1932

Abstract

Most of us live blissfully unaware of the orchestrated function that our internal organs conduct. When this peace is interrupted, it is often by routine sensations of hunger and urge. However, for >20% of the global population, chronic visceral pain is an unpleasant and often excruciating reminder of the existence of our internal organs. In many cases, there is no obvious underlying pathological cause of the pain. Accordingly, chronic visceral pain is debilitating, reduces the quality of life of sufferers, and has large concomitant socioeconomic costs. In this review, we highlight key mechanisms underlying chronic abdominal and pelvic pain associated with functional and inflammatory disorders of the gastrointestinal and urinary tracts. This includes how the colon and bladder are innervated by specialized subclasses of spinal afferents, how these afferents become sensitized in highly dynamic signaling environments, and the subsequent development of neuroplasticity within visceral pain pathways. We also highlight key contributing factors, including alterations in commensal bacteria, altered mucosal permeability, epithelial interactions with afferent nerves, alterations in immune or stress responses, and cross talk between these two adjacent organs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114525
2019-02-10
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114525.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114525&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Enck P, Aziz Q, Barbara G, Farmer AD, Fukudo S et al. 2016. Irritable bowel syndrome. Nat. Rev. Dis. Primers 2:16014
    [Google Scholar]
  2. 2. Natl. Inst. Health. 2009. Opportunities and challenges in digestive diseases research: recommendations of the national commission on digestive diseases Rep. 08-6514 Natl. Inst. Diabetes Dig. Kidney Dis., Natl. Inst. Health Bethesda, MD:
  3. 3.  Sikandar S, Dickenson AH 2012. Visceral pain: the ins and outs, the ups and downs. Curr. Opin. Support Palliat. Care 6:17–26
    [Google Scholar]
  4. 4.  Farrell KE, Callister RJ, Keely S 2014. Understanding and targeting centrally mediated visceral pain in inflammatory bowel disease. Front. Pharmacol. 5:27
    [Google Scholar]
  5. 5.  Volkow ND, McLellan AT 2016. Opioid abuse in chronic pain—misconceptions and mitigation strategies. N. Engl. J. Med. 374:1253–63
    [Google Scholar]
  6. 6.  Kaplan GG. 2015. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12:720–27
    [Google Scholar]
  7. 7.  Brierley SM, Linden DR 2014. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 11:611–27
    [Google Scholar]
  8. 8.  Chey WD, Kurlander J, Eswaran S 2015. Irritable bowel syndrome: a clinical review. JAMA 313:949–58
    [Google Scholar]
  9. 9.  Spiller R, Garsed K 2009. Postinfectious irritable bowel syndrome. Gastroenterology 136:1979–88
    [Google Scholar]
  10. 10.  Marshall JK, Thabane M, Garg AX, Clark WF, Moayyedi P et al. 2010. Eight year prognosis of postinfectious irritable bowel syndrome following waterborne bacterial dysentery. Gut 59:605–11
    [Google Scholar]
  11. 11.  Grundy L, Brierley SM 2018. Cross-organ sensitization between the colon and bladder: to pee or not to pee?. Am. J. Physiol. Gastrointest. Liver Physiol. 314:G301–8
    [Google Scholar]
  12. 12.  Lembo A. 2007. The clinical and economic burden of irritable bowel syndrome. Pract. Gastroenterol. 31:3–9
    [Google Scholar]
  13. 13.  Berry SH, Elliott MN, Suttorp M, Bogart LM, Stoto MA et al. 2011. Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J. Urol. 186:540–44
    [Google Scholar]
  14. 14.  Suskind AM, Berry SH, Ewing BA, Elliott MN, Suttorp MJ, Clemens JQ 2013. The prevalence and overlap of interstitial cystitis/bladder pain syndrome and chronic prostatitis/chronic pelvic pain syndrome in men: results of the RAND Interstitial Cystitis Epidemiology male study. J. Urol. 189:141–45
    [Google Scholar]
