1932

Abstract

Mitochondria are an iconic distinguishing feature of eukaryotic cells. Mitochondria encompass an active organellar network that fuses, divides, and directs a myriad of vital biological functions, including energy metabolism, cell death regulation, and innate immune signaling in different tissues. Another crucial and often underappreciated function of these dynamic organelles is their central role in the metabolism of the most abundant and biologically versatile transition metals in mammalian cells, iron. In recent years, cellular and animal models of mitochondrial iron dysfunction have provided vital information in identifying new proteins that have elucidated the pathways involved in mitochondrial homeostasis and iron metabolism. Specific signatures of mitochondrial iron dysregulation that are associated with disease pathogenesis and/or progression are becoming increasingly important. Understanding the molecular mechanisms regulating mitochondrial iron pathways will help better define the role of this important metal in mitochondrial function and in human health and disease.

Keyword(s): ironmetabolismmitochondria
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114742
2019-02-10
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114742.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114742&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M et al. 2010. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. PNAS 107:10775–82
    [Google Scholar]
  2. 2.
    Paul BT, Manz DH, Torti FM, Torti SV 2017. Mitochondria and iron: current questions. Expert Rev. Hematol. 10:65–79
    [Google Scholar]
  3. 3.
    Rauen U, Springer A, Weisheit D, Petrat F, Korth HG et al. 2007. Assessment of chelatable mitochondrial iron by using mitochondrion-selective fluorescent iron indicators with different iron-binding affinities. ChemBioChem 8:341–52
    [Google Scholar]
  4. 4.
    Jhurry ND, Chakrabarti M, McCormick SP, Holmes-Hampton GP, Lindahl PA 2012. Biophysical investigation of the ironome of human jurkat cells and mitochondria. Biochemistry 51:5276–84
    [Google Scholar]
  5. 5.
    Chevion M. 1988. A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radic. Biol. Med. 5:27–37
    [Google Scholar]
  6. 6.
    Philpott CC. 2006. Iron uptake in fungi: a system for every source. Biochim. Biophys. Acta 1763:636–45
    [Google Scholar]
  7. 7.
    Khan A, Singh P, Srivastava A 2017. Synthesis, nature and utility of universal iron chelator– siderophore: a review. Microbiol. Res. 212–213:103–11
    [Google Scholar]
  8. 8.
    Bai L, Qiao M, Zheng R, Deng C, Mei S, Chen W 2016. Phylogenomic analysis of transferrin family from animals and plants. Comp. Biochem. Physiol. D Genom. Proteom. 17:1–8
    [Google Scholar]
  9. 9.
    Xiao G, Wan Z, Fan Q, Tang X, Zhou B 2014. The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster. eLife 3:e03191
    [Google Scholar]
  10. 10.
    Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ et al. 2000. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–81
    [Google Scholar]
  11. 11.
    Fleming RE, Ponka P 2012. Iron overload in human disease. N. Engl. J. Med. 366:348–59
    [Google Scholar]
  12. 12.
    Wilkinson N, Pantopoulos K 2014. The IRP/IRE system in vivo: insights from mouse models. Front. Pharmacol. 5:176
    [Google Scholar]
  13. 13.
    Shi H, Bencze KZ, Stemmler TL, Philpott CC 2008. A cytosolic iron chaperone that delivers iron to ferritin. Science 320:1207–10
    [Google Scholar]
  14. 14.
    Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC 2014. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:105–9
    [Google Scholar]
  15. 15.
    Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF et al. 1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–88
    [Google Scholar]
  16. 16.
    Jenkitkasemwong S, Wang CY, Mackenzie B, Knutson MD 2012. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals 25:643–55
    [Google Scholar]
  17. 17.
    Hamza I, Dailey HA 2012. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim. Biophys. Acta 1823:1617–32
    [Google Scholar]
  18. 18.
    Kühlbrandt W. 2015. Structure and function of mitochondrial membrane protein complexes. BMC Biol 13:89
    [Google Scholar]
  19. 19.
    Zhang AS, Sheftel AD, Ponka P 2005. Intracellular kinetics of iron in reticulocytes: evidence for endosome involvement in iron targeting to mitochondria. Blood 105:368–75
    [Google Scholar]
  20. 20.
    Sheftel AD, Zhang AS, Brown C, Shirihai OS, Ponka P 2007. Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110:125–32
    [Google Scholar]
  21. 21.
    Hamdi A, Roshan TM, Kahawita TM, Mason AB, Sheftel AD, Ponka P 2016. Erythroid cell mitochondria receive endosomal iron by a “kiss-and-run” mechanism. Biochim. Biophys. Acta 1863:2859–67
    [Google Scholar]
  22. 22.
