Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Although β subunits were originally termed auxiliary, we now know that they are multifunctional signaling molecules that play roles in both excitable and nonexcitable cell types and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. Although VGSC β subunit–specific drugs have not yet been developed, this protein family is an emerging therapeutic target.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Catterall WA. 1.  2012. Voltage-gated sodium channels at 60: structure, function, and pathophysiology. J. Physiol. 590:2577–89 [Google Scholar]
  2. Messner DJ, Catterall WA. 2.  1985. The sodium channel from rat brain. Separation and characterization of subunits. J. Biol. Chem. 260:10597–604Demonstrates that sodium channel α and β subunits are separate proteins. [Google Scholar]
  3. Brackenbury WJ, Isom LL. 3.  2011. Na channel β subunits: overachievers of the ion channel family. Front. Pharmacol. 2:53 [Google Scholar]
  4. Calhoun JD, Isom LL. 4.  2014. The role of non-pore-forming β subunits in physiology and pathophysiology of voltage-gated sodium channels. Handb. Exp. Pharmacol. 221:51–89 [Google Scholar]
  5. Nguyen HM, Miyazaki H, Hoshi N, Smith BJ, Nukina N. 5.  et al. 2012. Modulation of voltage-gated K+ channels by the sodium channel β1 subunit. Proc. Natl. Acad. Sci. USA 109:18577–82 [Google Scholar]
  6. Marionneau C, Carrasquillo Y, Norris AJ, Townsend RR, Isom LL. 6.  et al. 2012. The sodium channel accessory subunit Navβ1 regulates neuronal excitability through modulation of repolarizing voltage-gated K+ channels. J. Neurosci. 32:5716–27Shows that sodium channel β subunits also modulate potassium channels in vivo. [Google Scholar]
  7. Deschênes I, Armoundas AA, Jones SP, Tomaselli GF. 7.  2008. Post-transcriptional gene silencing of KChIP2 and Navβ1 in neonatal rat cardiac myocytes reveals a functional association between Na and Ito currents. J. Mol. Cell. Cardiol. 45:336–46 [Google Scholar]
  8. Wong HK, Sakurai T, Oyama F, Kaneko K, Wada K. 8.  et al. 2005. β subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J. Biol. Chem. 280:23009–17 [Google Scholar]
  9. Catterall WA, Goldin AL, Waxman SG. 9.  2005. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57:397–409 [Google Scholar]
  10. Isom LL, De Jongh KS, Patton DE, Reber BFX, Offord J. 10.  et al. 1992. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science 256:839–42The first description of the cloning and expression of a sodium channel β subunit cDNA. [Google Scholar]
  11. Kazen-Gillespie KA, Ragsdale DS, D'Andrea MR, Mattei LN, Rogers KE, Isom LL. 11.  2000. Cloning, localization, and functional expression of sodium channel β1A subunits. J. Biol. Chem. 275:1079–88Describes the cloning of β1A (later termed β1B), a secreted splice variant of Scn1b generated by in-frame retention of intron 3. [Google Scholar]
  12. Patino GA, Brackenbury WJ, Bao Y, Lopez-Santiago LF, O'Malley HA. 12.  et al. 2011. Voltage-gated Na+ channel β1B: a secreted cell adhesion molecule involved in human epilepsy. J. Neurosci. 31:14577–91 [Google Scholar]
  13. Qin N, D'Andrea MR, Lubin ML, Shafaee N, Codd EE, Correa AM. 13.  2003. Molecular cloning and functional expression of the human sodium channel β1B subunit, a novel splicing variant of the β1 subunit. Eur. J. Biochem. 270:4762–70 [Google Scholar]
  14. Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF. 14.  et al. 1995. Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83:433–42 [Google Scholar]
  15. Morgan K, Stevens EB, Shah B, Cox PJ, Dixon AK. 15.  et al. 2000. β3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc. Natl. Acad. Sci. USA 97:2308–13 [Google Scholar]
  16. Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D. 16.  et al. 2003. Sodium channel β4, a new disulfide-linked auxiliary subunit with similarity to β2. J. Neurosci. 23:7577–85 [Google Scholar]
  17. Isom LL, Catterall WA. 17.  1996. Na+ channel subunits and Ig domains. Nature 383:307–8Sodium channel β subunits are shown to be homologous to the Ig superfamily of cell adhesion molecules. [Google Scholar]
