1932

Abstract

Acid-base homeostasis is essential for life. The macromolecules upon which living organisms depend are sensitive to pH changes, and physiological systems use the equilibrium between carbon dioxide, bicarbonate, and protons to buffer their pH. Biological processes and environmental insults are constantly challenging an organism's pH; therefore, to maintain a consistent and proper pH, organisms need sensors that measure pH and that elicit appropriate responses. Mammals use multiple sensors for measuring both intracellular and extracellular pH, and although some mammalian pH sensors directly measure protons, it has recently become apparent that many pH-sensing systems measure pH via bicarbonate-sensing soluble adenylyl cyclase.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071821
2015-02-10
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/physiol/77/1/annurev-physiol-021014-071821.html?itemId=/content/journals/10.1146/annurev-physiol-021014-071821&mimeType=html&fmt=ahah

Literature Cited

  1. Boron WF. 1.  2004. Regulation of intracellular pH. Adv. Physiol. Educ. 28:160–79 [Google Scholar]
  2. Boron WF. 2.  2006. Acid-base transport by the renal proximal tubule. J. Am. Soc. Nephrol. 17:2368–82 [Google Scholar]
  3. Ruffin VA, Salameh AI, Boron WF, Parker MD. 3.  2014. Intracellular pH regulation by acid-base transporters in mammalian neurons. Front. Physiol. 5:43 [Google Scholar]
  4. Krulwich TA, Sachs G, Padan E. 4.  2011. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9:330–43 [Google Scholar]
  5. Tresguerres M, Barott KL, Barron ME, Roa JN. 5.  2014. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals. J. Exp. Biol. 217:663–72 [Google Scholar]
  6. Brown D, Wagner CA. 6.  2012. Molecular mechanisms of acid-base sensing by the kidney. J. Am. Soc. Nephrol. 23:774–80 [Google Scholar]
  7. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE. 7.  et al. 2003. Proton-sensing G-protein-coupled receptors. Nature 425:93–98 [Google Scholar]
  8. Seuwen K, Ludwig MG, Wolf RM. 8.  2006. Receptors for protons or lipid messengers or both. J. Recept. Signal Transduct. Res. 26:599–610 [Google Scholar]
  9. Wang JQ, Kon J, Mogi C, Tobo M, Damirin A. 9.  et al. 2004. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J. Biol. Chem. 279:45626–33 [Google Scholar]
  10. An S, Tsai C, Goetzl EJ. 10.  1995. Cloning, sequencing and tissue distribution of two related G protein–coupled receptor candidates expressed prominently in human lung tissue. FEBS Lett. 375:121–24 [Google Scholar]
  11. Tomura H, Mogi C, Sato K, Okajima F. 11.  2005. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cell. Signal. 17:1466–76 [Google Scholar]
  12. Yang LV, Radu CG, Roy M, Lee S, McLaughlin J. 12.  et al. 2007. Vascular abnormalities in mice deficient for the G protein–coupled receptor GPR4 that functions as a pH sensor. Mol. Cell. Biol. 27:1334–47 [Google Scholar]
  13. Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW. 13.  et al. 2010. Deletion of the pH sensor GPR4 decreases renal acid excretion. J. Am. Soc. Nephrol. 21:1745–55 [Google Scholar]
  14. Li H, Wang D, Singh LS, Berk M, Tan H. 14.  et al. 2009. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein–coupled receptor 1. PLOS ONE 4:e5705 [Google Scholar]
  15. Dong L, Li Z, Leffler NR, Asch AS, Chi JT, Yang LV. 15.  2013. Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis. PLOS ONE 8:e61991 [Google Scholar]
  16. Komarova SV, Pereverzev A, Shum JW, Sims SM, Dixon SJ. 16.  2005. Convergent signaling by acidosis and receptor activator of NF-κB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. PNAS 102:2643–48 [Google Scholar]
  17. Tomura H, Wang JQ, Komachi M, Damirin A, Mogi C. 17.  et al. 2005. Prostaglandin I2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J. Biol. Chem. 280:34458–64 [Google Scholar]
