 91:10208–11
    [Google Scholar]
  19. 19. 
    Pardal R, Ludewig U, García-Hirschfeld J, López-Barneo J 2000. Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. PNAS 97:2361–66
    [Google Scholar]
  20. 20. 
    Zhong H, Zhang M, Nurse CA 1997. Synapse formation and hypoxic signalling in co-cultures of rat petrosal neurones and carotid body type 1 cells. J. Physiol. 503:599–612
    [Google Scholar]
  21. 21. 
    Teppema LJ, Dahan A. 2010. The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol. Rev. 90:675–754
    [Google Scholar]
  22. 22. 
    Joyner MJ, Limberg JK, Wehrwein EA, Johnson BD 2018. Role of the carotid body chemoreceptors in glucose homeostasis and thermoregulation in humans. J. Physiol. 596:3079–85
    [Google Scholar]
  23. 23. 
    Pardal R, Ortega-Sáenz P, Duran R, López-Barneo J 2007. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131:364–77
    [Google Scholar]
  24. 24. 
    Ortega-Sáenz P, Pardal R, Levitsky K, Villadiego J, Muñoz-Manchado AB et al. 2013. Cellular properties and chemosensory responses of the human carotid body. J. Physiol. 591:6157–73
    [Google Scholar]
  25. 25. 
    Annese V, Navarro-Guerrero E, Rodríguez-Prieto I, Pardal R 2017. Physiological plasticity of neural-crest-derived stem cells in the adult mammalian carotid body. Cell Rep 19:471–78
    [Google Scholar]
  26. 26. 
    McDonald DM, Mitchell RA. 1975. The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. J. Neurocytol. 4:177–230
    [Google Scholar]
  27. 27. 
    Sobrino V, González-Rodríguez P, Annese V, López-Barneo J, Pardal R 2018. Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia. EMBO Rep 19:e44598
    [Google Scholar]
  28. 28. 
    Buttigieg J, Nurse CA. 2004. Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body. Biochem. Biophys. Res. Commun. 322:82–87
    [Google Scholar]
  29. 29. 
    Alcayaga J, Cerpa V, Retamal M, Arroyo J, Iturriaga R, Zapata P 2000. Adenosine triphosphate-induced peripheral nerve discharges generated from the cat petrosal ganglion in vitro. Neurosci. Lett. 282:185–88
    [Google Scholar]
  30. 30. 
    Zhang M, Zhong H, Vollmer C, Nurse CA 2000. Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J. Physiol. 525:143–58
    [Google Scholar]
  31. 31. 
    Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford AP et al. 2003. Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J. Neurosci. 23:11315–21
    [Google Scholar]
  32. 32. 
    Shirahata M, Balbir A, Otsubo T, Fitzgerald RS 2007. Role of acetylcholine in neurotransmission of the carotid body. Respir. Physiol. Neurobiol. 157:93–105
    [Google Scholar]
  33. 33. 
    Conde SV, Monteiro EC, Rigual R, Obeso A, González C 2012. Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity. J. Appl. Physiol. 112:2002–10
    [Google Scholar]
  34. 34. 
    Zhang M, Vollmer C, Nurse CA 2018. Adenosine and dopamine oppositely modulate a hyperpolarization-activated current Ih in chemosensory neurons of the rat carotid body in co-culture. J. Physiol. 596:3101–17
    [Google Scholar]
  35. 35. 
    Nurse CA. 2014. Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors. J. Physiol. 592:3419–26
    [Google Scholar]
  36. 36. 
    Leonard EM, Salman S, Nurse CA 2018. Sensory processing and integration at the carotid body tripartite synapse: neurotransmitter functions and effects of chronic hypoxia. Front. Physiol. 9:225
    [Google Scholar]
  37. 37. 
    Benot AR, López-Barneo J. 1990. Feedback inhibition of Ca2+ currents by dopamine in glomus cells of the carotid body. Eur. J. Neurosci. 2:809–12
    [Google Scholar]
  38. 38. 
