1932

Abstract

Tubuloglomerular feedback (TGF) describes the negative relationship between () NaCl concentration at the macula densa and () glomerular filtration rate or glomerular capillary pressure. TGF-induced vasoconstriction of the afferent arteriole results from the enhanced effect of several vasoconstrictors with an effect size sequence of adenosine = 20-HETE > angiotensin II > thromboxane = superoxide > renal nerves > ATP. TGF-mediated vasoconstriction is limited by the simultaneous release of several vasodilators with an effect size sequence of nitric oxide > carbon monoxide = kinins > adenosine. The sum of the constrictor effects exceeds that of the dilator effects by the magnitude of the TGF response. The validity of the additive model used in this analysis can be tested by determining the effect of combined inhibition of some or all agents contributing to TGF. Multiple independent contributors to TGF are consistent with the variability of TGF and of the factors contributing to TGF resetting.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071829
2015-02-10
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/physiol/77/1/annurev-physiol-021014-071829.html?itemId=/content/journals/10.1146/annurev-physiol-021014-071829&mimeType=html&fmt=ahah

Literature Cited

  1. Schnermann J, Castrop H. 1.  2013. Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion. The Kidney: Physiology and Pathophysiology RJ Alpern, MJ Caplan, OW Moe 757–801 London–Waltham, MA–San Diego, CA: Elsevier Acad. [Google Scholar]
  2. Thomson SC. 2.  2002. Adenosine and purinergic mediators of tubuloglomerular feedback. Curr. Opin. Nephrol. Hypertens. 11:81–86 [Google Scholar]
  3. Vallon V, Mühlbauer B, Osswald H. 3.  2006. Adenosine and kidney function. Physiol. Rev. 86:901–40 [Google Scholar]
  4. Prinz F, Schlange T, Asadullah K. 4.  2011. Believe it or not: How much can we rely on published data on potential drug targets?. Nat. Rev. Drug Discov. 10:712 [Google Scholar]
  5. Pashler H, Harris RC. 5.  2012. Is the replicability crisis overblown? Three arguments examined. Perspect. Psychol. Sci. 7:531–36 [Google Scholar]
  6. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J. 6.  et al. 2013. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14:365–76 [Google Scholar]
  7. Yao K, Heyne N, Osswald H. 7.  2000. Effect of the selective adenosine A1-receptor antagonist KW-3902 on tubuloglomerular feedback in radiocontrast-media-induced nephropathy in rats with chronic nitric oxide deficiency. Jpn. J. Pharmacol. 84:347–50 [Google Scholar]
  8. Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L. 8.  1999. Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J. Am. Soc. Nephrol. 10:714–20 [Google Scholar]
  9. Kawabata M, Ogawa T, Takabatake T. 9.  1998. Control of rat glomerular microcirculation by juxtaglomerular adenosine A1 receptors. Kidney Int. 54:Suppl. 67228–30 [Google Scholar]
  10. Huang DY, Vallon V, Zimmermann H, Koszalka P, Schrader J, Osswald H. 10.  2006. Ecto-5′-nucleotidase (CD73)-dependent and -independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Am. J. Physiol. Ren. Physiol. 291:F282–88 [Google Scholar]
  11. Blantz RC, Singh P, Deng A, Thomson SC, Vallon V. 11.  2012. Acute saline expansion increases nephron filtration and distal flow rate but maintains tubuloglomerular feedback responsiveness: role of adenosine A1 receptors. Am. J. Physiol. Ren. Physiol. 303:F405–11 [Google Scholar]
  12. Schnermann J, Weihprecht H, Briggs JP. 12.  1990. Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am. J. Physiol. Ren. Physiol. 258:F553–61 [Google Scholar]
  13. Carlstrom M, Wilcox CS, Welch WJ. 13.  2010. Adenosine A2 receptors modulate tubuloglomerular feedback. Am. J. Physiol. Ren. Physiol. 299:F412–17 [Google Scholar]