  18. Matsuzaki S, Ishizuka T, Yamada H, Kamide Y, Hisada T. 18.  et al. 2011. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells. Biochem. Biophys. Res. Commun. 413:499–503 [Google Scholar]
  19. Saxena H, Deshpande DA, Tiegs BC, Yan H, Battafarano RJ. 19.  et al. 2012. The GPCR OGR1 (GPR68) mediates diverse signalling and contraction of airway smooth muscle in response to small reductions in extracellular pH. Br. J. Pharmacol. 166:981–90 [Google Scholar]
  20. Ishii S, Kihara Y, Shimizu T. 20.  2005. Identification of T cell death–associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. J. Biol. Chem. 280:9083–87 [Google Scholar]
  21. Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON. 21.  2005. Differential proton sensitivity of related G protein–coupled receptors T cell death–associated gene 8 and G2A expressed in immune cells. PNAS 102:1632–37 [Google Scholar]
  22. Choi JW, Lee SY, Choi Y. 22.  1996. Identification of a putative G protein–coupled receptor induced during activation-induced apoptosis of T cells. Cell. Immunol. 168:78–84 [Google Scholar]
  23. Radu CG, Cheng D, Nijagal A, Riedinger M, McLaughlin J. 23.  et al. 2006. Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death–associated gene 8 receptor. Mol. Cell. Biol. 26:668–77 [Google Scholar]
  24. Jin Y, Sato K, Tobo A, Mogi C, Tobo M. 24.  et al. 2014. Inhibition of interleukin-1β production by extracellular acidification through the TDAG8/cAMP pathway in mouse microglia. J. Neurochem. 129:683–95 [Google Scholar]
  25. Tosa N, Murakami M, Jia WY, Yokoyama M, Masunaga T. 25.  et al. 2003. Critical function of T cell death–associated gene 8 in glucocorticoid-induced thymocyte apoptosis. Int. Immunol. 15:741–49 [Google Scholar]
  26. Ryder C, McColl K, Zhong F, Distelhorst CW. 26.  2012. Acidosis promotes Bcl-2 family–mediated evasion of apoptosis: involvement of acid-sensing G protein–coupled receptor GPR65 signaling to MEK/ERK. J. Biol. Chem. 287:27863–75 [Google Scholar]
  27. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM. 27.  et al. 1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38 [Google Scholar]
  28. Welling PA, Ho K. 28.  2009. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am. J. Physiol. Ren. Physiol. 297:F849–63 [Google Scholar]
  29. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M. 29.  1997. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 16:5464–71 [Google Scholar]
  30. Bittner S, Budde T, Wiendl H, Meuth SG. 30.  2010. From the background to the spotlight: TASK channels in pathological conditions. Brain Pathol. 20:999–1009 [Google Scholar]
  31. Hebert SC, Desir G, Giebisch G, Wang W. 31.  2005. Molecular diversity and regulation of renal potassium channels. Physiol. Rev. 85:319–71 [Google Scholar]
  32. Heitzmann D, Warth R. 32.  2008. Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol. Rev. 88:1119–82 [Google Scholar]
  33. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. 33.  2010. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol. Rev. 90:291–366 [Google Scholar]
  34. Wemmie JA, Taugher RJ, Kreple CJ. 34.  2013. Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci. 14:461–71 [Google Scholar]
  35. Kellenberger S, Schild L. 35.  2002. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82:735–67 [Google Scholar]
  36. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. 36.  1997. A proton-gated cation channel involved in acid-sensing. Nature 386:173–77 [Google Scholar]
  37. Waldmann R, Lazdunski M. 37.  1998. H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr. Opin. Neurobiol. 8:418–24 [Google Scholar]
  38. Jasti J, Furukawa H, Gonzales EB, Gouaux E. 38.  2007. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449:316–23 [Google Scholar]