  15. 15.  Pierce AN, Christianson JA 2015. Stress and chronic pelvic pain. Prog. Mol. Biol. Transl. Sci. 131:509–35
    [Google Scholar]
  16. 16.  Kim SH, Kim TB, Kim SW, Oh SJ 2009. Urodynamic findings of the painful bladder syndrome/interstitial cystitis: a comparison with idiopathic overactive bladder. J. Urol. 181:2550–54
    [Google Scholar]
  17. 17.  de Groat WC, Yoshimura N 2009. Afferent nerve regulation of bladder function in health and disease. Handb. Exp. Pharmacol. 194:91–138
    [Google Scholar]
  18. 18.  Burgmann T, Clara I, Graff L, Walker J, Lix L et al. 2006. The Manitoba Inflammatory Bowel Disease Cohort Study: prolonged symptoms before diagnosis—how much is irritable bowel syndrome?. Clin. Gastroenterol. Hepatol. 4:614–20
    [Google Scholar]
  19. 19.  Ansari R, Attari F, Razjouyan H, Etemadi A, Amjadi H et al. 2008. Ulcerative colitis and irritable bowel syndrome: relationships with quality of life. Eur. J. Gastroenterol. Hepatol. 20:46–50
    [Google Scholar]
  20. 20.  Alagiri M, Chottiner S, Ratner V, Slade D, Hanno PM 1997. Interstitial cystitis: unexplained associations with other chronic disease and pain syndromes. Urology 49:52–57
    [Google Scholar]
  21. 21.  Whorwell PJ, Lupton EW, Erduran D, Wilson K 1986. Bladder smooth muscle dysfunction in patients with irritable bowel syndrome. Gut 27:1014–17
    [Google Scholar]
  22. 22.  Cukier JM, Cortina-Borja M, Brading AF 1997. A case-control study to examine any association between idiopathic detrusor instability and gastrointestinal tract disorder, and between irritable bowel syndrome and urinary tract disorder. Br. J. Urol. Int. 79:865–78
    [Google Scholar]
  23. 23.  Clemens JQ, Brown SO, Kozloff L, Calhoun EA 2006. Predictors of symptom severity in patients with chronic prostatitis and interstitial cystitis. J. Urol. 175:963–66
    [Google Scholar]
  24. 24.  Brierley SM, Jones RC 3rd, Gebhart GF, Blackshaw LA 2004. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127:166–78
    [Google Scholar]
  25. 25.  Harrington AM, Brierley SM, Isaacs N, Hughes PA, Castro J, Blackshaw LA 2012. Sprouting of colonic afferent central terminals and increased spinal mitogen-activated protein kinase expression in a mouse model of chronic visceral hypersensitivity. J. Comp. Neurol. 520:2241–55
    [Google Scholar]
  26. 26.  Todd AJ. 2010. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11:823–36
    [Google Scholar]
  27. 27.  de Groat WC, Yoshimura N 2015. Anatomy and physiology of the lower urinary tract. Handb. Clin. Neurol. 130:61–108
    [Google Scholar]
  28. 28.  Fowler CJ, Griffiths D, de Groat WC 2008. The neural control of micturition. Nat. Rev. Neurosci. 9:453–66
    [Google Scholar]
  29. 29.  Griffiths D. 2015. Neural control of micturition in humans: a working model. Nat. Rev. Urol. 12:695–705
    [Google Scholar]
  30. 30.  Willis WD Jr. 2008. A novel visceral pain pathway in the posterior funiculus of the spinal cord. J. Med. Sci. 1:33–37
    [Google Scholar]
  31. 31.  Spencer NJ, Kyloh M, Duffield M 2014. Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique. PLOS ONE 9:e112466
    [Google Scholar]
  32. 32.  Brookes S, Chen N, Humenick A, Spencer NJ, Costa M 2016. Extrinsic sensory innervation of the gut: structure and function. Adv. Exp. Med. Biol. 891:63–69
    [Google Scholar]
  33. 33.  Brookes SJ, Spencer NJ, Costa M, Zagorodnyuk VP 2013. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10:286–96
    [Google Scholar]
  34. 34.  Spencer NJ, Zagorodnyuk V, Brookes SJ, Hibberd T 2016. Spinal afferent nerve endings in visceral organs: recent advances. Am. J. Physiol. Gastrointest. Liver Physiol. 311:G1056–63
    [Google Scholar]
  35. 35.  Hockley JR, Tranter MM, McGuire C, Boundouki G, Cibert-Goton V et al. 2016. P2Y receptors sensitize mouse and human colonic nociceptors. J. Neurosci. 36:2364–76
    [Google Scholar]