    Das A, Nag S, Mason AB, Barroso MM 2016. Endosome-mitochondria interactions are modulated by iron release from transferrin. J. Cell Biol. 214:831–45
    [Google Scholar]
  23. 23.
    Lambe T, Simpson RJ, Dawson S, Bouriez-Jones T, Crockford TL et al. 2009. Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood 113:1805–8
    [Google Scholar]
  24. 24.
    Wolff NA, Garrick MD, Zhao L, Garrick LM, Ghio AJ, Thevenod F 2018. A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci. Rep. 8:211
    [Google Scholar]
  25. 25.
    Foury F, Roganti T 2002. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J. Biol. Chem. 277:24475–83
    [Google Scholar]
  26. 26.
    Li L, Kaplan J 2004. A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism. J. Biol. Chem. 279:33653–61
    [Google Scholar]
  27. 27.
    Shaw GC, Cope JJ, Li L, Corson K, Hersey C et al. 2006. Mitoferrin is essential for erythroid iron assimilation. Nature 440:96–100
    [Google Scholar]
  28. 28.
    Troadec MB, Warner D, Wallace J, Thomas K, Spangrude GJ et al. 2011. Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria. Blood 117:5494–502
    [Google Scholar]
  29. 29.
    Chen W, Dailey HA, Paw BH 2010. Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis. Blood 116:628–30
    [Google Scholar]
  30. 30.
    Chen W, Paradkar PN, Li L, Pierce EL, Langer NB et al. 2009. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. PNAS 106:16263–68
    [Google Scholar]
  31. 31.
    Medlock AE, Shiferaw MT, Marcero JR, Vashisht AA, Wohlschlegel JA et al. 2015. Identification of the mitochondrial heme metabolism complex. PLOS ONE 10:e0135896
    [Google Scholar]
  32. 32.
    Christenson ET, Gallegos AS, Banerjee A 2018. In vitro reconstitution, functional dissection, and mutational analysis of metal ion transport by mitoferrin-1. J. Biol. Chem. 293:3819–28
    [Google Scholar]
  33. 33.
    Ren Y, Yang S, Tan G, Ye W, Liu D et al. 2012. Reduction of mitoferrin results in abnormal development and extended lifespan in Caenorhabditis elegans. PLOS ONE 7:e29666
    [Google Scholar]
  34. 34.
    Chen YC, Wu YT, Wei YH 2015. Depletion of mitoferrins leads to mitochondrial dysfunction and impairment of adipogenic differentiation in 3T3-L1 preadipocytes. Free Radic. Res. 49:1285–95
    [Google Scholar]
  35. 35.
    Hung HI, Schwartz JM, Maldonado EN, Lemasters JJ, Nieminen AL 2013. Mitoferrin-2-dependent mitochondrial iron uptake sensitizes human head and neck squamous carcinoma cells to photodynamic therapy. J. Biol. Chem. 288:677–86
    [Google Scholar]
  36. 36.
    Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J 2009. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol. Cell. Biol. 29:1007–16
    [Google Scholar]
  37. 37.
    Wang C, Chen X, Zou H, Chen X, Liu Y, Zhao S 2014. The roles of mitoferrin-2 in the process of arsenic trioxide-induced cell damage in human gliomas. Eur. J. Med. Res. 19:49
    [Google Scholar]
  38. 38.
    Yoon H, Zhang Y, Pain J, Lyver ER, Lesuisse E et al. 2011. Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria. Biochem. J. 440:137–46
    [Google Scholar]
  39. 39.
    Yan H, Hao S, Sun X, Zhang D, Gao X et al. 2015. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage. Biochem. Biophys. Res. Commun. 456:835–40
    [Google Scholar]
  40. 40.
    Abbate V, Reelfs O, Kong X, Pourzand C, Hider RC 2016. Dual selective iron chelating probes with a potential to monitor mitochondrial labile iron pools. Chem. Commun. 52:784–87
    [Google Scholar]
  41. 41.
    Lindahl PA, Moore MJ 2016. Labile low-molecular-mass metal complexes in mitochondria: trials and tribulations of a burgeoning field. Biochemistry 55:4140–53
    [Google Scholar]
  42. 42.
    Petrat F, de Groot H, Rauen U 2001. Subcellular distribution of chelatable iron: a laser scanning microscopic study in isolated hepatocytes and liver endothelial cells. Biochem. J. 356:61–69
    [Google Scholar]
  43. 43.
    Shvartsman M, Cabantchik ZI 2012. Intracellular iron trafficking: role of cytosolic ligands. Biometals 25:711–23
    [Google Scholar]
  44. 44.