  39. Grunder S, Chen X. 39.  2010. Structure, function, and pharmacology of acid-sensing ion channels (ASICs): focus on ASIC1a. Int. J. Physiol. Pathophysiol. Pharmacol. 2:73–94 [Google Scholar]
  40. Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J. 40.  et al. 2000. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–11 [Google Scholar]
  41. Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D. 41.  et al. 2009. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64:885–97 [Google Scholar]
  42. Tan ZY, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM. 42.  2007. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ. Res. 101:1009–19 [Google Scholar]
  43. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H. 43.  et al. 1998. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–43 [Google Scholar]
  44. Tominaga M, Tominaga T. 44.  2005. Structure and function of TRPV1. Pflüg. Arch. 451:143–50 [Google Scholar]
  45. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. 45.  1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–24 [Google Scholar]
  46. Caterina MJ. 46.  2003. Vanilloid receptors take a TRP beyond the sensory afferent. Pain 105:5–9 [Google Scholar]
  47. Geppetti P, Trevisani M. 47.  2004. Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br. J. Pharmacol. 141:1313–20 [Google Scholar]
  48. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W. 48.  et al. 2006. The cells and logic for mammalian sour taste detection. Nature 442:934–38 [Google Scholar]
  49. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. 49.  2006. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. PNAS 103:12569–74 [Google Scholar]
  50. Liman ER, Zhang YV, Montell C. 50.  2014. Peripheral coding of taste. Neuron 81:984–1000 [Google Scholar]
  51. Chaudhari N, Roper SD. 51.  2010. The cell biology of taste. J. Cell Biol. 190:285–96 [Google Scholar]
  52. Roper SD. 52.  2007. Signal transduction and information processing in mammalian taste buds. Pflüg. Arch. 454:759–76 [Google Scholar]
  53. Deyev IE, Sohet F, Vassilenko KP, Serova OV, Popova NV. 53.  et al. 2011. Insulin receptor–related receptor as an extracellular alkali sensor. Cell Metab. 13:679–89 [Google Scholar]
  54. Tsujimoto K, Tsuji N, Ozaki K, Ohta M, Itoh N. 54.  1995. Insulin receptor–related receptor messenger ribonucleic acid in the stomach is focally expressed in the enterochromaffin-like cells. Endocrinology 136:558–61 [Google Scholar]
  55. Ozaki K, Takada N, Tsujimoto K, Tsuji N, Kawamura T. 55.  et al. 1997. Localization of insulin receptor–related receptor in the rat kidney. Kidney Int. 52:694–98 [Google Scholar]
  56. Schonichen A, Webb BA, Jacobson MP, Barber DL. 56.  2013. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys. 42:289–314 [Google Scholar]
  57. Parsons JT. 57.  2003. Focal adhesion kinase: the first ten years. J. Cell Sci. 116:1409–16 [Google Scholar]
  58. Choi CH, Webb BA, Chimenti MS, Jacobson MP, Barber DL. 58.  2013. pH sensing by FAK-His58 regulates focal adhesion remodeling. J. Cell Biol. 202:849–59 [Google Scholar]
  59. Li S, Sato S, Yang X, Preisig PA, Alpern RJ. 59.  2004. Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J. Clin. Investig. 114:1782–89 [Google Scholar]
  60. Preisig PA. 60.  2007. The acid-activated signaling pathway: starting with Pyk2 and ending with increased NHE3 activity. Kidney Int. 72:1324–29 [Google Scholar]
  61. Espiritu DJ, Bernardo AA, Robey RB, Arruda JA. 61.  2002. A central role for Pyk2-Src interaction in coupling diverse stimuli to increased epithelial NBC activity. Am. J. Physiol. Ren. Physiol. 283:F663–70 [Google Scholar]
  62. Soriano P, Montgomery C, Geske R, Bradley A. 62.  1991. Targeted disruption of the c-src protooncogene leads to osteopetrosis in mice. Cell 64:693–702 [Google Scholar]
