1932

Abstract

It is well established that the active properties of nerve and muscle cells are stabilized by homeostatic signaling systems. In organisms ranging from to humans, neurons restore baseline function in the continued presence of destabilizing perturbations by rebalancing ion channel expression, modifying neurotransmitter receptor surface expression and trafficking, and modulating neurotransmitter release. This review focuses on the homeostatic modulation of presynaptic neurotransmitter release, termed presynaptic homeostasis. First, we highlight criteria that can be used to define a process as being under homeostatic control. Next, we review the remarkable conservation of presynaptic homeostasis at the , mouse, and human neuromuscular junctions and emerging parallels at synaptic connections in the mammalian central nervous system. We then highlight recent progress identifying cellular and molecular mechanisms. We conclude by reviewing emerging parallels between the mechanisms of homeostatic signaling and genetic links to neurological disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071740
2015-02-10
2025-06-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-physiol-021014-071740
Loading
/content/journals/10.1146/annurev-physiol-021014-071740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error