  18. McCormick KA, Isom LL, Ragsdale D, Smith D, Scheuer T, Catterall WA. 18.  1998. Molecular determinants of Na+ channel function in the extracellular domain of the β1 subunit. J. Biol. Chem. 273:3954–62 [Google Scholar]
  19. Spampanato J, Kearney JA, de Haan G, McEwen DP, Escayg A. 19.  et al. 2004. A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for β subunit interaction. J. Neurosci. 24:10022–34 [Google Scholar]
  20. Meadows L, Malhotra JD, Stetzer A, Isom LL, Ragsdale DS. 20.  2001. The intracellular segment of the sodium channel β1 subunit is required for its efficient association with the channel α subunit. J. Neurochem. 76:1871–78 [Google Scholar]
  21. Buffington SA, Rasband MN. 21.  2013. Na+ channel–dependent recruitment of Navβ4 to axon initial segments and nodes of Ranvier. J. Neurosci. 33:6191–202 [Google Scholar]
  22. Chen C, Calhoun JD, Zhang Y, Lopez-Santiago L, Zhou N. 22.  et al. 2012. Identification of the cysteine residue responsible for disulfide linkage of Na+ channel α and β2 subunits. J. Biol. Chem. 287:39061–69 [Google Scholar]
  23. Gilchrist J, Das S, Van Petegem F, Bosmans F. 23.  2013. Crystallographic insights into sodium-channel modulation by the β4 subunit. Proc. Natl. Acad. Sci. USA 110:E5016–24 [Google Scholar]
  24. Namadurai S, Balasuriya D, Rajappa R, Wiemhofer M, Stott K. 24.  et al. 2014. Crystal structure and molecular imaging of the Nav channel β3 subunit indicates a trimeric assembly. J. Biol. Chem. 289:10797–811 [Google Scholar]
  25. Feng G, Deak P, Chopra M, Hall LM. 25.  1995. Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell 82:1001–11 [Google Scholar]
  26. Shah BS, Stevens EB, Pinnock RD, Dixon AK, Lee K. 26.  2001. Developmental expression of the novel voltage-gated sodium channel auxiliary subunit β3, in rat CNS. J. Physiol. 534:763–76 [Google Scholar]
  27. Chen C, Bharucha V, Chen Y, Westenbroek RE, Brown A. 27.  et al. 2002. Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits. Proc. Natl. Acad. Sci. USA 99:17072–77 [Google Scholar]
  28. Chen C, Westenbroek RE, Xu X, Edwards CA, Sorenson DR. 28.  et al. 2004. Mice lacking sodium channel β1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J. Neurosci. 24:4030–42Describes the first sodium channel β1 subunit transgenic mouse. The Scn1b-null line was later shown to be a model of Dravet syndrome. [Google Scholar]
  29. O'Malley HA, Shreiner AB, Chen GH, Huffnagle GB, Isom LL. 29.  2009. Loss of Na+ channel β2 subunits is neuroprotective in a mouse model of multiple sclerosis. Mol. Cell. Neurosci. 40:143–55 [Google Scholar]
  30. Brackenbury WJ, Calhoun JD, Chen C, Miyazaki H, Nukina N. 30.  et al. 2010. Functional reciprocity between Na+ channel Nav1.6 and β1 subunits in the coordinated regulation of excitability and neurite outgrowth. Proc. Natl. Acad. Sci. USA 107:2283–88 [Google Scholar]
  31. Wimmer VC, Reid CA, Mitchell S, Richards KL, Scaf BB. 31.  et al. 2010. Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus. J. Clin. Investig. 120:2661–71 [Google Scholar]
  32. Malhotra JD, Koopmann MC, Kazen-Gillespie KA, Fettman N, Hortsch M, Isom LL. 32.  2002. Structural requirements for interaction of sodium channel β1 subunits with ankyrin. J. Biol. Chem. 277:26681–88 [Google Scholar]
  33. Kazarinova-Noyes K, Malhotra JD, McEwen DP, Mattei LN, Berglund EO. 33.  et al. 2001. Contactin associates with Na+ channels and increases their functional expression. J. Neurosci. 21:7517–25 [Google Scholar]
  34. McEwen DP, Meadows LS, Chen C, Thyagarajan V, Isom LL. 34.  2004. Sodium channel β1 subunit-mediated modulation of Nav1.2 currents and cell surface density is dependent on interactions with contactin and ankyrin. J. Biol. Chem. 279:16044–49 [Google Scholar]
  35. Malhotra JD, Thyagarajan V, Chen C, Isom LL. 35.  2004. Tyrosine-phosphorylated and nonphosphorylated sodium channel β1 subunits are differentially localized in cardiac myocytes. J. Biol. Chem. 279:40748–54 [Google Scholar]