  14. Brown R, Ollerstam A, Johansson B, Skott O, Gebre-Medhin S. 14.  et al. 2001. Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor–deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R1362–67 [Google Scholar]
  15. Sun D, Samuelson LC, Yang T, Huang Y, Paliege A. 15.  et al. 2001. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc. Natl. Acad. Sci. USA 98:9983–88 [Google Scholar]
  16. Hashimoto S, Huang Y, Mizel D, Briggs J, Schnermann J. 16.  2004. Compensation of proximal tubule malabsorption in AQP1-deficient mice without TGF-mediated reduction of GFR. Acta Physiol. Scand. 181:455–62 [Google Scholar]
  17. Vallon V, Richter K, Huang DY, Rieg T, Schnermann J. 17.  2004. Functional consequences at the single-nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice. Pflüg. Arch. 448:214–21 [Google Scholar]
  18. Li L, Lai EY, Huang YG, Eisner C, Mizel D. 18.  et al. 2012. Renal afferent arteriolar and tubuloglomerular feedback reactivity in mice with conditional deletions of adenosine 1 receptors. Am. J. Physiol. Ren. Physiol. 303:F1166–75 [Google Scholar]
  19. Ren Y, Arima S, Carretero OA, Ito S. 19.  2002. Possible role of adenosine in macula densa control of glomerular hemodynamics. Kidney Int. 61:169–76 [Google Scholar]
  20. Ren Y, Garvin JL, Liu R, Carretero OA. 20.  2004. Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int. 66:1479–85 [Google Scholar]
  21. Osswald H, Nabakowski G, Hermes H. 21.  1980. Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int. J. Biochem. 12:263–67 [Google Scholar]
  22. Schnermann J, Osswald H, Hermle M. 22.  1977. Inhibitory effect of methylxanthines on feedback control of glomerular filtration rate in the rat. Pflüg. Arch. 369:39–48 [Google Scholar]
  23. Franco M, Bell PD, Navar LG. 23.  1989. Effect of adenosine A1 analogue on tubuloglomerular feedback mechanism. Am. J. Physiol. Ren. Physiol. 257:F231–36 [Google Scholar]
  24. Mitchell KD, Navar LG. 24.  1993. Modulation of tubuloglomerular feedback responsiveness by extracellular ATP. Am. J. Physiol. Ren. Physiol. 264:F458–66 [Google Scholar]
  25. Hansen PB, Castrop H, Briggs J, Schnermann J. 25.  2003. Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice. J. Am. Soc. Nephrol. 14:2457–65 [Google Scholar]
  26. Lai EY, Patzak A, Steege A, Mrowka R, Brown R. 26.  et al. 2006. Contribution of adenosine receptors in the control of arteriolar tone and adenosine–angiotensin II interaction. Kidney Int. 70:690–98 [Google Scholar]
  27. Thomson S, Bao D, Deng A, Vallon V. 27.  2000. Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J. Clin. Investig. 106:289–98 [Google Scholar]
  28. Castrop H, Huang Y, Hashimoto S, Mizel D, Hansen P. 28.  et al. 2004. Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J. Clin. Investig. 114:634–42 [Google Scholar]
  29. Oppermann M, Friedman DJ, Faulhaber-Walter R, Mizel D, Castrop H. 29.  et al. 2008. Tubuloglomerular feedback and renin secretion in NTPDase1/CD39-deficient mice. Am. J. Physiol. Ren. Physiol. 294:F965–70 [Google Scholar]
  30. Li L, Mizel D, Huang Y, Eisner C, Hoerl M. 30.  et al. 2012. Tubuloglomerular feedback and renal function in mice with targeted deletion of the type 1 equilibrative nucleoside transporter. Am. J. Physiol. Ren. Physiol. 304:F382–89 [Google Scholar]
  31. Stowe N, Schnermann J, Hermle M. 31.  1979. Feedback regulation of nephron filtration rate during pharmacologic interference with the renin-angiotensin and adrenergic systems in rats. Kidney Int. 15:473–86 [Google Scholar]
  32. Ploth DW, Rudulph J, LaGrange R, Navar LG. 32.  1979. Tubuloglomerular feedback and single nephron function after converting enzyme inhibition in the rat. J. Clin. Investig. 64:1325–35 [Google Scholar]
