1932

Abstract

Small-conductance Ca2+-activated K+ channels (SK channels) are widely expressed throughout the central nervous system. These channels are activated solely by increases in intracellular Ca2+. SK channels are stable macromolecular complexes of the ion pore–forming subunits with calmodulin, which serves as the intrinsic Ca2+ gating subunit, as well as with protein kinase CK2 and protein phosphatase 2A, which modulate Ca2+ sensitivity. Well-known for their roles in regulating somatic excitability in central neurons, SK channels are also expressed in the postsynaptic membrane of glutamatergic synapses, where their activation and regulated trafficking modulate synaptic transmission and the induction and expression of synaptic plasticity, thereby affecting learning and memory. In this review we discuss the molecular and functional properties of SK channels and their physiological roles in central neurons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020911-153336
2012-03-17
2024-12-07
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-physiol-020911-153336
Loading
/content/journals/10.1146/annurev-physiol-020911-153336
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error