  36. Nelson M, Millican-Slater R, Forrest LC, Brackenbury WJ. 36.  2014. The sodium channel β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis. Int. J. Cancer 1352338–51
  37. Brackenbury WJ, Davis TH, Chen C, Slat EA, Detrow MJ. 37.  et al. 2008. Voltage-gated Na+ channel β1 subunit–mediated neurite outgrowth requires Fyn kinase and contributes to postnatal CNS development in vivo. J. Neurosci. 28:3246–56 [Google Scholar]
  38. Johnson D, Montpetit ML, Stocker PJ, Bennett ES. 38.  2004. The sialic acid component of the β1 subunit modulates voltage-gated sodium channel function. J. Biol. Chem. 279:44303–10 [Google Scholar]
  39. Davis TH, Chen C, Isom LL. 39.  2004. Sodium channel β1 subunits promote neurite outgrowth in cerebellar granule neurons. J. Biol. Chem. 279:51424–32The first demonstration that β subunits are functional cell adhesion molecules in neurons and that trans homophilic adhesion results in neurite outgrowth. [Google Scholar]
  40. McEwen DP, Isom LL. 40.  2004. Heterophilic interactions of sodium channel β1 subunits with axonal and glial cell adhesion molecules. J. Biol. Chem. 279:52744–52 [Google Scholar]
  41. Kim DY, Carey BW, Wang H, Ingano LA, Binshtok AM. 41.  et al. 2007. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat. Cell Biol. 9:755–64 [Google Scholar]
  42. Schmidt JW, Catterall WA. 42.  1986. Biosynthesis and processing of the α subunit of the voltage-sensitive sodium channel in rat brain neurons. Cell 46:437–45 [Google Scholar]
  43. Ratcliffe CF, Westenbroek RE, Curtis R, Catterall WA. 43.  2001. Sodium channel β1 and β3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. J. Cell Biol. 154:427–34 [Google Scholar]
  44. Malhotra JD, Kazen-Gillespie K, Hortsch M, Isom LL. 44.  2000. Sodium channel β subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell-cell contact. J. Biol. Chem. 275:11383–88 [Google Scholar]
  45. Xiao Z-C, Ragsdale DS, Malhorta JD, Mattei LN, Braun PE. 45.  et al. 1999. Tenascin-R is a functional modulator of sodium channel β subunits. J. Biol. Chem. 274:26511–17 [Google Scholar]
  46. Srinivasan J, Schachner M, Catterall WA. 46.  1998. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc. Natl. Acad. Sci. USA 95:15753–57 [Google Scholar]
  47. McEwen DP, Chen C, Meadows LS, Lopez-Santiago L, Isom LL. 47.  2009. The voltage-gated Na+ channel β3 subunit does not mediate trans homophilic cell adhesion or associate with the cell adhesion molecule contactin. Neurosci. Lett. 462:272–75 [Google Scholar]
  48. Yereddi NR, Cusdin FS, Namadurai S, Packman LC, Monie TP. 48.  et al. 2013. The immunoglobulin domain of the sodium channel β3 subunit contains a surface-localized disulfide bond that is required for homophilic binding. FASEB J. 27:568–80 [Google Scholar]
  49. Brackenbury WJ, Yuan Y, O'Malley HA, Parent JM, Isom LL. 49.  2013. Abnormal neuronal patterning occurs during early postnatal brain development of Scn1b-null mice and precedes hyperexcitability. Proc. Natl. Acad. Sci. USA 110:1089–94 [Google Scholar]
  50. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH. 50.  et al. 2014. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55:475–82 [Google Scholar]
  51. Wallace RH, Wang DW, Singh R, Scheffer IE, George AL Jr. 51.  et al. 1998. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene SCN1B. Nat. Genet. 19:366–70The first demonstration that mutations in sodium channel β subunit genes are linked to human disease. [Google Scholar]
  52. Scheffer IE, Zhang YH, Gecz J, Dibbens L. 52.  2010. Genetics of the epilepsies: genetic twists in the channels and other tales. Epilepsia 51:Suppl. 133–36 [Google Scholar]
  53. Dravet C. 53.  2011. Dravet syndrome history. Dev. Med. Child Neurol. 53:Suppl. 21–6 [Google Scholar]
  54. Skluzacek JV, Watts KP, Parsy O, Wical B, Camfield P. 54.  2011. Dravet syndrome and parent associations: the IDEA League experience with comorbid conditions, mortality, management, adaptation, and grief. Epilepsia 52:Suppl. 295–101 [Google Scholar]