    Ponka P, Sheftel AD, English AM, Bohle DS, Garcia-Santos D 2017. Do mammalian cells really need to export and import heme?. Trends Biochem. Sci. 42:395–406
    [Google Scholar]
  45. 45.
    Verma A, Nye JS, Snyder SH 1987. Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. PNAS 84:2256–60
    [Google Scholar]
  46. 46.
    Krishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J et al. 2006. Identification of a mammalian mitochondrial porphyrin transporter. Nature 443:586–89
    [Google Scholar]
  47. 47.
    Helias V, Saison C, Ballif BA, Peyrard T, Takahashi J et al. 2012. ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis. Nat. Genet. 44:170–73
    [Google Scholar]
  48. 48.
    Braymer JJ, Lill R 2017. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J. Biol. Chem. 292:12754–63
    [Google Scholar]
  49. 49.
    Rouault TA, Maio N 2017. Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J. Biol. Chem. 292:12744–53
    [Google Scholar]
  50. 50.
    Kispal G, Csere P, Prohl C, Lill R 1999. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18:3981–89
    [Google Scholar]
  51. 51.
    Bekri S, Kispal G, Lange H, Fitzsimons E, Tolmie J et al. 2000. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron–sulfur protein maturation. Blood 96:3256–64
    [Google Scholar]
  52. 52.
    Li L, Miao R, Jia X, Ward DM, Kaplan J 2014. Expression of the yeast cation diffusion facilitators Mmt1 and Mmt2 affects mitochondrial and cellular iron homeostasis: evidence for mitochondrial iron export. J. Biol. Chem. 289:17132–41
    [Google Scholar]
  53. 53.
    Drysdale J, Arosio P, Invernizzi R, Cazzola M, Volz A et al. 2002. Mitochondrial ferritin: a new player in iron metabolism. Blood Cells Mol. Dis. 29:376–83
    [Google Scholar]
  54. 54.
    Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A et al. 2001. A human mitochondrial ferritin encoded by an intronless gene. J. Biol. Chem. 276:24437–40
    [Google Scholar]
  55. 55.
    Shi Y, Ghosh MC, Tong WH, Rouault TA 2009. Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Hum. Mol. Genet. 18:3014–25
    [Google Scholar]
  56. 56.
    Corsi B, Cozzi A, Arosio P, Drysdale J, Santambrogio P et al. 2002. Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism. J. Biol. Chem. 277:22430–37
    [Google Scholar]
  57. 57.
    Nie G, Sheftel AD, Kim SF, Ponka P 2005. Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood 105:2161–67
    [Google Scholar]
  58. 58.
    Shi ZH, Nie G, Duan XL, Rouault T, Wu WS et al. 2010. Neuroprotective mechanism of mitochondrial ferritin on 6-hydroxydopamine-induced dopaminergic cell damage: implication for neuroprotection in Parkinson's disease. Antioxid. Redox Signal. 13:783–96
    [Google Scholar]
  59. 59.
    Wu WS, Zhao YS, Shi ZH, Chang SY, Nie GJ et al. 2013. Mitochondrial ferritin attenuates β-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxid. Redox Signal. 18:158–69
    [Google Scholar]
  60. 60.
    Chiabrando D, Marro S, Mercurio S, Giorgi C, Petrillo S et al. 2012. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J. Clin. Investig. 122:4569–79
    [Google Scholar]
  61. 61.
    Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L et al. 2012. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. PNAS 109:4152–57
    [Google Scholar]
  62. 62.
    Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A et al. 2014. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Investig. 124:617–30
    [Google Scholar]
  63. 63.
    Xu W, Barrientos T, Andrews NC 2013. Iron and copper in mitochondrial diseases. Cell Metab 17:319–28
    [Google Scholar]
  64. 64.
    Santambrogio P, Dusi S, Guaraldo M, Rotundo LI, Broccoli V et al. 2015. Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients. Neurobiol. Dis. 81:144–53
    [Google Scholar]
  65. 65.
    Tavsan Z, Ayar Kayali H 2015. The variations of glycolysis and TCA cycle intermediate levels grown in iron and copper mediums of Trichoderma harzianum. Appl. Biochem. Biotechnol 176:76–85
    [Google Scholar]
  66. 66.
    Ristow M, Pfister MF, Yee AJ, Schubert M, Michael L et al. 2000. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. PNAS 97:12239–43
    [Google Scholar]
  67. 67.
    Lodi R, Cooper JM, Bradley JL, Manners D, Styles P et al. 1999. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. PNAS 96:11492–95
    [Google Scholar]
  68. 68.