  33. Ploth DW, Roy RN. 33.  1982. Renal and tubuloglomerular feedback effects of [Sar1,Ala8]angiotensin II in the rat. Am. J. Physiol. Ren. Physiol. 242:F149–57 [Google Scholar]
  34. Ploth DW, Roy RN. 34.  1982. Renin-angiotensin influences on tubuloglomerular feedback activity in the rat. Kidney Int. 22:Suppl. 12114–21 [Google Scholar]
  35. Schnermann J, Briggs JP, Weber PC. 35.  1984. Tubuloglomerular feedback, prostaglandins, and angiotensin in the autoregulation of glomerular filtration rate. Kidney Int. 25:53–64 [Google Scholar]
  36. Mitchell KD, Navar LG. 36.  1988. Enhanced tubuloglomerular feedback during peritubular infusions of angiotensins I and II. Am. J. Physiol. Ren. Physiol. 255:F383–90 [Google Scholar]
  37. Huang WC, Navar LG. 37.  1988. Tubuloglomerular feedback–dependent influence of angiotensin II on the kidney in rats. Proc. Natl. Sci. Counc. Repub. China B 12:180–85 [Google Scholar]
  38. Huang WC, Bell PD, Harvey D, Mitchell KD, Navar LG. 38.  1988. Angiotensin influences on tubuloglomerular feedback mechanism in hypertensive rats. Kidney Int. 34:631–37 [Google Scholar]
  39. Welch WJ, Wilcox CS. 39.  1990. Feedback responses during sequential inhibition of angiotensin and thromboxane. Am. J. Physiol. Ren. Physiol. 258:F457–66 [Google Scholar]
  40. Wilke WL, Persson AE. 40.  1992. Captopril and tubuloglomerular feedback in remnant kidneys of prehypertensive rats. J. Am. Soc. Nephrol. 3:73–79 [Google Scholar]
  41. Weihprecht H, Lorenz JN, Briggs JP, Schnermann J. 41.  1994. Synergistic effects of angiotensin and adenosine in the renal microvasculature. Am. J. Physiol. Ren. Physiol. 266:F227–39 [Google Scholar]
  42. Braam B, Navar LG, Mitchell KD. 42.  1995. Modulation of tubuloglomerular feedback by angiotensin II type 1 receptors during the development of Goldblatt hypertension. Hypertension 25:1232–37 [Google Scholar]
  43. Kawata T, Hashimoto S, Koike T. 43.  1996. The angiotensin receptor antagonist 2-ethoxy-1-[[2′-(1H-tetrazol-5-yl) biphenyl-4-yl]methyl]-1H-benzimidazole-7-carboxylic acid (CV11974) attenuates the tubuloglomerular feedback response during NO synthase blockade in rats. J. Pharmacol. Exp. Ther. 277:572–77 [Google Scholar]
  44. Schnermann JB, Traynor T, Yang T, Huang YG, Oliverio MI. 44.  et al. 1997. Absence of tubuloglomerular feedback responses in AT1A receptor–deficient mice. Am. J. Physiol. Ren. Physiol. 273:F315–20 [Google Scholar]
  45. Traynor T, Yang T, Huang YG, Krege JH, Briggs JP. 45.  et al. 1999. Tubuloglomerular feedback in ACE-deficient mice. Am. J. Physiol. Ren. Physiol. 276:F751–57 [Google Scholar]
  46. Turkstra E, Braam B, Koomans HA. 46.  1998. Nitric oxide release as an essential mitigating step in tubuloglomerular feedback: observations during intrarenal nitric oxide clamp. J. Am. Soc. Nephrol. 9:1596–603 [Google Scholar]
  47. Brannstrom K, Morsing P, Arendshorst WJ. 47.  1999. Candesartan normalizes exaggerated tubuloglomerular feedback activity in young spontaneously hypertensive rats. J. Am. Soc. Nephrol. 10:Suppl. 11213–19 [Google Scholar]
  48. Turkstra E, Braam B, Koomans HA. 48.  2000. Normal TGF responsiveness during chronic treatment with angiotensin-converting enzyme inhibition: role of AT1 receptors. Hypertension 36:818–23 [Google Scholar]
  49. Mitchell KD, Mullins JJ. 49.  2005. Enhanced tubuloglomerular feedback in Cyp1a1-Ren2 transgenic rats with inducible ANG II–dependent malignant hypertension. Am. J. Physiol. Ren. Physiol. 289:F1210–16 [Google Scholar]
  50. Hashimoto S, Adams JW, Bernstein KE, Schnermann J. 50.  2005. Micropuncture determination of nephron function in mice without tissue angiotensin converting enzyme. Am. J. Physiol. Ren. Physiol. 288:F445–52 [Google Scholar]