  36. 36.  Jiang W, Adam IJ, Kitsanta P, Tiernan J, Hill C et al. 2011. ‘First-in-man’: characterising the mechanosensitivity of human colonic afferents. Gut 60:281–82
    [Google Scholar]
  37. 37.  McGuire C, Boundouki G, Hockley JRF, Reed D, Cibert-Goton V et al. 2018. Ex vivo study of human visceral nociceptors. Gut 67:86–96
    [Google Scholar]
  38. 38.  Peiris M, Bulmer DC, Baker MD, Boundouki G, Sinha S et al. 2011. Human visceral afferent recordings: preliminary report. Gut 60:204–8
    [Google Scholar]
  39. 39.  Hughes PA, Brierley SM, Martin CM, Brookes SJ, Linden DR, Blackshaw LA 2009. Post-inflammatory colonic afferent sensitization: different subtypes, different pathways and different time courses. Gut 58:1333–41
    [Google Scholar]
  40. 40.  Feng B, Gebhart GF 2011. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am. J. Physiol. Gastrointest. Liver Physiol. 300:G170–80
    [Google Scholar]
  41. 41.  Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C et al. 2017. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170:185–98.e16
    [Google Scholar]
  42. 42.  Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM et al. 2009. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137:2084–95.e3
    [Google Scholar]
  43. 43.  Feng B, Zhu Y, La JH, Wills ZP, Gebhart GF 2015. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings. J. Neurophysiol. 113:2618–34
    [Google Scholar]
  44. 44.  Jones RC 3rd, Xu L, Gebhart GF 2005. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 25:10981–89
    [Google Scholar]
  45. 45.  Feng B, La JH, Schwartz ES, Tanaka T, McMurray TP, Gebhart GF 2012. Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G676–83
    [Google Scholar]
  46. 46.  Castro J, Harrington AM, Garcia-Caraballo S, Maddern J, Grundy L et al. 2017. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors. Gut 66:1083–94
    [Google Scholar]
  47. 47.  Hughes PA, Harrington AM, Castro J, Liebregts T, Adam B et al. 2013. Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 62:1456–65
    [Google Scholar]
  48. 48.  Sadeghi M, Erickson A, Castro J, Deiteren A, Harrington AM et al. 2018. Contribution of membrane receptor signalling to chronic visceral pain. Int. J. Biochem. Cell Biol. 98:10–23
    [Google Scholar]
  49. 49.  Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T et al. 2008. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134:2059–69
    [Google Scholar]
  50. 50.  Humenick A, Chen BN, Wiklendt L, Spencer NJ, Zagorodnyuk VP et al. 2015. Activation of intestinal spinal afferent endings by changes in intra-mesenteric arterial pressure. J. Physiol. 593:3693–709
    [Google Scholar]
  51. 51.  Castro J, Grundy L, Deiteren A, Harrington AM, O'Donnell T et al. 2017. Cyclic analogues of α-conotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. Br. J. Pharmacol. 175:2384–98
    [Google Scholar]
  52. 52.  Castro J, Harrington AM, Hughes PA, Martin CM, Ge P et al. 2013. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3′,5′-monophosphate. Gastroenterology 145:1334–46.e11
    [Google Scholar]
  53. 53.  de Araujo AD, Mobli M, Castro J, Harrington AM, Vetter I et al. 2014. Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nat. Commun. 5:3165
    [Google Scholar]
  54. 54.  Hughes PA, Castro J, Harrington AM, Isaacs N, Moretta M et al. 2014. Increased κ-opioid receptor expression and function during chronic visceral hypersensitivity. Gut 63:1199–200
    [Google Scholar]
  55. 55.  Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C et al. 2016. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 534:494–99
    [Google Scholar]
  56. 56.  Salvatierra J, Castro J, Erickson A, Li Q, Braz J et al. 2018. NaV1.1 inhibition can reduce visceral hypersensitivity. JCI Insight 3:e121000
    [Google Scholar]
  57. 57.  Inserra MC, Israel MR, Caldwell A, Castro J, Deuis JR et al. 2017. Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Sci. Rep. 7:42810
    [Google Scholar]