    Crooks DR, Maio N, Lane AN, Jarnik M, Higashi RM et al. 2018. Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. J. Biol. Chem. 293:8297–311
    [Google Scholar]
  69. 69.
    Tyrakis PA, Yurkovich ME, Sciacovelli M, Papachristou EK, Bridges HR et al. 2017. Fumarate hydratase loss causes combined respiratory chain defects. Cell Rep 21:1036–47
    [Google Scholar]
  70. 70.
    Van Vranken JG, Jeong MY, Wei P, Chen YC, Gygi SP et al. 2016. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. eLife 5:e17828
    [Google Scholar]
  71. 71.
    Mishra P, Chan DC 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15:634–46
    [Google Scholar]
  72. 72.
    Nikpour M, Pellagatti A, Liu A, Karimi M, Malcovati L et al. 2010. Gene expression profiling of erythroblasts from refractory anaemia with ring sideroblasts (RARS) and effects of G-CSF. Br. J. Haematol. 149:844–54
    [Google Scholar]
  73. 73.
    Baricault L, Segui B, Guegand L, Olichon A, Valette A et al. 2007. OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp. Cell Res. 313:3800–8
    [Google Scholar]
  74. 74.
    Yoon YS, Yoon DS, Lim IK, Yoon SH, Chung HY et al. 2006. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J. Cell Physiol. 209:468–80
    [Google Scholar]
  75. 75.
    Park J, Lee DG, Kim B, Park SJ, Kim JH et al. 2015. Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells. Toxicology 337:39–46
    [Google Scholar]
  76. 76.
    Jornayvaz FR, Shulman GI 2010. Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84
    [Google Scholar]
  77. 77.
    Nam E, Han J, Suh JM, Yi Y, Lim MH 2018. Link of impaired metal ion homeostasis to mitochondrial dysfunction in neurons. Curr. Opin. Chem. Biol. 43:8–14
    [Google Scholar]
  78. 78.
    Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M et al. 2014. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Investig. 124:3987–4003
    [Google Scholar]
  79. 79.
    Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY et al. 2013. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15:1197–205
    [Google Scholar]
  80. 80.
    Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M et al. 2009. Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat. Med. 15:259–66
    [Google Scholar]
  81. 81.
    Lin H, Magrane J, Rattelle A, Stepanova A, Galkin A et al. 2017. Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia. Dis. Model. Mech. 10:1343–52
    [Google Scholar]
  82. 82.
    Crooks DR, Natarajan TG, Jeong SY, Chen C, Park SY et al. 2014. Elevated FGF21 secretion, PGC-1α and ketogenic enzyme expression are hallmarks of iron-sulfur cluster depletion in human skeletal muscle. Hum. Mol. Genet. 23:24–39
    [Google Scholar]
  83. 83.
    Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F et al. 2015. Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans.Curr. Biol 25:1810–22
    [Google Scholar]
  84. 84.
    Esposito G, Vos M, Vilain S, Swerts J, De Sousa Valadas J et al. 2013. Aconitase causes iron toxicity in Drosophila pink1 mutants. PLOS Genet 9:e1003478
    [Google Scholar]
  85. 85.
    Allen GF, Toth R, James J, Ganley IG 2013. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14:1127–35
    [Google Scholar]
  86. 86.
    Wilfinger N, Austin S, Scheiber-Mojdehkar B, Berger W, Reipert S et al. 2016. Novel p53-dependent anticancer strategy by targeting iron signaling and BNIP3L-induced mitophagy. Oncotarget 7:1242–61
    [Google Scholar]
  87. 87.
    Wang X, Yang H, Yanagisawa D, Bellier JP, Morino K et al. 2016. Mitochondrial ferritin affects mitochondria by stabilizing HIF-1α in retinal pigment epithelium: implications for the pathophysiology of age-related macular degeneration. Neurobiol. Aging 47:168–79
    [Google Scholar]
  88. 88.
    Melber A, Haynes CM 2018. UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 28:281–95
    [Google Scholar]
  89. 89.
    Ciesielski SJ, Schilke B, Marszalek J, Craig EA 2016. Protection of scaffold protein Isu from degradation by the Lon protease Pim1 as a component of Fe-S cluster biogenesis regulation. Mol. Biol. Cell 27:1060–68
    [Google Scholar]
  90. 90.
    Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL 2011. Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J. Biol. Chem. 286:26424–30
    [Google Scholar]
  91. 91.
    Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ et al. 2015. Mitochondrial ClpX activates a key enzyme for heme biosynthesis and erythropoiesis. Cell 161:858–67
    [Google Scholar]
  92. 92.
    Guillon B, Bulteau AL, Wattenhofer-Donzé M, Schmucker S, Friguet B et al. 2009. Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins. FEBS J 276:1036–47
    [Google Scholar]
  93. 93.