  55. Takayama R, Fujiwara T, Shigematsu H, Imai K, Takahashi Y. 55.  et al. 2014. Long-term course of Dravet syndrome: a study from an epilepsy center in Japan. Epilepsia 55:528–38 [Google Scholar]
  56. Patino GA, Claes LR, Lopez-Santiago LF, Slat EA, Dondeti RS. 56.  et al. 2009. A functional null mutation of SCN1B in a patient with Dravet syndrome. J. Neurosci. 29:10764–78The first report of a human β subunit gene mutation linked to Dravet syndrome. [Google Scholar]
  57. Ogiwara I, Nakayama T, Yamagata T, Ohtani H, Mazaki E. 57.  et al. 2012. A homozygous mutation of voltage-gated sodium channel βI gene SCN1B in a patient with Dravet syndrome. Epilepsia 53:e200–3 [Google Scholar]
  58. Fendri-Kriaa N, Kammoun F, Salem IH, Kifagi C, Mkaouar-Rebai E. 58.  et al. 2011. New mutation c.374C>T and a putative disease-associated haplotype within SCN1B gene in Tunisian families with febrile seizures. Eur. J. Neurol. 18:695–702 [Google Scholar]
  59. Audenaert D, Claes L, Ceulemans B, Lofgren A, Van Broeckhoven C, De Jonghe P. 59.  2003. A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy. Neurology 61:854–56 [Google Scholar]
  60. Scheffer IE, Harkin LA, Grinton BE, Dibbens LM, Turner SJ. 60.  et al. 2007. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain 130:100–9 [Google Scholar]
  61. Reid CA, Leaw B, Richards KL, Richardson R, Wimmer V. 61.  et al. 2014. Reduced dendritic arborization and hyperexcitability of pyramidal neurons in a Scn1b-based model of Dravet syndrome. Brain 137:1701–15 [Google Scholar]
  62. Egri C, Vilin YY, Ruben PC. 62.  2012. A thermoprotective role of the sodium channel β1 subunit is lost with the β1 (C121W) mutation. Epilepsia 53:494–505 [Google Scholar]
  63. Meadows LS, Malhotra J, Loukas A, Thyagarajan V, Kazen-Gillespie KA. 63.  et al. 2002. Functional and biochemical analysis of a sodium channel β1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1. J. Neurosci. 22:10699–709 [Google Scholar]
  64. Riuró H, Beltran-Alvarez P, Tarradas A, Selga E, Campuzano O. 64.  et al. 2013. A missense mutation in the sodium channel β2 subunit reveals SCN2B as a new candidate gene for Brugada syndrome. Hum. Mutat. 34:961–66 [Google Scholar]
  65. Watanabe H, Darbar D, Kaiser DW, Jiramongkolchai K, Chopra S. 65.  et al. 2009. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2:268–75 [Google Scholar]
  66. Nashef L, So EL, Ryvlin P, Tomson T. 66.  2012. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia 53:227–33 [Google Scholar]
  67. Ficker DM, So EL, Shen WK, Annegers JF, O'Brien PC. 67.  et al. 1998. Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology 51:1270–74 [Google Scholar]
  68. Hesdorffer DC, Tomson T, Benn E, Sander JW, Nilsson L. 68.  et al. 2012. Do antiepileptic drugs or generalized tonic-clonic seizure frequency increase SUDEP risk? A combined analysis. Epilepsia 53:249–52 [Google Scholar]
  69. Surges R, Sander JW. 69.  2012. Sudden unexpected death in epilepsy: mechanisms, prevalence, and prevention. Curr. Opin. Neurol. 25:201–7 [Google Scholar]
  70. Oakley JC, Kalume F, Catterall WA. 70.  2011. Insights into pathophysiology and therapy from a mouse model of Dravet syndrome. Epilepsia 52:Suppl. 259–61 [Google Scholar]
  71. Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL. 71.  2010. Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J. Neurosci. 30:5167–75 [Google Scholar]
  72. Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL. 72.  2009. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci. Transl. Med. 1:2ra6 [Google Scholar]
  73. Jansen K, Lagae L. 73.  2010. Cardiac changes in epilepsy. Seizure 19:455–60 [Google Scholar]
  74. Tolstykh GP, Cavazos JE. 74.  2013. Potential mechanisms of sudden unexpected death in epilepsy. Epilepsy Behav. 26:410–14 [Google Scholar]
  75. Lopez-Santiago LF, Meadows LS, Ernst SJ, Chen C, Malhotra JD. 75.  et al. 2007. Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. J. Mol. Cell. Cardiol. 43:636–47 [Google Scholar]
  76. Auerbach DS, Jones J, Clawson BC, Offord J, Lenk GM. 76.  et al. 2013. Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLOS ONE 8:e77843 [Google Scholar]