  58. 58.  Hockley JR, Boundouki G, Cibert-Goton V, McGuire C, Yip PK et al. 2014. Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli. Pain 155:1962–75
    [Google Scholar]
  59. 59.  Peiris M, Hockley JRF, Reed DE, Smith ESJ, Bulmer DC, Blackshaw LA 2017. Peripheral KV7 channels regulate visceral sensory function in mouse and human colon. Mol. Pain 13: https://doi.org/10.1177/1744806917709371
    [Crossref] [Google Scholar]
  60. 60.  Brierley SM, Carter R, Jones W 3rd, Xu L, Robinson DR et al. 2005. Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J. Physiol. 567:267–81
    [Google Scholar]
  61. 61.  Harrington AM, Hughes PA, Martin CM, Yang J, Castro J et al. 2011. A novel role for TRPM8 in visceral afferent function. Pain 152:1459–68
    [Google Scholar]
  62. 62.  Brust A, Croker DE, Colless B, Ragnarsson L, Andersson A et al. 2016. Conopeptide-derived κ-opioid agonists (conorphins): potent, selective, and metabolic stable dynorphin A mimetics with antinociceptive properties. J. Med. Chem. 59:2381–95
    [Google Scholar]
  63. 63.  Guerrero-Alba R, Valdez-Morales EE, Jiménez-Vargas NN, Bron R, Poole D et al. 2018. Co-expression of μ and δ opioid receptors by mouse colonic nociceptors. Br. J. Pharmacol. 175:2622–34
    [Google Scholar]
  64. 64.  Brierley SM, Jones RC 3rd, Xu L, Gebhart GF, Blackshaw LA 2005. Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol. Motil. 17:854–62
    [Google Scholar]
  65. 65.  Prato V, Taberner FJ, Hockley JRF, Callejo G, Arcourt A et al. 2017. Functional and molecular characterization of mechanoinsensitive “silent” nociceptors. Cell Rep 21:3102–15
    [Google Scholar]
  66. 66.  Erickson A, Deiteren A, Harrington AM, Garcia-Caraballo S, Castro J et al. 2018. Voltage-gated sodium channels: (NaV)igating the field to determine their contribution to visceral nociception. J. Physiol. 596:785–807
    [Google Scholar]
  67. 67.  Hockley JRF, Taylor TS, Callejo G, Wilbrey AL, Gutteridge A et al. 2018. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut In press. https://doi.org/10.1136/gutjnl-2017-315631
    [Crossref]
  68. 68.  Wouters MM, Balemans D, Van Wanrooy S, Dooley J, Cibert-Goton V et al. 2016. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology 150:875–87.e9
    [Google Scholar]
  69. 69.  Desormeaux C, Bautzova T, Garcia-Caraballo S, Rolland C, Barbaro MR et al. 2018. Protease-activated receptor 1 is implicated in irritable bowel syndrome mediators-induced signalling to thoracic human sensory neurons. Pain 159:1257–67
    [Google Scholar]
  70. 70.  Sipe WE, Brierley SM, Martin CM, Phillis BD, Cruz FB et al. 2008. Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G1288–98
    [Google Scholar]
  71. 71.  Campaniello MA, Harrington AM, Martin CM, Ashley Blackshaw L, Brierley SM, Hughes PA 2016. Activation of colo-rectal high-threshold afferent nerves by Interleukin-2 is tetrodotoxin-sensitive and upregulated in a mouse model of chronic visceral hypersensitivity. Neurogastroenterol. Motil. 28:54–63
    [Google Scholar]
  72. 72.  Balemans D, Boeckxstaens GE, Talavera K, Wouters MM 2017. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 312:G635–48
    [Google Scholar]
  73. 73.  Hockley JR, Winchester WJ, Bulmer DC 2016. The voltage-gated sodium channel NaV1.9 in visceral pain. Neurogastroenterol. Motil. 28:316–26
    [Google Scholar]
  74. 74.  Spencer NJ, Greenheigh S, Kyloh M, Hibberd TJ, Sharma H et al. 2018. Identifying unique subtypes of spinal afferent nerve endings within the urinary bladder of mice. J. Comp. Neurol. 526:707–20
    [Google Scholar]
  75. 75.  Xu L, Gebhart GF 2008. Characterization of mouse lumbar splanchnic and pelvic nerve urinary bladder mechanosensory afferents. J. Neurophysiol. 99:244–53
    [Google Scholar]
  76. 76.  Forrest SL, Osborne PB, Keast JR 2013. Characterization of bladder sensory neurons in the context of myelination, receptors for pain modulators, and acute responses to bladder inflammation. Front. Neurosci. 7:206