    Carroll JL, Boyle KM, Wasicko MJ, Sterni LM 2005. Dopamine D2 receptor modulation of carotid body type I cell intracellular calcium in developing rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 288:L910–16
    [Google Scholar]
  39. 39. 
    Kirby GC, McQueen DS. 1986. Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo. Br. J. Pharmacol. 88:889–98
    [Google Scholar]
  40. 40. 
    Xu F, Xu J, Tse FW, Tse A 2006. Adenosine stimulates depolarization and rise in cytoplasmic [Ca2+] in type I cells of rat carotid bodies. Am. J. Physiol. Cell Physiol. 290:C1592–98
    [Google Scholar]
  41. 41. 
    Xu J, Xu F, Tse FW, Tse A 2005. ATP inhibits the hypoxia response in type I cells of rat carotid bodies. J. Neurochem. 92:1419–30
    [Google Scholar]
  42. 42. 
    Tse A, Yan L, Lee AK, Tse FW 2012. Autocrine and paracrine actions of ATP in rat carotid body. Can. J. Physiol. Pharmacol. 90:705–11
    [Google Scholar]
  43. 43. 
    Platero-Luengo A, González-Granero S, Durán R, Díaz-Castro B, Piruat JI et al. 2014. An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia. Cell 156:291–303
    [Google Scholar]
  44. 44. 
    Xu J, Tse FW, Tse A 2003. ATP triggers intracellular Ca2+ release in type II cells of the rat carotid body. J. Physiol. 549:739–47
    [Google Scholar]
  45. 45. 
    Zhang M, Piskuric NA, Vollmer C, Nurse CA 2012. P2Y2 receptor activation opens pannexin-1 channels in rat carotid body type II cells: potential role in amplifying the neurotransmitter ATP. J. Physiol. 590:4335–50
    [Google Scholar]
  46. 46. 
    Murali S, Nurse CA. 2016. Purinergic signalling mediates bidirectional crosstalk between chemoreceptor type I and glial-like type II cells of the rat carotid body. J. Physiol. 594:391–406
    [Google Scholar]
  47. 47. 
    Murali S, Zhang M, Nurse CA 2014. Angiotensin II mobilizes intracellular calcium and activates pannexin-1 channels in rat carotid body type II cells via AT1 receptors. J. Physiol. 592:4747–62
    [Google Scholar]
  48. 48. 
    Campanucci VA, Nurse CA. 2007. Autonomic innervation of the carotid body: role in efferent inhibition. Respir. Physiol. Neurobiol. 157:83–92
    [Google Scholar]
  49. 49. 
    Alcayaga J, Barrios M, Bustos F, Miranda G, Molina MJ, Iturriaga R 1999. Modulatory effect of nitric oxide on acetylcholine-induced activation of cat petrosal ganglion neurons in vitro. Brain Res 825:194–98
    [Google Scholar]
  50. 50. 
    Fung ML, Ye JS, Fung PC 2001. Acute hypoxia elevates nitric oxide generation in rat carotid body in vitro. Pflügers Arch 442:903–9
    [Google Scholar]
  51. 51. 
    Summers BA, Overholt JL, Prabhakar NR 1999. Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J. Neurophysiol. 81:1449–57
    [Google Scholar]
  52. 52. 
    Timmers HJ, Wieling W, Karemaker JM, Lenders JW 2003. Denervation of carotid baro- and chemoreceptors in humans. J. Physiol. 553:3–11
    [Google Scholar]
  53. 53. 
    Limberg JK. 2018. Glucose, insulin, and the carotid body chemoreceptors in humans. Physiol. Genom. 50:504–9
    [Google Scholar]
  54. 54. 
    Macías D, Fernández-Agüera MC, Bonilla-Henao V, López-Barneo J 2014. Deletion of the von Hippel-Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia. EMBO Mol. Med. 6:1577–92
    [Google Scholar]
  55. 55. 