  51. Thomson SC, Deng A, Wead L, Richter K, Blantz RC, Vallon V. 51.  2006. An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption. J. Clin. Investig. 116:1110–16 [Google Scholar]
  52. Singh P, Deng A, Blantz RC, Thomson SC. 52.  2009. Unexpected effect of angiotensin AT1 receptor blockade on tubuloglomerular feedback in early subtotal nephrectomy. Am. J. Physiol. Ren. Physiol. 296:F1158–65 [Google Scholar]
  53. Kon V, Fogo A, Ichikawa I. 53.  1993. Bradykinin causes selective efferent arteriolar dilation during angiotensin I converting enzyme inhibition. Kidney Int. 44:545–50 [Google Scholar]
  54. Ren Y, Garvin J, Carretero OA. 54.  2002. Mechanism involved in bradykinin-induced efferent arteriole dilation. Kidney Int. 62:544–49 [Google Scholar]
  55. Schnermann J, Briggs JP. 55.  1989. Single nephron comparison of the effect of loop of Henle flow on filtration rate and pressure in control and angiotensin II–infused rats. Miner. Electrolyte Metab. 15:103–7 [Google Scholar]
  56. Wang H, Garvin JL, Carretero OA. 56.  2001. Angiotensin II enhances tubuloglomerular feedback via luminal AT1 receptors on the macula densa. Kidney Int. 60:1851–57 [Google Scholar]
  57. Hashimoto S, Kawata T, Schnermann J, Koike T. 57.  2004. Chloride channel blockade attenuates the effect of angiotensin II on tubuloglomerular feedback in WKY but not spontaneously hypertensive rats. Kidney Blood Press. Res. 27:35–42 [Google Scholar]
  58. Brown RD, Hilliard LM, Head GA, Jones ES, Widdop RE, Denton KM. 58.  2012. Sex differences in the pressor and tubuloglomerular feedback response to angiotensin II. Hypertension 59:129–35 [Google Scholar]
  59. Welch WJ, Wilcox CS. 59.  1988. Modulating role for thromboxane in the tubuloglomerular feedback response in the rat. J. Clin. Investig. 81:1843–49 [Google Scholar]
  60. Franco M, Bell PD, Navar LG. 60.  1988. Evaluation of prostaglandins as mediators of tubuloglomerular feedback. Am. J. Physiol. Ren. Physiol. 254:F642–49 [Google Scholar]
  61. Morsing P, Stenberg A, Persson AE. 61.  1989. Effect of thromboxane inhibition on tubuloglomerular feedback in hydronephrotic kidneys. Kidney Int. 36:447–52 [Google Scholar]
  62. Brannstrom K, Arendshorst WJ. 62.  1999. Thromboxane A2 contributes to the enhanced tubuloglomerular feedback activity in young SHR. Am. J. Physiol. Ren. Physiol. 276:F758–66 [Google Scholar]
  63. Schnermann J, Traynor T, Pohl H, Thomas DW, Coffman TM, Briggs JP. 63.  2000. Vasoconstrictor responses in thromboxane receptor knockout mice: tubuloglomerular feedback and ureteral obstruction. Acta Physiol. Scand. 168:201–7 [Google Scholar]
  64. Araujo M, Welch WJ. 64.  2009. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide. Am. J. Physiol. Ren. Physiol. 296:F790–94 [Google Scholar]
  65. Welch WJ, Wilcox CS. 65.  1992. Potentiation of tubuloglomerular feedback in the rat by thromboxane mimetic. Role of macula densa. J. Clin. Investig. 89:1857–65 [Google Scholar]
  66. Welch WJ, Peng B, Takeuchi K, Abe K, Wilcox CS. 66.  1997. Salt loading enhances rat renal TxA2/PGH2 receptor expression and TGF response to U-46,619. Am. J. Physiol. Ren. Physiol. 273:F976–83 [Google Scholar]
  67. Schnermann J, Schubert G, Hermle M, Herbst R, Stowe NT. 67.  et al. 1979. The effect of inhibition of prostaglandin synthesis on tubuloglomerular feedback in the rat kidney. Pflüg. Arch. 379:269–79 [Google Scholar]
  68. Morsing P, Persson AE. 68.  1992. Effect of prostaglandin synthesis inhibition on the tubuloglomerular feedback control in the rat kidney. Ren. Physiol. Biochem. 15:66–72 [Google Scholar]
  69. Araujo M, Welch WJ. 69.  2010. Tubuloglomerular feedback is decreased in COX-1 knockout mice after chronic angiotensin II infusion. Am. J. Physiol. Ren. Physiol. 298:F1059–63 [Google Scholar]