    Holmes-Hampton GP, Tong WH, Rouault TA 2014. Biochemical and biophysical methods for studying mitochondrial iron metabolism. Methods Enzymol 547:275–307
    [Google Scholar]
  94. 94.
    Ma Y, Abbate V, Hider RC 2015. Iron-sensitive fluorescent probes: monitoring intracellular iron pools. Metallomics 7:212–22
    [Google Scholar]
  95. 95.
    Abbate V, Reelfs O, Hider RC, Pourzand C 2015. Design of novel fluorescent mitochondria-targeted peptides with iron-selective sensing activity. Biochem. J. 469:357–66
    [Google Scholar]
  96. 96.
    Wei Y, Aydin Z, Zhang Y, Liu Z, Guo M 2012. A turn-on fluorescent sensor for imaging labile Fe3+ in live neuronal cells at subcellular resolution. ChemBioChem 13:1569–73
    [Google Scholar]
  97. 97.
    Huang ML, Lane DJ, Richardson DR 2011. Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease. Antioxid. Redox Signal. 15:3003–19
    [Google Scholar]
  98. 98.
    Urrutia PJ, Aguirre P, Tapia V, Carrasco CM, Mena NP, Núñez MT 2017. Cell death induced by mitochondrial complex I inhibition is mediated by Iron Regulatory Protein 1. Biochim. Biophys. Acta 1863:2202–9
    [Google Scholar]
  99. 99.
    Li-Harms X, Milasta S, Lynch J, Wright C, Joshi A et al. 2015. Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice. Blood 125:162–74
    [Google Scholar]
  100. 100.
    Chen ML, Logan TD, Hochberg ML, Shelat SG, Yu X et al. 2009. Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. Blood 114:4045–53
    [Google Scholar]
  101. 101.
    Anso E, Weinberg SE, Diebold LP, Thompson BJ, Malinge S et al. 2017. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat. Cell Biol. 19:614–25
    [Google Scholar]
  102. 102.
    Elorza A, Hyde B, Mikkola HK, Collins S, Shirihai OS 2008. UCP2 modulates cell proliferation through the MAPK/ERK pathway during erythropoiesis and has no effect on heme biosynthesis. J. Biol. Chem. 283:30461–70
    [Google Scholar]
  103. 103.
    Khalil S, Holy M, Grado S, Fleming R, Kurita R et al. 2017. A specialized pathway for erythroid iron delivery through lysosomal trafficking of transferrin receptor 2. Blood Adv 1:1181–94
    [Google Scholar]
  104. 104.
    Puy H, Gouya L, Deybach JC 2010. Porphyrias. Lancet 375:924–37
    [Google Scholar]
  105. 105.
    Chen FP, Risheg H, Liu Y, Bloomer J 2002. Ferrochelatase gene mutations in erythropoietic protoporphyria: focus on liver disease. Cell Mol. Biol. 48:83–89
    [Google Scholar]
  106. 106.
    Whatley SD, Ducamp S, Gouya L, Grandchamp B, Beaumont C et al. 2008. C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am. J. Hum. Genet. 83:408–14
    [Google Scholar]
  107. 107.
    Wang Y, Langer NB, Shaw GC, Yang G, Li L et al. 2011. Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria. Exp. Hematol. 39:784–94
    [Google Scholar]
  108. 108.
    Fleming MD. 2011. Congenital sideroblastic anemias: iron and heme lost in mitochondrial translation. Hematol. Am. Soc. Hematol. Educ. Prog. 2011:525–31
    [Google Scholar]
  109. 109.
    D'Hooghe M, Selleslag D, Mortier G, Van Coster R, Vermeersch P et al. 2012. X-linked sideroblastic anemia and ataxia: a new family with identification of a fourth ABCB7 gene mutation. Eur. J. Paediatr. Neurol. 16:730–35
    [Google Scholar]
  110. 110.
    Pondarre C, Campagna DR, Antiochos B, Sikorski L, Mulhern H, Fleming MD 2007. Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood 109:3567–69
    [Google Scholar]
  111. 111.
    Guernsey DL, Jiang H, Campagna DR, Evans SC, Ferguson M et al. 2009. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nat. Genet. 41:651–53
    [Google Scholar]
  112. 112.
    Liu G, Guo S, Anderson GJ, Camaschella C, Han B, Nie G 2014. Heterozygous missense mutations in the GLRX5 gene cause sideroblastic anemia in a Chinese patient. Blood 124:2750–51
    [Google Scholar]
  113. 113.
    Cazzola M, Invernizzi R 2011. Ring sideroblasts and sideroblastic anemias. Haematologica 96:789–92
    [Google Scholar]
  114. 114.