  63. Orr AW, Murphy-Ullrich JE. 63.  2004. Regulation of endothelial cell function by FAK and PYK2. Front. Biosci. 9:1254–66 [Google Scholar]
  64. Kodama H, Fukuda K, Takahashi E, Tahara S, Tomita Y. 64.  et al. 2003. Selective involvement of p130Cas/Crk/Pyk2/c-Src in endothelin-1–induced JNK activation. Hypertension 41:1372–79 [Google Scholar]
  65. Isom DG, Sridharan V, Baker R, Clement ST, Smalley DM, Dohlman HG. 65.  2013. Protons as second messenger regulators of G protein signaling. Mol. Cell 51:531–38 [Google Scholar]
  66. Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R. 66.  et al. 2008. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J. Cell Biol. 183:865–79 [Google Scholar]
  67. Kiviluoto S, Luyten T, Schneider L, Lisak D, Rojas-Rivera D. 67.  et al. 2013. Bax Inhibitor-1-mediated Ca2+ leak is decreased by cytosolic acidosis. Cell Calcium 54:186–92 [Google Scholar]
  68. Chang Y, Bruni R, Kloss B, Assur Z, Kloppmann E. 68.  et al. 2014. Structural basis for a pH-sensitive calcium leak across membranes. Science 344:1131–35 [Google Scholar]
  69. Chang JC, Oude-Elferink RP. 69.  2014. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation. Front. Physiol. 5:42 [Google Scholar]
  70. Johnson LR. 70.  1998. Essential Medical Physiology Philadelphia: Lippincott-Raven
  71. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML. 71.  et al. 2000. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–28 [Google Scholar]
  72. Buck J, Levin LR. 72.  2011. Physiological sensing of carbon dioxide/bicarbonate/pH via cyclic nucleotide signaling. Sensors 11:2112–28 [Google Scholar]
  73. Tresguerres M, Buck J, Levin LR. 73.  2010. Physiological carbon dioxide, bicarbonate, and pH sensing. Pflüg. Arch. 460:953–64 [Google Scholar]
  74. Valsecchi F, Ramos-Espiritu LS, Buck J, Levin LR, Manfredi G. 74.  2013. cAMP and mitochondria. Physiology 28:199–209 [Google Scholar]
  75. Rahman N, Buck J, Levin LR. 75.  2013. pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC). Front. Physiol. 4:343 [Google Scholar]
  76. Robison GA, Butcher RW, Sutherland EW. 76.  1968. Cyclic AMP. Annu. Rev. Biochem. 37:149–74 [Google Scholar]
  77. Arora K, Sinha C, Zhang W, Ren A, Moon CS. 77.  et al. 2013. Compartmentalization of cyclic nucleotide signaling: a question of when, where, and why?. Pflüg. Arch. 465:1397–407 [Google Scholar]
  78. Lefkimmiatis K, Zaccolo M. 78.  2014. cAMP signaling in subcellular compartments. Pharmacol. Ther. 143:295–304 [Google Scholar]
  79. Valsecchi F, Konrad C, Manfredi G. 79.  2014. Role of soluble adenylyl cyclase in mitochondria. Biochim. Biophys. Acta 18422555–60
  80. Acin-Perez R, Russwurm M, Gunnewig K, Gertz M, Zoidl G. 80.  et al. 2011. A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J. Biol. Chem. 286:30423–32 [Google Scholar]
  81. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G. 81.  2009. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab. 9:265–76 [Google Scholar]
  82. Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V. 82.  et al. 2004. Fluorescence resonance energy transfer–based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ. Res. 95:67–75 [Google Scholar]
  83. Terrin A, Di Benedetto G, Pertegato V, Cheung YF, Baillie G. 83.  et al. 2006. PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J. Cell Biol. 175:441–51 [Google Scholar]
  84. Zaccolo M. 84.  2011. Spatial control of cAMP signalling in health and disease. Curr. Opin. Pharmacol. 11:649–55 [Google Scholar]
  85. Zaccolo M, Di Benedetto G, Lissandron V, Mancuso L, Terrin A, Zamparo I. 85.  2006. Restricted diffusion of a freely diffusible second messenger: mechanisms underlying compartmentalized cAMP signalling. Biochem. Soc. Trans. 34:495–97 [Google Scholar]