  70. Welch WJ, Tojo A, Wilcox CS. 70.  2000. Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR. Am. J. Physiol. Ren. Physiol. 278:F769–76 [Google Scholar]
  71. Welch WJ, Wilcox CS. 71.  2001. AT1 receptor antagonist combats oxidative stress and restores nitric oxide signaling in the SHR. Kidney Int. 59:1257–63 [Google Scholar]
  72. Ren Y, Carretero OA, Garvin JL. 72.  2002. Mechanism by which superoxide potentiates tubuloglomerular feedback. Hypertension 39:624–28 [Google Scholar]
  73. Liu R, Ren Y, Garvin JL, Carretero OA. 73.  2004. Superoxide enhances tubuloglomerular feedback by constricting the afferent arteriole. Kidney Int. 66:268–74 [Google Scholar]
  74. Carlstrom M, Brown RD, Sallstrom J, Larsson E, Zilmer M. 74.  et al. 2009. SOD1 deficiency causes salt sensitivity and aggravates hypertension in hydronephrosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R82–92 [Google Scholar]
  75. Fu Y, Zhang R, Lu D, Liu H, Chandrashekar K. 75.  et al. 2010. NOX2 is the primary source of angiotensin II–induced superoxide in the macula densa. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R707–12 [Google Scholar]
  76. Zhang Q, Lin L, Lu Y, Liu H, Duan Y. 76.  et al. 2013. Interaction between nitric oxide and superoxide in the macula densa in aldosterone-induced alterations of tubuloglomerular feedback. Am. J. Physiol. Ren. Physiol. 304:F326–32 [Google Scholar]
  77. Schnermann J, Briggs JP. 77.  2008. Tubuloglomerular feedback: mechanistic insights from gene-manipulated mice. Kidney Int. 74:418–26 [Google Scholar]
  78. Schnermann JB. 78.  2011. Maintained tubuloglomerular feedback responses during acute inhibition of P2 purinergic receptors in mice. Am. J. Physiol. Ren. Physiol. 300:F339–44 [Google Scholar]
  79. Imig JD, Zou AP, Stec DE, Harder DR, Falck JR, Roman RJ. 79.  1996. Formation and actions of 20-hydroxyeicosatetraenoic acid in rat renal arterioles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 270:R217–27 [Google Scholar]
  80. Ge Y, Murphy SR, Lu Y, Falck J, Liu R, Roman RJ. 80.  2013. Endogenously produced 20-HETE modulates myogenic and TGF response in microperfused afferent arterioles. Prostaglandins Other Lipid Mediat. 102–103:42–48 [Google Scholar]
  81. Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D. 81.  et al. 1996. 20-HETE is an endogenous inhibitor of the large-conductance Ca2+-activated K+ channel in renal arteriole. Am. J. Physiol. Regul. Integr. Comp. Physiol 270:R228–37 [Google Scholar]
  82. Nagasawa T, Imig JD. 82.  2013. Afferent arteriolar responses to β,γ-methylene ATP and 20-HETE are not blocked by ENaC inhibition. Physiol. Rep. 1:e00082 [Google Scholar]
  83. Zou AP, Imig JD, Ortiz de Montellano PR, Sui Z, Falck JR, Roman RJ. 83.  1994. Effect of P-450 omega-hydroxylase metabolites of arachidonic acid on tubuloglomerular feedback. Am. J. Physiol. Ren. Physiol. 266:F934–41 [Google Scholar]
  84. Takabatake T, Ushiogi Y, Ohta K, Hattori N. 84.  1990. Attenuation of enhanced tubuloglomerular feedback activity in SHR by renal denervation. Am. J. Physiol. Ren. Physiol. 258:F980–85 [Google Scholar]
  85. Thorup C, Kurkus J, Morsing P, Persson AE. 85.  1995. Acute renal denervation causes time-dependent resetting of the tubuloglomerular feedback mechanism. Acta Physiol. Scand. 153:43–49 [Google Scholar]
  86. Thorup C, Kurkus J, Ollerstam A, Persson AE. 86.  1996. Effects of acute and chronic unilateral renal denervation on the tubuloglomerular feedback mechanism. Acta Physiol. Scand. 156:139–45 [Google Scholar]
  87. Kurkus J, Thorup C, Persson AE. 87.  1998. Renal nerve stimulation restores tubuloglomerular feedback after acute renal denervation. Acta Physiol. Scand. 164:237–43 [Google Scholar]
  88. Ito S, Ren YL. 88.  1993. Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics. J. Clin. Investig. 92:1093–98 [Google Scholar]