    Macías D, Cowburn AS, Torres-Torrelo H, Ortega-Sáenz P, López-Barneo J, Johnson RS 2018. HIF-2α is essential for carotid body development and function. eLife 7:e34681
    [Google Scholar]
  56. 56. 
    Gourine AV, Funk GD. 2017. On the existence of a central respiratory oxygen sensor. J. Appl. Physiol. 123:1344–49
    [Google Scholar]
  57. 57. 
    López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P 2016. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am. J. Physiol. Cell Physiol. 310:C629–42
    [Google Scholar]
  58. 58. 
    Buckler KJ, Vaughan-Jones RD. 1994. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J. Physiol. 478:157–71
    [Google Scholar]
  59. 59. 
    Zhang M, Nurse CA. 2004. CO2/pH chemosensory signaling in co-cultures of rat carotid body receptors and petrosal neurons: role of ATP and ACh. J. Neurophysiol. 92:3433–45
    [Google Scholar]
  60. 60. 
    Nurse CA. 1990. Carbonic anhydrase and neuronal enzymes in cultured glomus cells of the carotid body of the rat. Cell Tissue Res 261:65–71
    [Google Scholar]
  61. 61. 
    Iturriaga R, Mokashi A, Lahiri S 1993. Dynamics of carotid body responses in vitro in the presence of CO2-HCO3: role of carbonic anhydrase. J. Appl. Physiol. 1985 75:1587–94
    [Google Scholar]
  62. 62. 
    Wagenaar M, Teppema L, Berkenbosch A, Olievier C, Folgering H 1998. Effect of low-dose acetazolamide on the ventilatory CO2 response during hypoxia in the anaesthetized cat. Eur. Respir. J. 12:1271–77
    [Google Scholar]
  63. 63. 
    Summers BA, Overholt JL, Prabhakar NR 2002. CO2 and pH independently modulate L-type Ca2+ current in rabbit carotid body glomus cells. J. Neurophysiol. 88:604–12
    [Google Scholar]
  64. 64. 
    Buckler KJ, Williams BA, Honore E 2000. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. 525:135–42
    [Google Scholar]
  65. 65. 
    Ortega-Sáenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, López-Barneo J 2010. Carotid body chemosensory responses in mice deficient of TASK channels. J. Gen. Physiol. 135:379–92
    [Google Scholar]
  66. 66. 
    Peers C, Green FK. 1991. Inhibition of Ca2+-activated K+ currents by intracellular acidosis in isolated type I cells of the neonatal rat carotid body. J. Physiol. 437:589–602
    [Google Scholar]
  67. 67. 
    López-López J, González C, Ureña J, López-Barneo J 1989. Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body. J. Gen. Physiol. 93:1001–15
    [Google Scholar]
  68. 68. 
    Tan ZY, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM 2007. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ. Res. 101:1009–19
    [Google Scholar]
  69. 69. 
    Petheo GL, Molnar Z, Roka A, Makara JK, Spat A 2001. A pH-sensitive chloride current in the chemoreceptor cell of rat carotid body. J. Physiol. 535:95–106
    [Google Scholar]
  70. 70. 
    Detweiler ND, Vigil KG, Resta TC, Walker BR, Jernigan NL 2018. Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses. PLOS ONE 13:e0192724
    [Google Scholar]
  71. 71. 
    Holmes AP, Hauton D, Kumar P 2012. The interaction between low glucose and hypoxia in the in vitro rat carotid body. Adv. Exp. Med. Biol. 758:123–27
    [Google Scholar]
  72. 72. 
    Pardal R, López-Barneo J. 2002. Low glucose-sensing cells in the carotid body. Nat. Neurosci. 5:197–98
    [Google Scholar]
  73. 73. 
    Zhang M, Buttigieg J, Nurse CA 2007. Neurotransmitter mechanisms mediating low-glucose signalling in cocultures and fresh tissue slices of rat carotid body. J. Physiol. 578:735–50
    [Google Scholar]
  74. 74. 