    Mallikarjun V, Sriram A, Scialo F, Sanz A 2014. The interplay between mitochondrial protein and iron homeostasis and its possible role in ageing. Exp. Gerontol. 56:123–34
    [Google Scholar]
  115. 115.
    Carvajal JJ, Pook MA, dos Santos M, Doudney K, Hillermann R et al. 1996. The Friedreich's ataxia gene encodes a novel phosphatidylinositol-4-phosphate 5-kinase. Nat. Genet. 14:157–62
    [Google Scholar]
  116. 116.
    Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M et al. 1996. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–27
    [Google Scholar]
  117. 117.
    Puccio H, Simon D, Cossée M, Criqui-Filipe P, Tiziano F et al. 2001. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 27:181–86
    [Google Scholar]
  118. 118.
    Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A et al. 2000. Inactivation of the Fried-reich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum. Mol. Genet. 9:1219–26
    [Google Scholar]
  119. 119.
    Koutnikova H, Campuzano V, Foury F, Dolle P, Cazzalini O, Koenig M 1997. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat. Genet. 16:345–51
    [Google Scholar]
  120. 120.
    Navarro JA, Botella JA, Metzendorf C, Lind MI, Schneuwly S 2015. Mitoferrin modulates iron toxicity in a Drosophila model of Friedreich's ataxia. Free Radic. Biol. Med. 85:71–82
    [Google Scholar]
  121. 121.
    Sawicki KT, Shang M, Wu R, Chang HC, Khechaduri A et al. 2015. Increased heme levels in the heart lead to exacerbated ischemic injury. J. Am. Heart Assoc. 4:e002272
    [Google Scholar]
  122. 122.
    Chang HC, Wu R, Shang M, Sato T, Chen C et al. 2016. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol. Med. 8:247–67
    [Google Scholar]
  123. 123.
    Wu W, Chang S, Wu Q, Xu Z, Wang P et al. 2016. Mitochondrial ferritin protects the murine myocardium from acute exhaustive exercise injury. Cell Death Dis 7:e2475
    [Google Scholar]
  124. 124.
    White K, Lu Y, Annis S, Hale AE, Chau BN et al. 2015. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol. Med. 7:695–713
    [Google Scholar]
  125. 125.
    Cloonan SM, Glass K, Laucho-Contreras ME, Bhashyam AR, Cervo M et al. 2016. Mitochondrial iron chelation ameliorates cigarette-smoke induced bronchitis and emphysema in mice. Nat. Med. 22:163–74
    [Google Scholar]
  126. 126.
    Berg D, Hochstrasser H 2006. Iron metabolism in Parkinsonian syndromes. Mov. Disord. 21:1299–310
    [Google Scholar]
  127. 127.
    Querfurth HW, LaFerla FM 2010. Alzheimer's disease. N. Engl. J. Med. 362:329–44
    [Google Scholar]
  128. 128.
    Kozlov S, Afonin A, Evsyukov I, Bondarenko A 2017. Alzheimer's disease: as it was in the beginning. Rev. Neurosci. 28:825–43
    [Google Scholar]
  129. 129.
    Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR 1998. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 158:47–52
    [Google Scholar]
  130. 130.
    Smith MA, Harris PL, Sayre LM, Perry G 1997. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. PNAS 94:9866–68
    [Google Scholar]
  131. 131.
    Yang H, Guan H, Yang M, Liu Z, Takeuchi S et al. 2015. Upregulation of mitochondrial ferritin by proinflammatory cytokines: implications for a role in Alzheimer's disease. J. Alzheimers Dis. 45:797–811
    [Google Scholar]
  132. 132.
    Forno LS. 1996. Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol. 55:259–72
    [Google Scholar]
  133. 133.
    Muñoz Y, Carrasco CM, Campos JD, Aguirre P, Núñez MT 2016. Parkinson's disease: the mitochondria-iron link. Parkinsons Dis 2016:7049108
    [Google Scholar]
  134. 134.
    Mizuno Y, Ikebe S, Hattori N, Nakagawa-Hattori Y, Mochizuki H et al. 1995. Role of mitochondria in the etiology and pathogenesis of Parkinson's disease. Biochim. Biophys. Acta 1271:265–74
    [Google Scholar]
  135. 135.
    Carroll CB, Zeissler ML, Chadborn N, Gibson K, Williams G et al. 2011. Changes in iron-regulatory gene expression occur in human cell culture models of Parkinson's disease. Neurochem. Int. 59:73–80
    [Google Scholar]
  136. 136.