  89. Thorup C, Persson AE. 89.  1994. Inhibition of locally produced nitric oxide resets tubuloglomerular feedback mechanism. Am. J. Physiol. Ren. Physiol. 267:F606–11 [Google Scholar]
  90. Vallon V, Thomson S. 90.  1995. Inhibition of local nitric oxide synthase increases homeostatic efficiency of tubuloglomerular feedback. Am. J. Physiol. Ren. Physiol. 269:F892–99 [Google Scholar]
  91. Braam B, Koomans HA. 91.  1995. Nitric oxide antagonizes the actions of angiotensin II to enhance tubuloglomerular feedback responsiveness. Kidney Int. 48:1406–11 [Google Scholar]
  92. Braam B, Koomans HA. 92.  1995. Reabsorption of nitro-l-arginine infused into the late proximal tubule participates in modulation of TGF responsiveness. Kidney Int. 47:1252–57 [Google Scholar]
  93. Kawabata M, Han WH, Ise T, Kobayashi K, Takabatake T. 93.  1996. Role of endogenous endothelin and nitric oxide in tubuloglomerular feedback. Kidney Int. 49:Suppl. 55135–37 [Google Scholar]
  94. Thorup C, Persson AEG. 94.  1996. Macula densa derived nitric oxide in regulation of glomerular capillary pressure. Kidney Int. 49:430–36 [Google Scholar]
  95. Thorup C, Persson AE. 95.  1996. Impaired effect of nitric oxide synthesis inhibition on tubuloglomerular feedback in hypertensive rats. Am. J. Physiol. Ren. Physiol. 271:F246–52 [Google Scholar]
  96. Turkstra E, Boer P, Braam B, Koomans HA. 96.  1999. Increased availability of nitric oxide leads to enhanced nitric oxide dependency of tubuloglomerular feedback in the contralateral kidney of rats with 2-kidney, 1-clip Goldblatt hypertension. Hypertension 34:679–84 [Google Scholar]
  97. Welch WJ, Tojo A, Lee JU, Kang DG, Schnackenberg CG, Wilcox CS. 97.  1999. Nitric oxide synthase in the JGA of the SHR: expression and role in tubuloglomerular feedback. Am. J. Physiol. Ren. Physiol. 277:F130–38 [Google Scholar]
  98. Ren YL, Garvin JL, Carretero OA. 98.  2000. Role of macula densa nitric oxide and cGMP in the regulation of tubuloglomerular feedback. Kidney Int. 58:2053–60 [Google Scholar]
  99. Thorup C, Ollerstam A, Persson AE, Torffvit O. 99.  2000. Increased tubuloglomerular feedback reactivity is associated with increased NO production in the streptozotocin-diabetic rat. J. Diabetes Complicat. 14:46–52 [Google Scholar]
  100. Ren YL, Garvin JL, Ito S, Carretero OA. 100.  2001. Role of neuronal nitric oxide synthase in the macula densa. Kidney Int. 60:1676–83 [Google Scholar]
  101. Vallon V, Traynor T, Barajas L, Huang YG, Briggs JP, Schnermann J. 101.  2001. Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice. J. Am. Soc. Nephrol. 12:1599–606 [Google Scholar]
  102. Wang H, Carretero OA, Garvin JL. 102.  2002. Nitric oxide produced by THAL nitric oxide synthase inhibits TGF. Hypertension 39:662–66 [Google Scholar]
  103. Thomson SC, Deng A. 103.  2003. Cyclic GMP mediates influence of macula densa nitric oxide over tubuloglomerular feedback. Kidney Blood Press Res. 26:10–18 [Google Scholar]
  104. Wang H, Carretero OA, Garvin JL. 104.  2003. Inhibition of apical Na+/H+ exchangers on the macula densa cells augments tubuloglomerular feedback. Hypertension 41:688–91 [Google Scholar]
  105. Thomson SC, Deng A, Komine N, Hammes JS, Blantz RC, Gabbai FB. 105.  2004. Early diabetes as a model for testing the regulation of juxtaglomerular NOS I. Am. J. Physiol. Ren. Physiol. 287:F732–38 [Google Scholar]
  106. Wang T, Takabatake T. 106.  2005. Effects of vasopeptidase inhibition on renal function and tubuloglomerular feedback in spontaneously hypertensive rats. Hypertens. Res. 28:611–18 [Google Scholar]
  107. Liu R, Carretero OA, Ren Y, Garvin JL. 107.  2005. Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback. Kidney Int. 67:1837–43 [Google Scholar]