  86. Zippin JH, Farrell J, Huron D, Kamenetsky M, Hess KC. 86.  et al. 2004. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain. J. Cell Biol. 164:527–34 [Google Scholar]
  87. Agarwal SR, Yang PC, Rice M, Singer CA, Nikolaev VO. 87.  et al. 2014. Role of membrane microdomains in compartmentation of cAMP signaling. PLOS ONE 9:e95835 [Google Scholar]
  88. Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR. 88.  1999. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. PNAS 96:79–84 [Google Scholar]
  89. Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C. 89.  et al. 2009. Persistent cAMP-signals triggered by internalized G-protein–coupled receptors. PLOS Biol. 7:e1000172 [Google Scholar]
  90. Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R. 90.  et al. 2009. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5:734–42 [Google Scholar]
  91. Bauman AL, Soughayer J, Nguyen BT, Willoughby D, Carnegie GK. 91.  et al. 2006. Dynamic regulation of cAMP synthesis through anchored PKA–adenylyl cyclase V/VI complexes. Mol. Cell 23:925–31 [Google Scholar]
  92. Davare MA, Avdonin V, Hall DD, Peden EM, Burette A. 92.  et al. 2001. A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293:98–101 [Google Scholar]
  93. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J. 93.  et al. 2002. Requirement of a macromolecular signaling complex for β adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–99 [Google Scholar]
  94. Lefkimmiatis K. 94.  2014. cAMP signalling meets mitochondrial compartments. Biochem. Soc. Trans. 42:265–69 [Google Scholar]
  95. Mei FC, Qiao J, Tsygankova OM, Meinkoth JL, Quilliam LA, Cheng X. 95.  2002. Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J. Biol. Chem. 277:11497–504 [Google Scholar]
  96. Métrich M, Berthouze M, Morel E, Crozatier B, Gomez AM, Lezoualc'h F. 96.  2010. Role of the cAMP-binding protein Epac in cardiovascular physiology and pathophysiology. Pflüg. Arch. 459:535–46 [Google Scholar]
  97. Zippin JH, Chen Y, Nahirney P, Kamenetsky M, Wuttke MS. 97.  et al. 2003. Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J. 17:82–84 [Google Scholar]
  98. Di Benedetto G, Scalzotto E, Mongillo M, Pozzan T. 98.  2013. Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 17:965–75 [Google Scholar]
  99. Lefkimmiatis K, Leronni D, Hofer AM. 99.  2013. The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. J. Cell Biol. 202:453–62 [Google Scholar]
  100. Feng Q, Zhang Y, Li Y, Liu Z, Zuo J, Fang F. 100.  2006. Two domains are critical for the nuclear localization of soluble adenylyl cyclase. Biochimie 88:319–28 [Google Scholar]
  101. Zippin JH, Chadwick PA, Levin LR, Buck J, Magro CM. 101.  2010. Soluble adenylyl cyclase defines a nuclear cAMP microdomain in keratinocyte hyperproliferative skin diseases. J. Investig. Dermatol. 130:1279–87 [Google Scholar]
  102. Chen X, Baumlin N, Buck J, Levin LR, Fregien N, Salathe M. 102.  2014. A specific soluble adenylyl cyclase variant is targeted to cilia and rescues abnormal ciliary beat regulation in sAC knockout mice. Am. J. Respir. Cell Mol. Biol. 51750–60
  103. Schmid A, Sutto Z, Nlend MC, Horvath G, Schmid N. 103.  et al. 2007. Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J. Gen. Physiol. 130:99–109 [Google Scholar]
  104. Bundey RA, Insel PA. 104.  2004. Discrete intracellular signaling domains of soluble adenylyl cyclase: camps of cAMP?. Sci. STKE 2004:pe19 [Google Scholar]
  105. Wuttke MS, Buck J, Levin LR. 105.  2001. Bicarbonate-regulated soluble adenylyl cyclase. JOP 2:154–58 [Google Scholar]
  106. Zippin JH, Levin LR, Buck J. 106.  2001. CO2/HCO3-responsive soluble adenylyl cyclase as a putative metabolic sensor. Trends Endocrinol. Metab. 12:366–70 [Google Scholar]