    [Google Scholar]
  77. 77.  Daly D, Rong W, Chess-Williams R, Chapple C, Grundy D 2007. Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J. Physiol. 583:663–74
    [Google Scholar]
  78. 78.  Zagorodnyuk VP, Gibbins IL, Costa M, Brookes SJ, Gregory SJ 2007. Properties of the major classes of mechanoreceptors in the guinea pig bladder. J. Physiol. 585:147–63
    [Google Scholar]
  79. 79.  Nicholas S, Yuan SY, Brookes SJ, Spencer NJ, Zagorodnyuk VP 2017. Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder. Br. J. Pharmacol. 174:126–38
    [Google Scholar]
  80. 80.  Charrua A, Cruz CD, Jansen D, Rozenberg B, Heesakkers J, Cruz F 2015. Co-administration of transient receptor potential vanilloid 4 (TRPV4) and TRPV1 antagonists potentiate the effect of each drug in a rat model of cystitis. Br. J. Urol. Int. 115:452–60
    [Google Scholar]
  81. 81.  Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T et al. 2010. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. PNAS 107:19084–89
    [Google Scholar]
  82. 82.  Rong W, Spyer KM, Burnstock G 2002. Activation and sensitization of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J. Physiol. 41:591–600
    [Google Scholar]
  83. 83.  Collins VM, Daly DM, Liaskos M, McKay NG, Sellers D et al. 2013. OnabotulinumtoxinA significantly attenuates bladder afferent nerve firing and inhibits ATP release from the urothelium. Br. J. Urol. Int. 112:1018–26
    [Google Scholar]
  84. 84.  Zagorodnyuk VP, Costa M, Brookes SJ 2006. Major classes of sensory neurons to the urinary bladder. Auton. Neurosci. 126–127:390–97
    [Google Scholar]
  85. 85.  Zagorodnyuk VP, Brookes SJ, Spencer NJ, Gregory S 2009. Mechanotransduction and chemosensitivity of two major classes of bladder afferents with endings in the vicinity to the urothelium. J. Physiol. 587:3523–38
    [Google Scholar]
  86. 86.  Sadananda P, Kao FC, Liu L, Mansfield KJ, Burcher E 2012. Acid and stretch, but not capsaicin, are effective stimuli for ATP release in the porcine bladder mucosa: Are ASIC and TRPV1 receptors involved?. Eur. J. Pharmacol. 683:252–59
    [Google Scholar]
  87. 87.  Basso L, Lapointe TK, Iftinca M, Marsters C, Hollenberg MD et al. 2017. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. PNAS 114:11235–40
    [Google Scholar]
  88. 88.  Dang K, Lamb K, Cohen M, Bielefeldt K, Gebhart GF 2008. Cyclophosphamide-induced bladder inflammation sensitizes and enhances P2X receptor function in rat bladder sensory neurons. J. Neurophysiol. 99:49–59
    [Google Scholar]
  89. 89.  DeBerry JJ, Saloman JL, Dragoo BK, Albers KM, Davis BM 2015. Artemin immunotherapy is effective in preventing and reversing cystitis-induced bladder hyperalgesia via TRPA1 regulation. J. Pain 16:628–36
    [Google Scholar]
  90. 90.  DeBerry JJ, Schwartz ES, Davis BM 2014. TRPA1 mediates bladder hyperalgesia in a mouse model of cystitis. Pain 155:1280–87
    [Google Scholar]
  91. 91.  Lai HH, Qiu CS, Crock LW, Morales ME, Ness TJ, Gereau RW 2011. Activation of spinal extracellular signal-regulated kinases (ERK) 1/2 is associated with the development of visceral hyperalgesia of the bladder. Pain 152:2117–24
    [Google Scholar]
  92. 92.  Mawe GM, Hoffman JM 2013. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10:473–86
    [Google Scholar]
  93. 93.  Zheng Y, Yu T, Tang Y, Xiong W, Shen X et al. 2017. Efficacy and safety of 5-hydroxytryptamine 3 receptor antagonists in irritable bowel syndrome: a systematic review and meta-analysis of randomized controlled trials. PLOS ONE 12:e0172846
    [Google Scholar]
  94. 94.  Strege PR, Knutson KR, Eggers SJ, Wang F, Li J et al. 2017. SCN3A-encoded voltage-gated sodium channel NaV1.3 is specifically expressed in human and mouse gastrointestinal enterochromaffin cells and is important for enterochromaffin cell excitability. FASEB J 31:1007.40 (Abstr.)