  108. Carlstrom M, Brown RD, Edlund J, Sallstrom J, Larsson E. 108.  et al. 2008. Role of nitric oxide deficiency in the development of hypertension in hydronephrotic animals. Am. J. Physiol. Ren. Physiol. 294:F362–70 [Google Scholar]
  109. Carlstrom M, Wilcox CS, Welch WJ. 109.  2011. Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase. Am. J. Physiol. Ren. Physiol. 300:F457–64 [Google Scholar]
  110. Ortiz PA, Hong NJ, Garvin JL. 110.  2004. Luminal flow induces eNOS activation and translocation in the rat thick ascending limb. Am. J. Physiol. Ren. Physiol. 287:F274–80 [Google Scholar]
  111. Ren Y, D'Ambrosio MA, Wang H, Liu R, Garvin JL, Carretero OA. 111.  2008. Heme oxygenase metabolites inhibit tubuloglomerular feedback (TGF). Am. J. Physiol. Ren. Physiol. 295:F1207–12 [Google Scholar]
  112. Wang H, Garvin JL, D'Ambrosio MA, Falck JR, Leung P. 112.  et al. 2011. Heme oxygenase metabolites inhibit tubuloglomerular feedback in vivo. Am. J. Physiol. Heart Circ. Physiol. 300:H1320–26 [Google Scholar]
  113. Ren Y, D'Ambrosio MA, Garvin JL, Wang H, Carretero OA. 113.  2012. Mechanism of inhibition of tubuloglomerular feedback by CO and cGMP. Hypertension 62:99–104 [Google Scholar]
  114. Schnermann J, Briggs JP, Schubert G, Marin-Grez M. 114.  1984. Opposing effects of captopril and aprotinin on tubuloglomerular feedback responses. Am. J. Physiol. Ren. Physiol. 247:F912–18 [Google Scholar]
  115. Morsing P, Persson AE. 115.  1991. Kinin and tubuloglomerular feedback in normal and hydronephrotic rats. Am. J. Physiol. Ren. Physiol. 260:F868–73 [Google Scholar]
  116. Schnermann J, Todd KM, Briggs JP. 116.  1990. Effect of dopamine on the tubuloglomerular feedback mechanism. Am. J. Physiol. Ren. Physiol. 258:F790–98 [Google Scholar]
  117. Pollock DM, Arendshorst WJ. 117.  1990. Tubuloglomerular feedback and blood flow autoregulation during DA1-induced renal vasodilation. Am. J. Physiol. Ren. Physiol. 258:F627–35 [Google Scholar]
  118. Briggs JP, Steipe B, Schubert G, Schnermann J. 118.  1982. Micropuncture studies of the renal effects of atrial natriuretic substance. Pflüg. Arch. 395:271–76 [Google Scholar]
  119. Huang CL, Cogan MG. 119.  1987. Atrial natriuretic factor inhibits maximal tubuloglomerular feedback response. Am. J. Physiol. Ren. Physiol. 252:F825–28 [Google Scholar]
  120. Soejima H, Grekin RJ, Briggs JP, Schnermann J. 120.  1988. Renal response of anesthetized rats to low-dose infusion of atrial natriuretic peptide. Am. J. Physiol. Regul. Integr. Comp. Physiol. 255:R449–55 [Google Scholar]
  121. Takabatake T, Ise T, Ohta K, Kobayashi K. 121.  1992. Effects of endothelin on renal hemodynamics and tubuloglomerular feedback. Am. J. Physiol. Ren. Physiol. 263:F103–8 [Google Scholar]
  122. Ren Y, Garvin JL, Liu R, Carretero OA. 122.  2007. Crosstalk between the connecting tubule and the afferent arteriole regulates renal microcirculation. Kidney Int. 71:1116–21 [Google Scholar]
  123. Wang H, D'Ambrosio MA, Garvin JL, Ren Y, Carretero OA. 123.  2012. Connecting tubule glomerular feedback mediates acute tubuloglomerular feedback resetting. Am. J. Physiol. Ren. Physiol. 302:F1300–4 [Google Scholar]
  124. Wang H, Garvin JL, D'Ambrosio MA, Ren Y, Carretero OA. 124.  2010. Connecting tubule glomerular feedback (CTGF) antagonizes tubuloglomerular feedback (TGF) in vivo. Am. J. Physiol. Ren. Physiol. 299:F1374–78 [Google Scholar]
  125. Wright FS, Schnermann J. 125.  1974. Interference with feedback control of glomerular filtration rate by furosemide, triflocin, and cyanide. J. Clin. Investig. 53:1695–708 [Google Scholar]
  126. Johnston PA, Kau ST. 126.  1992. The effect of loop of Henle diuretics on the tubuloglomerular feedback mechanism. Methods Find. Exp. Clin. Pharmacol. 14:523–29 [Google Scholar]