    Fitzgerald RS, Shirahata M, Chang I, Kostuk E 2009. The impact of hypoxia and low glucose on the release of acetylcholine and ATP from the incubated cat carotid body. Brain Res 1270:39–44
    [Google Scholar]
  75. 75. 
    García-Fernández M, Ortega-Sáenz P, Castellano A, López-Barneo J 2007. Mechanisms of low-glucose sensitivity in carotid body glomus cells. Diabetes 56:2893–900
    [Google Scholar]
  76. 76. 
    Ortega-Sáenz P, Pardal R, García-Fernández M, López-Barneo J 2003. Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J. Physiol. 548:789–800
    [Google Scholar]
  77. 77. 
    Fernández-Agüera MC, Gao L, González-Rodríguez P, Pintado CO, Arias-Mayenco I et al. 2015. Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab 22:825–37
    [Google Scholar]
  78. 78. 
    Koyama Y, Coker RH, Stone EE, Lacy DB, Jabbour K et al. 2000. Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes 49:1434–42
    [Google Scholar]
  79. 79. 
    Ward DS, Voter WA, Karan S 2007. The effects of hypo- and hyperglycaemia on the hypoxic ventilatory response in humans. J. Physiol. 582:859–69
    [Google Scholar]
  80. 80. 
    Wehrwein EA, Basu R, Basu A, Curry TB, Rizza RA, Joyner MJ 2010. Hyperoxia blunts counterregulation during hypoglycaemia in humans: possible role for the carotid bodies?. J. Physiol. 588:4593–601
    [Google Scholar]
  81. 81. 
    Wehrwein EA, Limberg JK, Taylor JL, Dube S, Basu A et al. 2015. Effect of bilateral carotid body resection on the counterregulatory response to hypoglycaemia in humans. Exp. Physiol. 100:69–78
    [Google Scholar]
  82. 82. 
    Koyama Y, Coker RH, Denny JC, Lacy DB, Jabbour K et al. 2001. Role of carotid bodies in control of the neuroendocrine response to exercise. Amer. J. Physiol. Endoc. Metab. 281:E742–48
    [Google Scholar]
  83. 83. 
    Lee LY, Morton RF, Lundberg JM 1996. Pulmonary chemoreflexes elicited by intravenous injection of lactic acid in anesthetized rats. J. Appl. Physiol. 81:2349–57
    [Google Scholar]
  84. 84. 
    Torres-Torrelo H, Ortega-Sáenz P, Macías D, Omura M, Zhou T et al. 2018. The role of Olfr78 in the breathing circuit of mice. Nature 561:E33–40
    [Google Scholar]
  85. 85. 
    Ribeiro MJ, Sacramento JF, González C, Guarino MP, Monteiro EC, Conde SV 2013. Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 62:2905–16
    [Google Scholar]
  86. 86. 
    Barbosa TC, Kaur J, Holwerda SW, Young CN, Curry TB et al. 2018. Insulin increases ventilation during euglycemia in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315:R84–89
    [Google Scholar]
  87. 87. 
    Porzionato A, Rucinski M, Macchi V, Stecco C, Castagliuolo I et al. 2011. Expression of leptin and leptin receptor isoforms in the rat and human carotid body. Brain Res 1385:56–67
    [Google Scholar]
  88. 88. 
    Messenger SA, Moreau JM, Ciriello J 2012. Intermittent hypoxia and systemic leptin administration induces pSTAT3 and Fos/Fra-1 in the carotid body. Brain Res 1446:56–70
    [Google Scholar]
  89. 89. 
    Messenger SA, Ciriello J. 2013. Effects of intermittent hypoxia on leptin signalling in the carotid body. Neuroscience 232:216–25
    [Google Scholar]
  90. 90. 
    Shirahata M, Tang WY, Shin MK, Polotsky VY 2015. Is the carotid body a metabolic monitor?. Adv. Exp. Med. Biol. 860:153–59
    [Google Scholar]
  91. 91. 