    Mena NP, García-Beltrán O, Lourido F, Urrutia PJ, Mena R et al. 2015. The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem. Biophys. Res. Commun. 463:787–92
    [Google Scholar]
  137. 137.
    Mastroberardino PG, Hoffman EK, Horowitz MP, Betarbet R, Taylor G et al. 2009. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease. Neurobiol. Dis. 34:417–31
    [Google Scholar]
  138. 138.
    Guan H, Yang H, Yang M, Yanagisawa D, Bellier JP et al. 2017. Mitochondrial ferritin protects SH-SY5Y cells against H2O2-induced oxidative stress and modulates α-synuclein expression. Exp. Neurol. 291:51–61
    [Google Scholar]
  139. 139.
    Matak P, Matak A, Moustafa S, Aryal DK, Benner EJ et al. 2016. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. PNAS 113:3428–35
    [Google Scholar]
  140. 140.
    MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C et al. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–83
    [Google Scholar]
  141. 141.
    Vonsattel JP, DiFiglia M 1998. Huntington disease. J. Neuropathol. Exp. Neurol. 57:369–84
    [Google Scholar]
  142. 142.
    Jansen AH, van Hal M, Op den Kelder IC, Meier RT, de Ruiter AA et al. 2017. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia 65:50–61
    [Google Scholar]
  143. 143.
    Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH 1996. Mitochondrial defect in Huntington's disease caudate nucleus. Ann. Neurol. 39:385–89
    [Google Scholar]
  144. 144.
    Agrawal S, Fox J, Thyagarajan B, Fox JH 2018. Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radic. Biol. Med. 120:317–29
    [Google Scholar]
  145. 145.
    Danielpur L, Sohn YS, Karmi O, Fogel C, Zinger A et al. 2016. GLP-1-RA corrects mitochondrial labile iron accumulation and improves β-cell function in type 2 Wolfram Syndrome. J. Clin. Endocrinol. Metab. 101:3592–99
    [Google Scholar]
  146. 146.
    Mochel F, Knight MA, Tong WH, Hernandez D, Ayyad K et al. 2008. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am. J. Hum. Genet. 82:652–60
    [Google Scholar]
  147. 147.
    Stehling O, Wilbrecht C, Lill R 2014. Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100:61–77
    [Google Scholar]
  148. 148.
    Porter JB, Rafique R, Srichairatanakool S, Davis BA, Shah FT et al. 2005. Recent insights into interactions of deferoxamine with cellular and plasma iron pools: implications for clinical use. Ann. N. Y. Acad. Sci. 1054:155–68
    [Google Scholar]
  149. 149.
    Sohn YS, Breuer W, Munnich A, Cabantchik ZI 2008. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood 111:1690–99
    [Google Scholar]
  150. 150.
    Strawser C, Schadt K, Hauser L, McCormick A, Wells M et al. 2017. Pharmacological therapeutics in Friedreich ataxia: the present state. Expert Rev. Neurother. 17:895–907
    [Google Scholar]
  151. 151.
    Kakhlon O, Breuer W, Munnich A, Cabantchik ZI 2010. Iron redistribution as a therapeutic strategy for treating diseases of localized iron accumulation. Can. J. Physiol. Pharmacol. 88:187–96
    [Google Scholar]
  152. 152.
    Velasco-Sánchez D, Aracil A, Montero R, Mas A, Jiménez L et al. 2011. Combined therapy with idebenone and deferiprone in patients with Friedreich's ataxia. Cerebellum 10: https://doi.org/10.1007/s12311-010-0212-7
    [Crossref] [Google Scholar]
  153. 153.
    Arpa J, Sanz-Gallego I, Rodriguez-de-Rivera FJ, Dominguez-Melcón FJ, Prefasi D et al. 2014. Triple therapy with deferiprone, idebenone and riboflavin in Friedreich's ataxia—open-label trial. Acta Neurol. Scand. 129:32–40
    [Google Scholar]
  154. 154.
    Prasanthi JR, Schrag M, Dasari B, Marwarha G, Dickson A et al. 2012. Deferiprone reduces amyloid-β and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet. J. Alzheimers Dis. 30:167–82
    [Google Scholar]
  155. 155.
    Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D et al. 2017. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease. Sci. Rep. 7:1398
    [Google Scholar]
  156. 156.
    Xu P, Zhang M, Sheng R, Ma Y 2017. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ1–42 aggregation inhibitors and metal-chelating agents for Alzheimer's disease. Eur. J. Med. Chem. 127:174–86
    [Google Scholar]
  157. 157.
    García-Beltrán O, Mena NP, Aguirre P, Barriga-González G, Galdámez A et al. 2017. Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLOS ONE 12:e0189043
    [Google Scholar]
  158. 158.