  77. Kalume F, Westenbroek RE, Cheah CS, Yu FH, Oakley JC. 77.  et al. 2013. Sudden unexpected death in a mouse model of Dravet syndrome. J. Clin. Investig. 123:1798–808 [Google Scholar]
  78. Krous HF, Beckwith JB, Byard RW, Rognum TO, Bajanowski T. 78.  et al. 2004. Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics 114:234–38 [Google Scholar]
  79. Van Norstrand DW, Ackerman MJ. 79.  2009. Sudden infant death syndrome: Do ion channels play a role?. Heart Rhythm 6:272–78 [Google Scholar]
  80. Klaver EC, Versluijs GM, Wilders R. 80.  2011. Cardiac ion channel mutations in the sudden infant death syndrome. Int. J. Cardiol. 152:162–70 [Google Scholar]
  81. Massey CA, Sowers LP, Dlouhy BJ, Richerson GB. 81.  2014. Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat. Rev. Neurol. 10:271–82 [Google Scholar]
  82. Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ. 82.  et al. 2010. Sudden infant death syndrome–associated mutations in the sodium channel β subunits. Heart Rhythm 7:771–78 [Google Scholar]
  83. Valdivia CR, Medeiros-Domingo A, Ye B, Shen WK, Algiers TJ. 83.  et al. 2010. Loss-of-function mutation of the SCN3B-encoded sodium channel β3 subunit associated with a case of idiopathic ventricular fibrillation. Cardiovasc. Res. 86:392–400 [Google Scholar]
  84. Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A. 84.  et al. 2007. SCN4B-encoded sodium channel β4 subunit in congenital long-QT syndrome. Circulation 116:134–42 [Google Scholar]
  85. Paine SM, Jacques TS, Sebire NJ. 85.  2014. Review: neuropathological features of unexplained sudden unexpected death in infancy: current evidence and controversies. Neuropathol. Appl. Neurobiol. 40:364–84 [Google Scholar]
  86. Cruz-Sanchez FF, Lucena J, Ascaso C, Tolosa E, Quinto L, Rossi ML. 86.  1997. Cerebellar cortex delayed maturation in sudden infant death syndrome. J. Neuropathol. Exp. Neurol. 56:340–46 [Google Scholar]
  87. Aronica E, Troost D, Rozemuller AJ, Yankaya B, Jansen GH. 87.  et al. 2003. Expression and regulation of voltage-gated sodium channel β1 subunit protein in human gliosis-associated pathologies. Acta Neuropathol. 105:515–23 [Google Scholar]
  88. Gorter JA, van Vliet EA, Lopes da Silva FH, Isom LL, Aronica E. 88.  2002. Sodium channel β1-subunit expression is increased in reactive astrocytes in a rat model for mesial temporal lobe epilepsy. Eur. J. Neurosci. 16:360–64 [Google Scholar]
  89. Kinney HC, Brody BA, Finkelstein DM, Vawter GF, Mandell F, Gilles FH. 89.  1991. Delayed central nervous system myelination in the sudden infant death syndrome. J. Neuropathol. Exp. Neurol. 50:29–48 [Google Scholar]
  90. Franco E, Dias A, Teresa D, Hebert K. 90.  2014. EKG pattern of Brugada syndrome and sudden infant death syndrome—is it time to review the diagnostic criteria? Case report and review of literature. Ann. Noninvasive Electrocardiol. 19:198–202 [Google Scholar]
  91. Hu D, Barajas-Martinez H, Medeiros-Domingo A, Crotti L, Veltmann C. 91.  et al. 2012. A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Nav1.5 and Kv4.3 channel currents. Heart Rhythm 9:760–69 [Google Scholar]
  92. Deschênes I, Tomaselli GF. 92.  2002. Modulation of Kv4.3 current by accessory subunits. FEBS Lett. 528:183–88 [Google Scholar]
  93. Vatta M, Dumaine R, Varghese G, Richard TA, Shimizu W. 93.  et al. 2002. Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum. Mol. Genet. 11:337–45 [Google Scholar]
  94. Liu C, Tester DJ, Hou Y, Wang W, Lv G. 94.  et al. 2014. Is sudden unexplained nocturnal death syndrome in Southern China a cardiac sodium channel dysfunction disorder?. Forensic Sci. Int. 236:38–45 [Google Scholar]
  95. Abriel H. 95.  2010. Cardiac sodium channel Nav1.5 and interacting proteins: physiology and pathophysiology. J. Mol. Cell. Cardiol. 48:2–11 [Google Scholar]
  96. Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA. 96.  2002. An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc. Natl. Acad. Sci. USA 99:4073–78 [Google Scholar]
  97. Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D. 97.  et al. 2007. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J. Physiol. 582:675–93 [Google Scholar]