    [Google Scholar]
  95. 95.  Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T et al. 2010. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am. J. Physiol. Ren. Physiol. 298:F692–701
    [Google Scholar]
  96. 96.  Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG et al. 2005. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J. Physiol. 567:621–39
    [Google Scholar]
  97. 97.  Burnstock G. 2017. Purinergic signalling: therapeutic developments. Front. Pharmacol. 8:661
    [Google Scholar]
  98. 98.  Rahnama'i MS, Marcelissen T, Apostolidis A, Veit-Rubin N, Schurch B et al. 2018. The efficacy of botulinum toxin A and sacral neuromodulation in the management of interstitial cystitis (IC)/bladder pain syndrome (BPS), what do we know? ICI-RS 2017 think tank, Bristol. Neurourol. Urodyn. 37:S99–107
    [Google Scholar]
  99. 99.  Eldred-Evans D, Sahai A 2017. Medium- to long-term outcomes of botulinum toxin A for idiopathic overactive bladder. Ther. Adv. Urol. 9:3–10
    [Google Scholar]
  100. 100.  Daly DM, Collins VM, Chapple CR, Grundy D 2011. The afferent system and its role in lower urinary tract dysfunction. Curr. Opin. Urol. 21:268–74
    [Google Scholar]
  101. 101.  Quigley EM. 2016. Leaky gut—concept or clinical entity?. Curr. Opin. Gastroenterol. 32:74–79
    [Google Scholar]
  102. 102.  Parsons CL, Greenberger M, Gabal L, Bidair M, Barme G 1998. The role of urinary potassium in the pathogenesis and diagnosis of interstitial cystitis. J. Urol. 159:1862–66
    [Google Scholar]
  103. 103.  Wu J, Guan TJ, Zheng S, Grosjean F, Liu W et al. 2011. Inhibition of inflammation by pentosan polysulfate impedes the development and progression of severe diabetic nephropathy in aging C57B6 mice. Lab. Investig. J. Tech. Methods Pathol. 91:1459–71
    [Google Scholar]
  104. 104.  Anderson VR, Perry CM 2006. Pentosan polysulfate: a review of its use in the relief of bladder pain or discomfort in interstitial cystitis. Drugs 66:821–35
    [Google Scholar]
  105. 105.  Brierley SM. 2016. Altered ion channel/receptor expression and function in extrinsic sensory neurons: the cause of and solution to chronic visceral pain?. Adv. Exp. Med. Biol. 891:75–90
    [Google Scholar]
  106. 106.  Bashashati M, Moossavi S, Cremon C, Barbaro MR, Moraveji S et al. 2018. Colonic immune cells in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol. Motil. 30:e13192
    [Google Scholar]
  107. 107.  Hughes PA, Moretta M, Lim A, Grasby DJ, Bird D et al. 2014. Immune derived opioidergic inhibition of viscerosensory afferents is decreased in Irritable Bowel Syndrome patients. Brain Behav. Immun. 42:191–203
    [Google Scholar]
  108. 108.  Hughes PA, Zola H, Penttila IA, Blackshaw LA, Andrews JM, Krumbiegel D 2013. Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms?. Am. J. Gastroenterol. 108:1066–74
    [Google Scholar]
  109. 109.  Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS et al. 2004. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126:693–702
    [Google Scholar]
  110. 110.  Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C et al. 2007. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132:26–37
    [Google Scholar]
  111. 111.  Rolland-Fourcade C, Denadai-Souza A, Cirillo C, Lopez C, Jaramillo JO et al. 2017. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut 66:1767–78
    [Google Scholar]
  112. 112.  Liebregts T, Adam B, Bredack C, Roth A, Heinzel S et al. 2007. Immune activation in patients with irritable bowel syndrome. Gastroenterology 132:913–20
    [Google Scholar]
  113. 113.  Basso L, Boué J, Augé C, Deraison C, Blanpied C et al. 2017. Mobilization of CD4+ T lymphocytes in inflamed mucosa reduces pain in colitis mice: toward a vaccinal strategy to alleviate inflammatory visceral pain. Pain 159:331–41
    [Google Scholar]
  114. 114.  Basso L, Garnier L, Bessac A, Boué J, Blanpied C et al. 2018. T-lymphocyte-derived enkephalins reduce Th1/Th17 colitis and associated pain in mice. J. Gastroenterol. 53:215–26
    [Google Scholar]
  115. 115.  Boué J, Basso L, Cenac N, Blanpied C, Rolli-Derkinderen M et al. 2014. Endogenous regulation of visceral pain via production of opioids by colitogenic CD4+ T cells in mice. Gastroenterology 146:166–75
    [Google Scholar]
  116. 116.  Taché Y, Martinez V, Wang L, Million M 2004. CRF1 receptor signaling pathways are involved in stress-related alterations of colonic function and viscerosensitivity: implications for irritable bowel syndrome. Br. J. Pharmacol. 141:1321–30