    Ribeiro MJ, Sacramento JF, Gallego-Martín T, Olea E, Melo BF et al. 2018. High fat diet blunts the effects of leptin on ventilation and on carotid body activity. J. Physiol. 596:3187–99
    [Google Scholar]
  92. 92. 
    Caballero-Eraso C, Shin MK, Pho H, Kim LJ, Pichard LE et al. 2019. Leptin acts in the carotid bodies to increase minute ventilation during wakefulness and sleep and augment the hypoxic ventilatory response. J. Physiol. 597:151–72
    [Google Scholar]
  93. 93. 
    Molnar Z, Petheo GL, Fulop C, Spat A 2003. Effects of osmotic changes on the chemoreceptor cell of rat carotid body. J. Physiol. 546:471–81
    [Google Scholar]
  94. 94. 
    Fujii N, Honda Y, Hayashi K, Kondo N, Koga S, Nishiyasu T 2008. Effects of chemoreflexes on hyperthermic hyperventilation and cerebral blood velocity in resting heated humans. Exp. Physiol. 93:994–1001
    [Google Scholar]
  95. 95. 
    Schultz HD, Marcus NJ, Del Río R 2013. Role of the carotid body in the pathophysiology of heart failure. Curr. Hypertens. Rep. 15:356–62
    [Google Scholar]
  96. 96. 
    Peers C. 2015. Acute oxygen sensing—inching ever closer to an elusive mechanism. Cell Metab 22:753–54
    [Google Scholar]
  97. 97. 
    Rakoczy RJ, Wyatt CN. 2018. Acute oxygen sensing by the carotid body: a rattlebag of molecular mechanisms. J. Physiol. 596:2969–76
    [Google Scholar]
  98. 98. 
    López-Barneo J. 1994. Oxygen-sensitive ion channels: how ubiquitous are they?. Trends Neurosci 17:133–35
    [Google Scholar]
  99. 99. 
    Roy A, Rozanov C, Mokashi A, Daudu P, Al-Mehdi AB et al. 2000. Mice lacking in gp91 phox subunit of NAD(P)H oxidase showed glomus cell [Ca2+]i and respiratory responses to hypoxia. Brain Res 872:188–93
    [Google Scholar]
  100. 100. 
    He L, Chen J, Dinger B, Sanders K, Sundar K et al. 2002. Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice. Am. J. Physiol. Cell Physiol. 282:C27–33
    [Google Scholar]
  101. 101. 
    Mahmoud AD, Lewis S, Juricic L, Udoh UA, Hartmann S et al. 2016. AMP-activated protein kinase deficiency blocks the hypoxic ventilatory response and thus precipitates hypoventilation and apnea. Am. J. Respir. Crit. Care Med. 193:1032–43
    [Google Scholar]
  102. 102. 
    Ortega-Sáenz P, Pascual A, Gómez-Díaz R, López-Barneo J 2006. Acute oxygen sensing in heme oxygenase-2 null mice. J. Gen. Physiol. 128:405–11
    [Google Scholar]
  103. 103. 
    Wang J, Hogan JO, Wang R, White C, Kim D 2017. Role of cystathionine-gamma-lyase in hypoxia-induced changes in TASK activity, intracellular [Ca2+] and ventilation in mice. Respir. Physiol. Neurobiol. 246:98–106
    [Google Scholar]
  104. 104. 
    Mills E, Jöbsis FF. 1972. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J. Neurophysiol. 35:405–28
    [Google Scholar]
  105. 105. 
    Duchen MR, Biscoe TJ. 1992. Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J. Physiol. 450:13–31
    [Google Scholar]
  106. 106. 
    Taylor SC, Shaw SM, Peers C 2000. Mitochondrial inhibitors evoke catecholamine release from pheochromocytoma cells. Biochem. Biophys. Res. Commun. 273:17–21
    [Google Scholar]
  107. 107. 