  107. Sample V, DiPilato LM, Yang JH, Ni Q, Saucerman JJ, Zhang J. 107.  2012. Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP. Nat. Chem. Biol. 8:375–82 [Google Scholar]
  108. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS. 108.  et al. 2014. A draft map of the human proteome. Nature 509:575–81 [Google Scholar]
  109. Barott KL, Helman Y, Haramaty L, Barron ME, Hess KC. 109.  et al. 2013. High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central physiological role. Sci. Rep. 3:1379 [Google Scholar]
  110. Cann MJ, Hammer A, Zhou J, Kanacher T. 110.  2003. A defined subset of adenylyl cyclases is regulated by bicarbonate ion. J. Biol. Chem. 278:35033–38 [Google Scholar]
  111. Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schroppel K. 111.  et al. 2005. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr. Biol. 15:2021–26 [Google Scholar]
  112. Kobayashi M, Buck J, Levin LR. 112.  2004. Conservation of functional domain structure in bicarbonate-regulated “soluble” adenylyl cyclases in bacteria and eukaryotes. Dev. Genes Evol. 214:503–9 [Google Scholar]
  113. Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS. 113.  et al. 2006. Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1. Eukaryot. Cell 5:103–11 [Google Scholar]
  114. Tresguerres M, Parks SK, Salazar E, Levin LR, Goss GG, Buck J. 114.  2010. Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis. PNAS 107:442–47 [Google Scholar]
  115. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR. 115.  2003. Kinetic properties of “soluble” adenylyl cyclase: synergism between calcium and bicarbonate. J. Biol. Chem. 278:15922–26 [Google Scholar]
  116. Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. 116.  2006. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J. Mol. Biol. 362:623–39 [Google Scholar]
  117. Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR. 117.  1997. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with G⋅GTPγS. Science 278:1907–16 [Google Scholar]
  118. Forte LR, Bylund DB, Zahler WL. 118.  1983. Forskolin does not activate sperm adenylate cyclase. Mol. Pharmacol. 24:42–47 [Google Scholar]
  119. Kleinboelting S, Diaz A, Moniot S, van den Heuvel J, Weyand M. 119.  et al. 2014. Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. PNAS 111:3727–32 [Google Scholar]
  120. Steegborn C, Litvin TN, Levin LR, Buck J, Wu H. 120.  2005. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat. Struct. Mol. Biol. 12:32–37 [Google Scholar]
  121. Jaiswal BS, Conti M. 121.  2003. Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa. PNAS 100:10676–81 [Google Scholar]
  122. Zippin JH, Chen Y, Straub SG, Hess KC, Diaz A. 122.  et al. 2013. CO2/HCO3- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J. Biol. Chem. 288:33283–91 [Google Scholar]
  123. Farrell J, Ramos L, Tresguerres M, Kamenetsky M, Levin LR, Buck J. 123.  2008. Somatic “soluble” adenylyl cyclase isoforms are unaffected in Sacytm1Lex/Sacytm1Lex “knockout” mice. PLOS ONE 3:e3251 [Google Scholar]
  124. Geng W, Wang Z, Zhang J, Reed BY, Pak CY, Moe OW. 124.  2005. Cloning and characterization of the human soluble adenylyl cyclase. Am. J. Physiol. Cell Physiol. 288:C1305–16 [Google Scholar]
  125. Jaiswal BS, Conti M. 125.  2001. Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J. Biol. Chem. 276:31698–708 [Google Scholar]
  126. Chaloupka JA, Bullock SA, Iourgenko V, Levin LR, Buck J. 126.  2006. Autoinhibitory regulation of soluble adenylyl cyclase. Mol. Reprod. Dev. 73:361–68 [Google Scholar]
  127. Middelhaufe S, Leipelt M, Levin LR, Buck J, Steegborn C. 127.  2012. Identification of a haem domain in human soluble adenylate cyclase. Biosci. Rep. 32:491–99 [Google Scholar]
  128. Corredor RG, Trakhtenberg EF, Pita-Thomas W, Jin X, Hu Y, Goldberg JL. 128.  2012. Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J. Neurosci. 32:7734–44 [Google Scholar]