  98. Kaufmann SG, Westenbroek RE, Maass AH, Lange V, Renner A. 98.  et al. 2013. Distribution and function of sodium channel subtypes in human atrial myocardium. J. Mol. Cell. Cardiol. 61:133–41 [Google Scholar]
  99. Kaufmann SG, Westenbroek RE, Zechner C, Maass AH, Bischoff S. 99.  et al. 2010. Functional protein expression of multiple sodium channel α- and β-subunit isoforms in neonatal cardiomyocytes. J. Mol. Cell. Cardiol. 48:261–69 [Google Scholar]
  100. Maier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T, Catterall WA. 100.  2004. Distinct subcellular localization of different sodium channel α and β subunits in single ventricular myocytes from mouse heart. Circulation 109:1421–27 [Google Scholar]
  101. Malhotra J, Chen C, Rivolta I, Abriel H, Malhotra R. 101.  et al. 2001. Characterization of sodium channel α- and β-subunits in rat and mouse cardiac myocytes. Circulation 103:1303–10 [Google Scholar]
  102. Bao Y, Isom LL. 102.  2014. NaV1.5 and regulatory β subunits in cardiac sodium channelopathies. Cardiac Electrophysiol. Clin. 6679–94
  103. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR. 103.  et al. 2008. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J. Clin. Investig. 118:2260–68 [Google Scholar]
  104. Holst AG, Saber S, Houshmand M, Zaklyazminskaya EV, Wang Y. 104.  et al. 2012. Sodium current and potassium transient outward current genes in Brugada syndrome: screening and bioinformatics. Can. J. Cardiol. 28:196–200 [Google Scholar]
  105. Hu D, Barajas-Martinez H, Burashnikov E, Springer M, Wu Y. 105.  et al. 2009. A mutation in the β3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circ. Cardiovasc. Genet. 2:270–78 [Google Scholar]
  106. Ishikawa T, Takahashi N, Ohno S, Sakurada H, Nakamura K. 106.  et al. 2013. Novel SCN3B mutation associated with Brugada syndrome affects intracellular trafficking and function of Nav1.5. Circ. J. 77:959–67 [Google Scholar]
  107. Adsit GS, Vaidyanathan R, Galler CM, Kyle JW, Makielski JC. 107.  2013. Channelopathies from mutations in the cardiac sodium channel protein complex. J. Mol. Cell. Cardiol. 61:34–43 [Google Scholar]
  108. Olesen MS, Jespersen T, Nielsen JB, Liang B, Moller DV. 108.  et al. 2011. Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation. Cardiovasc. Res. 89:786–93 [Google Scholar]
  109. Wang P, Yang Q, Wu X, Yang Y, Shi L. 109.  et al. 2010. Functional dominant-negative mutation of sodium channel subunit gene SCN3B associated with atrial fibrillation in a Chinese GeneID population. Biochem. Biophys. Res. Commun. 398:98–104 [Google Scholar]
  110. Li RG, Wang Q, Xu YJ, Zhang M, Qu XK. 110.  et al. 2013. Mutations of the SCN4B-encoded sodium channel β4 subunit in familial atrial fibrillation. Int. J. Mol. Med. 32:144–50 [Google Scholar]
  111. Giudicessi JR, Ackerman MJ. 111.  2013. Genotype- and phenotype-guided management of congenital long QT syndrome. Curr. Probl. Cardiol. 38:417–55 [Google Scholar]
  112. Wang DW, Yazawa K, George AL Jr, Bennett PB. 112.  1996. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc. Natl. Acad. Sci. USA 93:13200–5 [Google Scholar]
  113. Riuró H, Campuzano O, Arbelo E, Iglesias A, Batlle M. 113.  et al. 2014. A missense mutation in the sodium channel β1b subunit reveals SCN1B as a susceptibility gene underlying LQT syndrome. Heart Rhythm 11:1202–9 [Google Scholar]
  114. Hakim P, Thresher R, Grace AA, Huang CL. 114.  2010. Effects of flecainide and quinidine on action potential and ventricular arrhythmogenic properties in Scn3b knockout mice. Clin. Exp. Pharmacol. Physiol. 37:782–89 [Google Scholar]
  115. Hakim P, Gurung IS, Pedersen TH, Thresher R, Brice N. 115.  et al. 2008. Scn3b knockout mice exhibit abnormal ventricular electrophysiological properties. Prog. Biophys. Mol. Biol. 98:251–66 [Google Scholar]
  116. Costigan M, Scholz J, Woolf CJ. 116.  2009. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32:1–32 [Google Scholar]