    Reelfs O, Abbate V, Hider RC, Pourzand C 2016. A powerful mitochondria-targeted iron chelator affords high photoprotection against solar ultraviolet A radiation. J. Investig. Dermatol. 136:1692–700
    [Google Scholar]
  159. 159.
    Alta RY, Vitorino HA, Goswami D, Liria CW, Wisnovsky SP et al. 2017. Mitochondria-penetrating peptides conjugated to desferrioxamine as chelators for mitochondrial labile iron. PLOS ONE 12:e0171729
    [Google Scholar]
  160. 160.
    Alta RYP, Vitorino HA, Goswami D, Teresa Machini M, Esposito BP 2017. Triphenylphosphonium-desferrioxamine as a candidate mitochondrial iron chelator. Biometals 30:709–18
    [Google Scholar]
  161. 161.
    Richardson DR. 2003. Friedreich's ataxia: iron chelators that target the mitochondrion as a therapeutic strategy?. Expert Opin. Investig. Drugs 12:235–45
    [Google Scholar]
  162. 162.
    Grillo AS, SantaMaria AM, Kafina MD, Cioffi AG, Huston NC et al. 2017. Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science 356:608–16
    [Google Scholar]
  163. 163.
    Rademakers LH, Koningsberger JC, Sorber CW, Baart de la Faille H, Van Hattum J, Marx JJ 1993. Accumulation of iron in erythroblasts of patients with erythropoietic protoporphyria. Eur. J. Clin. Investig. 23:130–38
    [Google Scholar]
  164. 164.
    Yamamoto M, Arimura H, Fukushige T, Minami K, Nishizawa Y et al. 2014. Abcb10 role in heme biosynthesis in vivo: Abcb10 knockout in mice causes anemia with protoporphyrin IX and iron accumulation. Mol. Cell. Biol. 34:1077–84
    [Google Scholar]
  165. 165.
    Kaneko K, Kubota Y, Nomura K, Hayashimoto H, Chida T et al. 2018. Establishment of a cell model of X-linked sideroblastic anemia using genome editing. Exp. Hematol. 65:57–68.e2
    [Google Scholar]
  166. 166.
    Cavadini P, Biasiotto G, Poli M, Levi S, Verardi R et al. 2007. RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload. Blood 109:3552–59
    [Google Scholar]
  167. 167.
    Sato T, Chang HC, Bayeva M, Shapiro JS, Ramos-Alonso L et al. 2018. mRNA-binding protein tris-tetraprolin is essential for cardiac response to iron deficiency by regulating mitochondrial function. PNAS 115:E6291–300
    [Google Scholar]
  168. 168.
    Navarro-Sastre A, Tort F, Stehling O, Uzarska MA, Arranz JA et al. 2011. A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am. J. Hum. Genet. 89:656–67
    [Google Scholar]
  169. 169.
    Alhawaj R, Patel D, Kelly MR, Sun D, Wolin MS 2015. Heme biosynthesis modulation via δ-aminolevulinic acid administration attenuates chronic hypoxia-induced pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 308:L719–28
    [Google Scholar]
  170. 170.
    DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, Lange C et al. 2009. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am. J. Hum. Genet. 85:493–502
    [Google Scholar]
  171. 171.
    Chang NC, Nguyen M, Bourdon J, Risse PA, Martin J et al. 2012. Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. Hum. Mol. Genet. 21:2277–87
    [Google Scholar]
  172. 172.
    Nordin A, Larsson E, Thornell LE, Holmberg M 2011. Tissue-specific splicing of ISCU results in a skeletal muscle phenotype in myopathy with lactic acidosis, while complete loss of ISCU results in early embryonic death in mice. Hum. Genet. 129:371–78
    [Google Scholar]
  173. 173.
    Olsson A, Lind L, Thornell LE, Holmberg M 2008. Myopathy with lactic acidosis is linked to chromosome 12q23.3-24.11 and caused by an intronmutation in the ISCU gene resulting in a splicing defect. Hum. Mol. Genet. 17:1666–72
    [Google Scholar]
  174. 174.
    Saha PP, Kumar SK, Srivastava S, Sinha D, Pareek G, D'Silva P 2014. The presence of multiple cellular defects associated with a novel G50E iron-sulfur cluster scaffold protein (ISCU) mutation leads to development of mitochondrial myopathy. J. Biol. Chem. 289:10359–77
    [Google Scholar]
  175. 175.
    Spiegel R, Saada A, Halvardson J, Soiferman D, Shaag A et al. 2014. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. Eur. J. Hum. Genet. 22:902–6
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114742
Loading
/content/journals/10.1146/annurev-physiol-020518-114742
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error