    [Google Scholar]
  117. 117.  Pierce AN, Christianson JA 2015. Stress and chronic pelvic pain. Progress in Molecular Biology and Translational Science TJ Price, G Dussor 509–35 New York: Academic
    [Google Scholar]
  118. 118.  Fuentes IM, Christianson JA 2018. The influence of early life experience on visceral pain. Front. Syst. Neurosci. 12:2
    [Google Scholar]
  119. 119.  Meerveld BG, Johnson AC 2018. Mechanisms of stress-induced visceral pain. J. Neurogastroenterol. Motil. 24:7–18
    [Google Scholar]
  120. 120.  Greenwood-Van Meerveld B, Johnson AC, Cochrane S, Schulkin J, Myers DA 2005. Corticotropin-releasing factor 1 receptor-mediated mechanisms inhibit colonic hypersensitivity in rats. Neurogastroenterol. Motil. 17:415–22
    [Google Scholar]
  121. 121.  Saito K, Kasai T, Nagura Y, Ito H, Kanazawa M, Fukudo S 2005. Corticotropin-releasing hormone receptor 1 antagonist blocks brain-gut activation induced by colonic distention in rats. Gastroenterology 129:1533–43
    [Google Scholar]
  122. 122.  Klausner AP, Streng T, Na YG, Raju J, Batts TW et al. 2005. The role of corticotropin releasing factor and its antagonist, astressin, on micturition in the rat. Auton. Neurosci. 123:26–35
    [Google Scholar]
  123. 123.  Larauche M, Kiank C, Taché Y 2009. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. J. Physiol. Pharmacol. 60:Suppl. 733–46
    [Google Scholar]
  124. 124.  Johnson AC, Tran L, Schulkin J, Greenwood-Van Meerveld B 2012. Importance of stress receptor-mediated mechanisms in the amygdala on visceral pain perception in an intrinsically anxious rat. Neurogastroenterol. Motil. 24:479–86.e219
    [Google Scholar]
  125. 125.  Lai H, Gardner V, Vetter J, Andriole GL 2015. Correlation between psychological stress levels and the severity of overactive bladder symptoms. BMC Urol 15:14
    [Google Scholar]
  126. 126.  Lai HH, Morgan CD, Vetter J, Andriole GL 2016. Impact of childhood and recent traumatic events on the clinical presentation of overactive bladder. Neurourol. Urodyn. 35:1017–23
    [Google Scholar]
  127. 127.  Rothrock NE, Lutgendorf SK, Kreder KJ, Ratliff T, Zimmerman B 2001. Stress and symptoms in patients with interstitial cystitis: a life stress model. Urology 57:422–27
    [Google Scholar]
  128. 128.  Roohafza H, Bidaki EZ, Hasanzadeh-Keshteli A, Daghaghzade H, Afshar H, Adibi P 2016. Anxiety, depression and distress among irritable bowel syndrome and their subtypes: an epidemiological population based study. Adv. Biomed. Res. 5:183
    [Google Scholar]
  129. 129.  Agostini A, Filippini N, Cevolani D, Agati R, Leoni C et al. 2011. Brain functional changes in patients with ulcerative colitis: a functional magnetic resonance imaging study on emotional processing. Inflamm. Bowel Dis. 17:1769–77
    [Google Scholar]
  130. 130.  Deutsch G, Deshpande H, Frolich MA, Lai HH, Ness TJ 2016. Bladder distension increases blood flow in pain related brain structures in subjects with interstitial cystitis. J. Urol. 196:902–10
    [Google Scholar]
  131. 131.  Farmer MA, Huang L, Martucci K, Yang CC, Maravilla KR et al. 2015. Brain white matter abnormalities in female interstitial cystitis/bladder pain syndrome: a MAPP network neuroimaging study. J. Urol. 194:118–26
    [Google Scholar]
  132. 132.  Kairys AE, Schmidt-Wilcke T, Puiu T, Ichesco E, Labus JS et al. 2015. Increased brain gray matter in the primary somatosensory cortex is associated with increased pain and mood disturbance in patients with interstitial cystitis/painful bladder syndrome. J. Urol. 193:131–37
    [Google Scholar]
  133. 133.  Spierling SR, Zorrilla EP 2017. Don't stress about CRF: assessing the translational failures of CRF1 antagonists. Psychopharmacology 234:1467–81
    [Google Scholar]
  134. 134.  Kaplan SA, Dmochowski R, Cash BD, Kopp ZS, Berriman SJ, Khullar V 2013. Systematic review of the relationship between bladder and bowel function: implications for patient management. Int. J. Clin. Pract. 67:205–16
    [Google Scholar]
  135. 135.  Qin C, Malykhina AP, Akbarali HI, Foreman RD 2005. Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology 129:1967–78
    [Google Scholar]
  136. 136.  Ustinova EE, Gutkin DW, Pezzone MA 2007. Sensitization of pelvic nerve afferents and mast cell infiltration in the urinary bladder following chronic colonic irritation is mediated by neuropeptides. Am. J. Physiol. Ren. Physiol. 292:F123–30
    [Google Scholar]