  117. Lopez-Santiago LF, Pertin M, Morisod X, Chen C, Hong S. 117.  et al. 2006. Sodium channel β2 subunits regulate tetrodotoxin-sensitive sodium channels in small dorsal root ganglion neurons and modulate the response to pain. J. Neurosci. 26:7984–94 [Google Scholar]
  118. Zhao J, O'Leary ME, Chahine M. 118.  2011. Regulation of Nav1.6 and Nav1.8 peripheral nerve Na+ channels by auxiliary β-subunits. J. Neurophysiol. 106:608–19 [Google Scholar]
  119. Oh Y, Sashihara S, Black JA, Waxman SG. 119.  1995. Na+ channel β1 subunit mRNA: differential expression in rat spinal sensory neurons. Brain Res. Mol. Brain Res. 30:357–61 [Google Scholar]
  120. Lopez-Santiago LF, Brackenbury WJ, Chen C, Isom LL. 120.  2011. Na+ channel Scn1b gene regulates dorsal root ganglion nociceptor excitability in vivo. J. Biol. Chem. 286:22913–23 [Google Scholar]
  121. Blackburn-Munro G, Fleetwood-Walker SM. 121.  1999. The sodium channel auxiliary subunits β1 and β2 are differentially expressed in the spinal cord of neuropathic rats. Neuroscience 90:153–64 [Google Scholar]
  122. Pertin M, Ji RR, Berta T, Powell AJ, Karchewski L. 122.  et al. 2005. Upregulation of the voltage-gated sodium channel β2 subunit in neuropathic pain models: characterization of expression in injured and non-injured primary sensory neurons. J. Neurosci. 25:10970–80 [Google Scholar]
  123. Coward K, Jowett A, Plumpton C, Powell A, Birch R. 123.  et al. 2001. Sodium channel β1 and β2 subunits parallel SNS/PN3 α-subunit changes in injured human sensory neurons. NeuroReport 12:483–88 [Google Scholar]
  124. Shah BS, Stevens EB, Gonzalez MI, Bramwell S, Pinnock RD. 124.  et al. 2000. β3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain. Eur. J. Neurosci. 12:3985–90 [Google Scholar]
  125. Takahashi N, Kikuchi S, Dai Y, Kobayashi K, Fukuoka T, Noguchi K. 125.  2003. Expression of auxiliary β subunits of sodium channels in primary afferent neurons and the effect of nerve injury. Neuroscience 121:441–50 [Google Scholar]
  126. Theile JW, Jarecki BW, Piekarz AD, Cummins TR. 126.  2011. Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navβ4 peptide-mediated resurgent sodium currents. J. Physiol. 589:597–608 [Google Scholar]
  127. Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM. 127.  2005. Open-channel block by the cytoplasmic tail of sodium channel β4 as a mechanism for resurgent sodium current. Neuron 45:233–44 [Google Scholar]
  128. Theile JW, Cummins TR. 128.  2011. Inhibition of Navβ4 peptide-mediated resurgent sodium currents in Nav1.7 channels by carbamazepine, riluzole, and anandamide. Mol. Pharmacol. 80:724–34 [Google Scholar]
  129. Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. 129.  2014. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 269C:152–72 [Google Scholar]
  130. Waxman SG. 130.  2006. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat. Rev. Neurosci. 7:932–41 [Google Scholar]
  131. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL. 131.  et al. 2014. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304 [Google Scholar]
  132. Mattsson N, Axelsson M, Haghighi S, Malmestrom C, Wu G. 132.  et al. 2009. Reduced cerebrospinal fluid BACE1 activity in multiple sclerosis. Mult. Scler. 15:448–54 [Google Scholar]
  133. Nutini M, Spalloni A, Florenzano F, Westenbroek RE, Marini C. 133.  et al. 2011. Increased expression of the β3 subunit of voltage-gated Na+ channels in the spinal cord of the SOD1G93A mouse. Mol. Cell. Neurosci. 47:108–18 [Google Scholar]
  134. Zhou TT, Zhang ZW, Liu J, Zhang JP, Jiao BH. 134.  2012. Glycosylation of the sodium channel β4 subunit is developmentally regulated and involves in neuritic degeneration. Int. J. Biol. Sci. 8:630–39 [Google Scholar]
  135. Oyama F, Miyazaki H, Sakamoto N, Becquet C, Machida Y. 135.  et al. 2006. Sodium channel β4 subunit: down-regulation and possible involvement in neuritic degeneration in Huntington's disease transgenic mice. J. Neurochem. 98:518–29 [Google Scholar]
  136. Evin G, Barakat A, Masters CL. 136.  2010. BACE: therapeutic target and potential biomarker for Alzheimer's disease. Int. J. Biochem. Cell Biol. 42:1923–26 [Google Scholar]