  129. Pastor-Soler N, Beaulieu V, Litvin TN, Da Silva N, Chen Y. 129.  et al. 2003. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J. Biol. Chem. 278:49523–29 [Google Scholar]
  130. Levine N, Marsh DJ. 130.  1971. Micropuncture studies of the electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules, the epididymis, and the vas deferens in rats. J. Physiol. 213:557–70 [Google Scholar]
  131. Pastor-Soler NM, Hallows KR, Smolak C, Gong F, Brown D, Breton S. 131.  2008. Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. Am. J. Physiol. Cell Physiol. 294:C488–94 [Google Scholar]
  132. Breton S, Brown D. 132.  2007. New insights into the regulation of V-ATPase-dependent proton secretion. Am. J. Physiol. Ren. Physiol. 292:F1–10 [Google Scholar]
  133. Paunescu TG, Da Silva N, Russo LM, McKee M, Lu HA. 133.  et al. 2008. Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. Am. J. Physiol. Ren. Physiol. 294:F130–38 [Google Scholar]
  134. Paunescu TG, Ljubojevic M, Russo LM, Winter C, McLaughlin MM. 134.  et al. 2010. cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am. J. Physiol. Ren. Physiol. 298:F643–54 [Google Scholar]
  135. Geng W, Hill K, Zerwekh JE, Kohler T, Muller R, Moe OW. 135.  2009. Inhibition of osteoclast formation and function by bicarbonate: role of soluble adenylyl cyclase. J. Cell. Physiol. 220:332–40 [Google Scholar]
  136. Esposito G, Jaiswal BS, Xie F, Krajnc-Franken MA, Robben TJ. 136.  et al. 2004. Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. PNAS 101:2993–98 [Google Scholar]
  137. Hess KC, Jones BH, Marquez B, Chen Y, Ord TS. 137.  et al. 2005. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev. Cell 9:249–59 [Google Scholar]
  138. Mannowetz N, Wandernoth PM, Wennemuth G. 138.  2012. Glucose is a pH-dependent motor for sperm beat frequency during early activation. PLOS ONE 7:e41030 [Google Scholar]
  139. Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR. 139.  2008. Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. J. Gen. Physiol. 132:329–38 [Google Scholar]
  140. Parkkila AK, Scarim AL, Parkkila S, Waheed A, Corbett JA, Sly WS. 140.  1998. Expression of carbonic anhydrase V in pancreatic β cells suggests role for mitochondrial carbonic anhydrase in insulin secretion. J. Biol. Chem. 273:24620–23 [Google Scholar]
  141. Acin-Perez R, Salazar E, Brosel S, Yang H, Schon EA, Manfredi G. 141.  2009. Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Mol. Med. 1:392–406 [Google Scholar]
  142. Acin-Perez R, Gatti DL, Bai Y, Manfredi G. 142.  2011. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab. 13:712–19 [Google Scholar]
  143. Lee YS, Tresguerres M, Hess K, Marmorstein LY, Levin LR. 143.  et al. 2011. Regulation of anterior chamber drainage by bicarbonate-sensitive soluble adenylyl cyclase in the ciliary body. J. Biol. Chem. 286:41353–58 [Google Scholar]
  144. Lee YS, Marmorstein AD. 144.  2014. Control of outflow resistance by soluble adenylyl cyclase. J. Ocul. Pharmacol. Ther. 30:138–42 [Google Scholar]
  145. Appukuttan A, Kasseckert SA, Kumar S, Reusch HP, Ladilov Y. 145.  2013. Oxysterol-induced apoptosis of smooth muscle cells is under the control of a soluble adenylyl cyclase. Cardiovasc. Res. 99:734–42 [Google Scholar]
  146. Appukuttan A, Kasseckert SA, Micoogullari M, Flacke JP, Kumar S. 146.  et al. 2012. Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. Cardiovasc. Res. 93:340–49 [Google Scholar]
  147. Flacke JP, Flacke H, Appukuttan A, Palisaar RJ, Noldus J. 147.  et al. 2013. Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells. J. Biol. Chem. 288:3126–35 [Google Scholar]
  148. Kumar S, Kostin S, Flacke JP, Reusch HP, Ladilov Y. 148.  2009. Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J. Biol. Chem. 284:14760–68 [Google Scholar]