    Wyatt CN, Buckler KJ. 2004. The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J. Physiol. 556:175–91
    [Google Scholar]
  108. 108. 
    Buckler KJ, Turner PJ. 2013. Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells. J. Physiol. 591:3549–63
    [Google Scholar]
  109. 109. 
    Arias-Mayenco I, González-Rodríguez P, Torres-Torrelo H, Gao L, Fernández-Agüera MC et al. 2018. Acute O2 sensing: role of coenzyme QH2/Q ratio and mitochondrial ROS compartmentalization. Cell Metab 28:145–58
    [Google Scholar]
  110. 110. 
    Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J et al. 2010. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ. Res. 106:526–35
    [Google Scholar]
  111. 111. 
    Zhou T, Chien MS, Kaleem S, Matsunami H 2016. Single cell transcriptome analysis of mouse carotid body glomus cells. J. Physiol. 594:4225–51
    [Google Scholar]
  112. 112. 
    Gao L, Bonilla-Henao V, García-Flores P, Arias-Mayenco I, Ortega-Sáenz P, López-Barneo J 2017. Gene expression analyses reveal metabolic specifications in acute O2-sensing chemoreceptor cells. J. Physiol. 595:6091–120
    [Google Scholar]
  113. 113. 
    Kadenbach B, Hüttemann M. 2015. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion 24:64–76
    [Google Scholar]
  114. 114. 
    Sommer N, Hüttemann M, Pak O, Scheibe S, Knoepp F et al. 2017. Mitochondrial complex IV subunit 4 isoform 2 is essential for acute pulmonary oxygen sensing. Circ. Res. 121:424–38
    [Google Scholar]
  115. 115. 
    Ortega-Sáenz P, Macías D, Levitsky KL, Rodríguez-Gómez JA, González-Rodríguez P et al. 2016. Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion. J. Physiol. 594:7229–48
    [Google Scholar]
  116. 116. 
    Joseph V, Pequignot JM. 2009. Breathing at high altitude. Cell. Mol. Life Sci. 66:3565–73
    [Google Scholar]
  117. 117. 
    Bisgard GE. 2000. Carotid body mechanisms in acclimatization to hypoxia. Respir. Physiol. 121:237–46
    [Google Scholar]
  118. 118. 
    Powell FL. 2007. The influence of chronic hypoxia upon chemoreception. Respir. Physiol. Neurobiol. 157:154–61
    [Google Scholar]
  119. 119. 
    Ortiz F, Iturriaga R, Varas R 2009. Sustained hypoxia enhances TASK-like current inhibition by acute hypoxia in rat carotid body type-I cells. Adv. Exp. Med. Biol. 648:83–88
    [Google Scholar]
  120. 120. 
    Salman S, Vollmer C, McClelland GB, Nurse CA 2017. Characterization of ectonucleotidase expression in the rat carotid body: regulation by chronic hypoxia. Am. J. Physiol. Cell Physiol. 313:C274–84
    [Google Scholar]
  121. 121. 
    Chen J, He L, Dinger B, Stensaas L, Fidone S 2002. Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 282:L1314–23
    [Google Scholar]
  122. 122. 
    Chen J, He L, Dinger B, Fidone S 2000. Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides. Respir. Physiol. 121:13–23
    [Google Scholar]
  123. 123. 
    Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR 2003. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. PNAS 100:10073–78
    [Google Scholar]
  124. 124. 
    Rey S, Del Rio R, Alcayaga J, Iturriaga R 2004. Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J. Physiol. 560:577–86
    [Google Scholar]
  125. 125. 
    Marcus NJ, Li YL, Bird CE, Schultz HD, Morgan BJ 2010. Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: role of the angiotensin II type 1 receptor. Respir. Physiol. Neurobiol. 171:36–45
    [Google Scholar]
  126. 126. 