  137. 137.  Xia C, Shen S, Hashmi F, Qiao LY 2016. Colitis-induced bladder afferent neuronal activation is regulated by BDNF through PLCγ pathway. Exp. Neurol. 285:126–35
    [Google Scholar]
  138. 138.  Mayer EA, Savidge T, Shulman RJ 2014. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146:1500–12
    [Google Scholar]
  139. 139.  Mayer EA, Tillisch K, Gupta A 2015. Gut/brain axis and the microbiota. J. Clin. Investig. 125:926–38
    [Google Scholar]
  140. 140.  Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K 2014. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34:15490–96
    [Google Scholar]
  141. 141.  Stern EK, Brenner DM 2018. Gut microbiota-based therapies for irritable bowel syndrome. Clin. Transl. Gastroenterol. 9:e134
    [Google Scholar]
  142. 142.  Verdu EF, Bercik P, Verma-Gandhu M, Huang XX, Blennerhassett P et al. 2006. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55:182–90
    [Google Scholar]
  143. 143.  Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C et al. 2007. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 13:35–37
    [Google Scholar]
  144. 144.  Miranda PM, De Palma G, Serkis V, Lu J, Louis-Auguste MP et al. 2018. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome 6:57
    [Google Scholar]
  145. 145.  Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F et al. 2013. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501:52–57
    [Google Scholar]
  146. 146.  Sessenwein JL, Baker CC, Pradhananga S, Maitland ME, Petrof EO et al. 2017. Protease-mediated suppression of DRG neuron excitability by commensal bacteria. J. Neurosci. 37:11758–68
    [Google Scholar]
  147. 147.  Pérez-Berezo T, Pujo J, Martin P, Le Faouder P, Galano JM et al. 2017. Identification of an analgesic lipopeptide produced by the probiotic Escherichia coli strain Nissle 1917. Nat. Commun. 8:1314
    [Google Scholar]
  148. 148.  Chichlowski M, Rudolph C 2015. Visceral pain and gastrointestinal microbiome. J. Neurogastroenterol. Motil. 21:172–81
    [Google Scholar]
  149. 149.  Labus JS, Hollister EB, Jacobs J, Kirbach K, Oezguen N et al. 2017. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome 5:49
    [Google Scholar]
  150. 150.  De Palma G, Lynch MD, Lu J, Dang VT, Deng Y et al. 2017. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med. 9:eaaf6397
    [Google Scholar]
  151. 151.  Botschuijver S, Roeselers G, Levin E, Jonkers DM, Welting O et al. 2017. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153:1026–39
    [Google Scholar]
  152. 152.  Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY et al. 2015. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–60
    [Google Scholar]
  153. 153.  Khanna S, Shin A, Kelly CP 2017. Management of Clostridium difficile infection in inflammatory bowel disease: expert review from the clinical practice updates committee of the AGA Institute. Clin. Gastroenterol. Hepatol. 15:166–74
    [Google Scholar]
  154. 154.  Balachandran AA, Wildman SS, Strutt M, Duckett J 2016. Is chronic urinary infection a cause of overactive bladder?. Eur. J. Obstet. Gynecol. Reprod. Biol. 201:108–12
    [Google Scholar]
  155. 155.  Drake MJ, Morris N, Apostolidis A, Rahnama'i MS, Marchesi JR 2017. The urinary microbiome and its contribution to lower urinary tract symptoms; ICI-RS 2015. Neurourol. Urodyn. 36:850–3
    [Google Scholar]
  156. 156.  Khasriya R, Sathiananthamoorthy S, Ismail S, Kelsey M, Wilson M et al. 2013. Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms. J. Clin. Microbiol. 51:2054–62
    [Google Scholar]
  157. 157.  Whiteside SA, Razvi H, Dave S, Reid G, Burton JP 2015. The microbiome of the urinary tract–a role beyond infection. Nat. Rev. Urol. 12:81–90
    [Google Scholar]
  158. 158.  Siddiqui H, Lagesen K, Nederbragt AJ, Jeansson SL, Jakobsen KS 2012. Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol 12:205
    [Google Scholar]
  159. 159.  Abernethy MG, Rosenfeld A, White JR, Mueller MG, Lewicky-Gaupp C, Kenton K 2017. Urinary microbiome and cytokine levels in women with interstitial cystitis. Obstet. Gynecol. 129:500–6
    [Google Scholar]
  160. 160.  Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ et al. 2014. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J. Clin. Microbiol. 52:871–76
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114525
Loading
/content/journals/10.1146/annurev-physiol-020518-114525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error