  127. Schnermann J, Ploth DW, Hermle M. 127.  1976. Activation of tubulo-glomerular feedback by chloride transport. Pflüg. Arch. 362:229–40 [Google Scholar]
  128. Ren Y, D'Ambrosio MA, Garvin JL, Wang H, Carretero OA. 128.  2013. Prostaglandin E2 mediates connecting tubule glomerular feedback. Hypertension 62:1123–28 [Google Scholar]
  129. Thurau K, Schnermann J. 129.  1998. The Na concentration at the macula densa cells as a factor regulating glomerular filtration rate (micropuncture studies). J. Am. Soc. Nephrol. 9:925–34 [Google Scholar]
  130. Schnermann J, Briggs JP. 130.  1990. Restoration of tubuloglomerular feedback in volume-expanded rats by angiotensin II. Am. J. Physiol. Ren. Physiol. 259:F565–72 [Google Scholar]
  131. Brown R, Ollerstam A, Persson AE. 131.  2004. Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion. Kidney Int. 65:1349–56 [Google Scholar]
  132. Ortiz PA, Garvin JL. 132.  2001. NO inhibits NaCl absorption by rat thick ascending limb through activation of cGMP-stimulated phosphodiesterase. Hypertension 37:467–71 [Google Scholar]
  133. Ortiz PA, Hong NJ, Garvin JL. 133.  2001. NO decreases thick ascending limb chloride absorption by reducing Na+-K+-2Cl cotransporter activity. Am. J. Physiol. Ren. Physiol. 281:F819–25 [Google Scholar]
  134. Sarkis A, Roman RJ. 134.  2004. Role of cytochrome P450 metabolites of arachidonic acid in hypertension. Curr. Drug Metab. 5:245–56 [Google Scholar]
  135. Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti-Peterdi J. 135.  et al. 2003. Macula densa cell signaling involves ATP release through a maxi anion channel. Proc. Natl. Acad. Sci. USA 100:4322–27 [Google Scholar]
  136. Komlosi P, Peti-Peterdi J, Fuson AL, Fintha A, Rosivall L, Bell PD. 136.  2004. Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am. J. Physiol. Ren. Physiol. 286:F1054–58 [Google Scholar]
  137. Skott O, Briggs JP. 137.  1987. Direct demonstration of macula densa–mediated renin secretion. Science 237:1618–20 [Google Scholar]
  138. Peti-Peterdi J, Komlosi P, Fuson AL, Guan Y, Schneider A. 138.  et al. 2003. Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. J. Clin. Investig. 112:76–82 [Google Scholar]
  139. Kohagura K, Arima S, Endo Y, Chiba Y, Ito O. 139.  et al. 2001. Involvement of cytochrome P450 metabolites in the vascular action of angiotensin II on the afferent arterioles. Hypertens. Res. 24:551–57 [Google Scholar]
  140. Alonso-Galicia M, Maier KG, Greene AS, Cowley AW. Roman RJ. 140.  Jr, 2002. Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R60–68 [Google Scholar]
  141. Imig JD, Deichmann PC. 141.  1997. Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P-450 pathways. Am. J. Physiol. Ren. Physiol. 273:F274–82 [Google Scholar]
  142. Zhao X, Inscho EW, Bondlela M, Falck JR, Imig JD. 142.  2001. The CYP450 hydroxylase pathway contributes to P2X receptor–mediated afferent arteriolar vasoconstriction. Am. J. Physiol. Heart Circ. Physiol. 281:H2089–96 [Google Scholar]
  143. Liu R, Pittner J, Persson AE. 143.  2002. Changes of cell volume and nitric oxide concentration in macula densa cells caused by changes in luminal NaCl concentration. J. Am. Soc. Nephrol. 13:2688–96 [Google Scholar]
  144. Kovacs G, Komlosi P, Fuson A, Peti-Peterdi J, Rosivall L, Bell PD. 144.  2003. Neuronal nitric oxide synthase: its role and regulation in macula densa cells. J. Am. Soc. Nephrol. 14:2475–83 [Google Scholar]
  145. Liu R, Carretero OA, Ren Y, Wang H, Garvin JL. 145.  2008. Intracellular pH regulates superoxide production by the macula densa. Am. J. Physiol. Ren. Physiol. 295:F851–56 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021014-071829
Loading
/content/journals/10.1146/annurev-physiol-021014-071829
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error