    Iturriaga R, Andrade DC, Del Río R 2014. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia. Front. Physiol. 5:468
    [Google Scholar]
  127. 127. 
    Yuan G, Peng YJ, Reddy VD, Makarenko VV, Nanduri J et al. 2013. Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis. PNAS 110:E1788–96
    [Google Scholar]
  128. 128. 
    Ponikowski P, Chua TP, Anker SD, Francis DP, Doehner W et al. 2001. Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation 104:544–49
    [Google Scholar]
  129. 129. 
    Ding Y, Li YL, Zimmerman MC, Schultz HD 2010. Elevated mitochondrial superoxide contributes to enhanced chemoreflex in heart failure rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R303–11
    [Google Scholar]
  130. 130. 
    Marcus NJ, Del Rio R, Ding Y, Schultz HD 2018. KLF2 mediates enhanced chemoreflex sensitivity, disordered breathing and autonomic dysregulation in heart failure. J. Physiol. 596:3171–85
    [Google Scholar]
  131. 131. 
    Heath D, Smith P, Jago R 1982. Hyperplasia of the carotid body. J. Pathol. 138:115–27
    [Google Scholar]
  132. 132. 
    Arias-Stella J, Valcarcel J. 1976. Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum. Pathol. 7:361–73
    [Google Scholar]
  133. 133. 
    McGregor KH, Gil J, Lahiri S 1984. A morphometric study of the carotid body in chronically hypoxic rats. J. Appl. Physiol. 57:1430–38
    [Google Scholar]
  134. 134. 
    Hodson EJ, Nicholls LG, Turner PJ, Llyr R, Fielding JW et al. 2016. Regulation of ventilatory sensitivity and carotid body proliferation in hypoxia by the PHD2/HIF-2 pathway. J. Physiol. 594:1179–95
    [Google Scholar]
  135. 135. 
    Paciga M, Vollmer C, Nurse C 1999. Role of ET-1 in hypoxia-induced mitosis of cultured rat carotid body chemoreceptors. Neuroreport 10:3739–44
    [Google Scholar]
  136. 136. 
    Chen J, He L, Liu X, Dinger B, Stensaas L, Fidone S 2007. Effect of the endothelin receptor antagonist bosentan on chronic hypoxia-induced morphological and physiological changes in rat carotid body. Am. J. Physiol. Lung Cell. Mol. Physiol. 292:L1257–62
    [Google Scholar]
  137. 137. 
    Dahan A, Aarts L, Smith TW 2010. Incidence, reversal, and prevention of opioid-induced respiratory depression. Anesthesiology 112:226–38
    [Google Scholar]
  138. 138. 
    McQueen DS, Ribeiro JA. 1980. Inhibitory actions of methionine-enkephalin and morphine on the cat carotid chemoreceptors. Br. J. Pharmacol. 71:297–305
    [Google Scholar]
  139. 139. 
    Potter JV, Moon RE. 2015. Commentaries on viewpoint: Why do some patients stop breathing after taking narcotics? Ventilatory chemosensitivity as a predictor of opioid-induced respiratory depression. J. Appl. Physiol. 119:420–22
    [Google Scholar]
  140. 140. 
    Baby SM, Gruber RB, Young AP, MacFarlane PM, Teppema LJ, Lewis SJ 2018. Bilateral carotid sinus nerve transection exacerbates morphine-induced respiratory depression. Eur. J. Pharmacol. 834:17–29
    [Google Scholar]
  141. 141. 
    Paton JFR, Sobotka PA, Fudim M, Engelman ZJ, Hart ECJ et al. 2013. The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension 61:5–13
    [Google Scholar]
  142. 142. 
    Del Río R, Marcus NJ, Schultz HD 2013. Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J. Am. Coll. Cardiol. 62:2422–30
    [Google Scholar]
  143. 143. 
    Del Río R, Andrade DC, Lucero C, Arias P, Iturriaga R 2016. Carotid body ablation abrogates hypertension and autonomic alterations induced by intermittent hypoxia in rats. Hypertension 68:436–45
    [Google Scholar]
  144. 144. 