  137. Kim DY, Gersbacher MT, Inquimbert P, Kovacs DM. 137.  2011. Reduced sodium channel Nav1.1 levels in BACE1-null mice. J. Biol. Chem. 286:8106–16 [Google Scholar]
  138. Amatniek JC, Hauser WA, DelCastillo-Castaneda C, Jacobs DM, Marder K. 138.  et al. 2006. Incidence and predictors of seizures in patients with Alzheimer's disease. Epilepsia 47:867–72 [Google Scholar]
  139. Dunckley T, Beach TG, Ramsey KE, Grover A, Mastroeni D. 139.  et al. 2006. Gene expression correlates of neurofibrillary tangles in Alzheimer's disease. Neurobiol. Aging 27:1359–71 [Google Scholar]
  140. Brackenbury WJ. 140.  2012. Voltage-gated sodium channels and metastatic disease. Channels 6:352–61 [Google Scholar]
  141. Diss JK, Fraser SP, Walker MM, Patel A, Latchman DS, Djamgoz MB. 141.  2008. β-Subunits of voltage-gated sodium channels in human prostate cancer: quantitative in vitro and in vivo analyses of mRNA expression. Prostate Cancer Prostatic Dis. 11:325–33 [Google Scholar]
  142. Hernandez-Plata E, Ortiz CS, Marquina-Castillo B, Medina-Martinez I, Alfaro A. 142.  et al. 2012. Overexpression of NaV 1.6 channels is associated with the invasion capacity of human cervical cancer. Int. J. Cancer 130:2013–23 [Google Scholar]
  143. Chioni AM, Brackenbury WJ, Calhoun JD, Isom LL, Djamgoz MB. 143.  2009. A novel adhesion molecule in human breast cancer cells: voltage-gated Na+ channel β1 subunit. Int. J. Biochem. Cell Biol. 41:1216–27 [Google Scholar]
  144. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J. 144.  et al. 2006. The consensus coding sequences of human breast and colorectal cancers. Science 314:268–74 [Google Scholar]
  145. Adachi K, Toyota M, Sasaki Y, Yamashita T, Ishida S. 145.  et al. 2004. Identification of SCN3B as a novel p53-inducible proapoptotic gene. Oncogene 23:7791–98 [Google Scholar]
  146. Dixon-Salazar TJ, Keeler LC, Trauner DA, Gleeson JG. 146.  2004. Autism in several members of a family with generalized epilepsy with febrile seizures plus. J. Child Neurol. 19:597–603 [Google Scholar]
  147. Schmunk G, Gargus JJ. 147.  2013. Channelopathy pathogenesis in autism spectrum disorders. Front. Genet. 4:222 [Google Scholar]
  148. Lee H, Lin MC, Kornblum HI, Papazian DM, Nelson SF. 148.  2014. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum. Mol. Genet. 23:3481–89 [Google Scholar]
  149. Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS. 149.  et al. 2012. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489:385–90 [Google Scholar]
  150. Iqbal Z, Vandeweyer G, van der Voet M, Waryah AM, Zahoor MY. 150.  et al. 2013. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Hum. Mol. Genet. 22:1960–70 [Google Scholar]
  151. Zuko A, Kleijer KT, Oguro-Ando A, Kas MJ, van Daalen E. 151.  et al. 2013. Contactins in the neurobiology of autism. Eur. J. Pharmacol. 719:63–74 [Google Scholar]
  152. Qu Y, Curtis R, Lawson D, Gilbride K, Ge P. 152.  et al. 2001. Differential modulation of sodium channel gating and persistent sodium currents by the β1, β2, and β3 subunits. Mol. Cell. Neurosci. 18:570–80 [Google Scholar]
  153. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL. 153.  et al. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28:264–78 [Google Scholar]
  154. Oh Y, Lee YJ, Waxman SG. 154.  1997. Regulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytes. Neurosci. Lett. 234:107–10 [Google Scholar]
  155. Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR. 155.  et al. 2003. An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc. Natl. Acad. Sci. USA 100:3507–12 [Google Scholar]
  156. Canti C, Nieto-Rostro M, Foucault I, Heblich F, Wratten J. 156.  et al. 2005. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels. Proc. Natl. Acad. Sci. USA 102:11230–35 [Google Scholar]
  157. Lin L, Sun W, Throesch B, Kung F, Decoster JT. 157.  et al. 2013. DPP6 regulation of dendritic morphogenesis impacts hippocampal synaptic development. Nat. Commun. 4:2270 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error