  149. Hallows KR, Wang H, Edinger RS, Butterworth MB, Oyster NM. 149.  et al. 2009. Regulation of epithelial Na+ transport by soluble adenylyl cyclase in kidney collecting duct cells. J. Biol. Chem. 284:5774–83 [Google Scholar]
  150. Schmitz B, Nedele J, Guske K, Maase M, Lenders M. 150.  et al. 2014. Soluble adenylyl cyclase in vascular endothelium: gene expression control of epithelial sodium channel-α, Na+/K+-ATPase-α/β, and mineralocorticoid receptor. Hypertension 63:753–61 [Google Scholar]
  151. Halm ST, Zhang J, Halm DR. 151.  2010. β-Adrenergic activation of electrogenic K+ and Cl secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G81–95 [Google Scholar]
  152. Strazzabosco M, Fiorotto R, Melero S, Glaser S, Francis H. 152.  et al. 2009. Differentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation. Hepatology 50:244–52 [Google Scholar]
  153. Baudouin-Legros M, Hamdaoui N, Borot F, Fritsch J, Ollero M. 153.  et al. 2008. Control of basal CFTR gene expression by bicarbonate-sensitive adenylyl cyclase in human pulmonary cells. Cell. Physiol. Biochem. 21:75–86 [Google Scholar]
  154. Schmid A, Sutto Z, Schmid N, Novak L, Ivonnet P. 154.  et al. 2010. Decreased soluble adenylyl cyclase activity in cystic fibrosis is related to defective apical bicarbonate exchange and affects ciliary beat frequency regulation. J. Biol. Chem. 285:29998–30007 [Google Scholar]
  155. Sun XC, Zhai CB, Cui M, Chen Y, Levin LR. 155.  et al. 2003. HCO3-dependent soluble adenylyl cyclase activates cystic fibrosis transmembrane conductance regulator in corneal endothelium. Am. J. Physiol. Cell Physiol. 284:C1114–22 [Google Scholar]
  156. Wang Y, Lam CS, Wu F, Wang W, Duan Y, Huang P. 156.  2005. Regulation of CFTR channels by HCO3-sensitive soluble adenylyl cyclase in human airway epithelial cells. Am. J. Physiol. Cell Physiol. 289:C1145–51 [Google Scholar]
  157. Guo D, Zhang JJ, Huang XY. 157.  2009. Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48:4417–22 [Google Scholar]
  158. Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M. 158.  2009. Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. PNAS 106:2041–46 [Google Scholar]
  159. Bretscher AJ, Busch KE, de Bono M. 159.  2008. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. PNAS 105:8044–49 [Google Scholar]
  160. Bretscher AJ, Kodama-Namba E, Busch KE, Murphy RJ, Soltesz Z. 160.  et al. 2011. Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69:1099–113 [Google Scholar]
  161. Hallem EA, Spencer WC, McWhirter RD, Zeller G, Henz SR. 161.  et al. 2011. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. PNAS 108:254–59 [Google Scholar]
  162. Salazar E, Bank EM, Ramsey N, Hess KC, Deitsch KW. 162.  et al. 2012. Characterization of Plasmodium falciparum adenylyl cyclase-β and its role in erythrocytic stage parasites. PLOS ONE 7:e39769 [Google Scholar]
  163. Tews I, Findeisen F, Sinning I, Schultz A, Schultz JE, Linder JU. 163.  2005. The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308:1020–23 [Google Scholar]
  164. Topal H, Fulcher NB, Bitterman J, Salazar E, Buck J. 164.  et al. 2012. Crystal structure and regulation mechanisms of the CyaB adenylyl cyclase from the human pathogen Pseudomonas aeruginosa. J. Mol. Biol. 416:271–86 [Google Scholar]
  165. Wolfgang MC, Lee VT, Gilmore ME, Lory S. 165.  2003. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase–dependent signaling pathway. Dev. Cell 4:253–63 [Google Scholar]
  166. McDonough KA, Rodriguez A. 166.  2011. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat. Rev. Microbiol. 14:27–38 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021014-071821
Loading
/content/journals/10.1146/annurev-physiol-021014-071821
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error