    Pijacka W, Katayama PL, Salgado HC, Lincevicius GS, Campos RR et al. 2018. Variable role of carotid bodies in cardiovascular responses to exercise, hypoxia and hypercapnia in spontaneously hypertensive rats. J. Physiol. 596:3201–16
    [Google Scholar]
  145. 145. 
    Niewinski P, Janczak D, Rucinski A, Tubek S, Engelman ZJ et al. 2017. Carotid body resection for sympathetic modulation in systolic heart failure: results from first-in-man study. Eur. J. Heart Fail. 19:391–400
    [Google Scholar]
  146. 146. 
    Johnson BD, Joyner MJ. 2013. Carotid body denervation: too soon to get breathless about heart failure?. J. Am. Coll. Cardiol. 62:2431–32
    [Google Scholar]
  147. 147. 
    Pijacka W, Moraes DJ, Ratcliffe LE, Nightingale AK, Hart EC et al. 2016. Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nat. Med. 22:1151–59
    [Google Scholar]
  148. 148. 
    Astrom K, Cohen JE, Willett-Brozick JE, Aston CE, Baysal BE 2003. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum. Genet. 113:228–37
    [Google Scholar]
  149. 149. 
    Baysal BE. 2008. Clinical and molecular progress in hereditary paraganglioma. J. Med. Genet. 45:689–94
    [Google Scholar]
  150. 150. 
    Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG et al. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:77–85
    [Google Scholar]
  151. 151. 
    Millán-Uclés A, Díaz-Castro B, García-Flores P, Baez A, Pérez-Simón JA et al. 2014. A conditional mouse mutant in the tumor suppressor SdhD gene unveils a link between p21WAF1/Cip1 induction and mitochondrial dysfunction. PLOS ONE 9:e85528
    [Google Scholar]
  152. 152. 
    Fielding JW, Hodson EJ, Cheng X, Ferguson DJP, Eckardt L et al. 2018. PHD2 inactivation in type I cells drives HIF-2α-dependent multilineage hyperplasia and the formation of paraganglioma-like carotid bodies. J. Physiol. 596:4393–4412
    [Google Scholar]
  153. 153. 
    Díaz-Castro B, Pintado CO, García-Flores P, López-Barneo J, Piruat JI 2012. Differential impairment of catecholaminergic cell maturation and survival by genetic mitochondrial complex II dysfunction. Mol. Cell. Biol. 32:3347–57
    [Google Scholar]
  154. 154. 
    Toledo-Aral JJ, Mendez-Ferrer S, Pardal R, Echevarria M, López-Barneo J 2003. Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted parkinsonian rats. J. Neurosci. 23:141–48
    [Google Scholar]
  155. 155. 
    Luquin MR, Montoro RJ, Guillen J, Saldise L, Insausti R et al. 1999. Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron 22:743–50
    [Google Scholar]
  156. 156. 
    Mínguez-Castellanos A, Escamilla-Sevilla F, Hotton GR, Toledo-Aral JJ, Ortega-Moreno A et al. 2007. Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J. Neurol. Neurosurg. Psychiatr. 78:825–31
    [Google Scholar]
  157. 157. 
    Villadiego J, Méndez-Ferrer S, Valdés-Sánchez T, Silos-Santiago I, Fariñas I et al. 2005. Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J. Neurosci. 25:4091–98
    [Google Scholar]
  158. 158. 
    Hidalgo-Figueroa M, Bonilla S, Gutierrez F, Pascual A, López-Barneo J 2012. GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway. J. Neurosci. 32:864–72
    [Google Scholar]
  159. 159. 
    Porzionato A, Macchi V, Parenti A, De Caro R 2008. Trophic factors in the carotid body. Int. Rev. Cell. Mol. Biol. 269:1–58
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114427
Loading
/content/journals/10.1146/annurev-physiol-020518-114427
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error