1932

Abstract

Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071937
2015-02-10
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/physiol/77/1/annurev-physiol-021014-071937.html?itemId=/content/journals/10.1146/annurev-physiol-021014-071937&mimeType=html&fmt=ahah

Literature Cited

  1. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C. 1.  et al. 2012. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–96 [Google Scholar]
  2. Armstrong GL, Conn LA, Pinner RW. 2.  1999. Trends in infectious disease mortality in the United States during the 20th century. JAMA 281:61–66 [Google Scholar]
  3. Liu L, Johnson HL, Cousens S, Perin J, Scott S. 3.  et al. 2012. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379:2151–61 [Google Scholar]
  4. Mizgerd JP. 4.  2012. Respiratory infection and the impact of pulmonary immunity on lung health and disease. Am. J. Respir. Crit. Care Med. 186:824–29 [Google Scholar]
  5. Curns AT, Holman RC, Sejvar JJ, Owings MF, Schonberger LB. 5.  2005. Infectious disease hospitalizations among older adults in the United States from 1990 through 2002. Arch. Intern. Med. 165:2514–20 [Google Scholar]
  6. Fry AM, Shay DK, Holman RC, Curns AT, Anderson LJ. 6.  2005. Trends in hospitalizations for pneumonia among persons aged 65 years or older in the United States, 1988–2002. JAMA 294:2712–19 [Google Scholar]
  7. Mizgerd JP. 7.  2006. Lung infection—a public health priority. PLOS Med. 3:e76 [Google Scholar]
  8. Van Eeden S, Leipsic J, Paul Man SF, Sin DD. 8.  2012. The relationship between lung inflammation and cardiovascular disease. Am. J. Respir. Crit. Care Med. 186:11–16 [Google Scholar]
  9. Edmond K, Scott S, Korczak V, Ward C, Sanderson C. 9.  et al. 2012. Long term sequelae from childhood pneumonia; systematic review and meta-analysis. PLOS ONE 7:e31239 [Google Scholar]
  10. Shah FA, Pike F, Alvarez K, Angus D, Newman AB. 10.  et al. 2013. Bidirectional relationship between cognitive function and pneumonia. Am. J. Respir. Crit. Care Med. 188:586–92 [Google Scholar]
  11. Ayres JS, Schneider DS. 11.  2012. Tolerance of infections. Annu. Rev. Immunol. 30:271–94 [Google Scholar]
  12. Medzhitov R, Schneider DS, Soares MP. 12.  2012. Disease tolerance as a defense strategy. Science 335:936–41 [Google Scholar]
  13. Cilloniz C, Ewig S, Polverino E, Marcos MA, Esquinas C. 13.  et al. 2011. Microbial aetiology of community-acquired pneumonia and its relation to severity. Thorax 66:340–46 [Google Scholar]
  14. Jones RN. 14.  2010. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin. Infect. Dis. 51:Suppl. 181–87 [Google Scholar]
  15. Mizgerd JP, Skerrett SJ. 15.  2008. Animal models of human pneumonia. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:L387–98 [Google Scholar]
  16. Matute-Bello G, Frevert CW, Martin TR. 16.  2008. Animal models of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 295:L379–99 [Google Scholar]
  17. Mizgerd JP. 17.  2008. Acute lower respiratory tract infection. N. Engl. J. Med. 358:716–27 [Google Scholar]
  18. Quinton LJ, Mizgerd JP. 18.  2011. NF-κB and STAT3 signaling hubs for lung innate immunity. Cell Tissue Res. 343:153–65 [Google Scholar]
  19. Alcamo E, Mizgerd JP, Horwitz BH, Bronson R, Beg AA. 19.  et al. 2001. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment. J. Immunol. 167:1592–600 [Google Scholar]
  20. Quinton LJ, Jones MR, Simms BT, Kogan MS, Robson BE. 20.  et al. 2007. Functions and regulation of NF-κB RelA during pneumococcal pneumonia. J. Immunol. 178:1896–903 [Google Scholar]
  21. Picard C, von Bernuth H, Ghandil P, Chrabieh M, Levy O. 21.  et al. 2010. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 89:403–25 [Google Scholar]
  22. Pannicke U, Baumann B, Fuchs S, Henneke P, Rensing-Ehl A. 22.  et al. 2013. Deficiency of innate and acquired immunity caused by an IKBKB mutation. N. Engl. J. Med. 369:2504–14 [Google Scholar]
  23. Hussell T, Bell TJ. 23.  2014. Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol. 14:81–93 [Google Scholar]
  24. Pittet LA, Quinton LJ, Yamamoto K, Robson BE, Ferrari JD. 24.  et al. 2011. Earliest innate immune responses require macrophage RelA during pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol. 45:573–81 [Google Scholar]
  25. Quinton LJ, Jones MR, Robson BE, Mizgerd JP. 25.  2009. Mechanisms of the hepatic acute-phase response during bacterial pneumonia. Infect. Immun. 77:2417–26 [Google Scholar]
  26. Hess C, Herr C, Beisswenger C, Zakharkina T, Schmid RM, Bals R. 26.  2010. Myeloid RelA regulates pulmonary host defense networks. Eur. Respir. J. 35:343–52 [Google Scholar]
  27. Cakarova L, Marsh LM, Wilhelm J, Mayer K, Grimminger F. 27.  et al. 2009. Macrophage tumor necrosis factor-α induces epithelial expression of granulocyte–macrophage colony-stimulating factor: impact on alveolar epithelial repair. Am. J. Respir. Crit. Care Med. 180:521–32 [Google Scholar]
  28. Marriott HM, Gascoyne KA, Gowda R, Geary I, Nicklin MJ. 28.  et al. 2011. IL-1β regulates CXCL8 release and influences disease outcome in response to Streptococcus pneumoniae, defining intracellular cooperation between pulmonary epithelial cells and macrophages. Infect. Immun. 80:1140–49 [Google Scholar]
  29. Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L. 29.  et al. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210:1977–92 [Google Scholar]
  30. Murphy J, Summer R, Wilson AA, Kotton DN, Fine A. 30.  2008. The prolonged life-span of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 38:380–85 [Google Scholar]
  31. Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT. 31.  et al. 2011. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 184:547–60 [Google Scholar]
  32. Marriott HM, Bingle CD, Read RC, Braley KE, Kroemer G. 32.  et al. 2005. Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. J. Clin. Investig. 115:359–68 [Google Scholar]
  33. Aberdein JD, Cole J, Bewley MA, Marriott HM, Dockrell DH. 33.  2013. Alveolar macrophages in pulmonary host defence—the unrecognized role of apoptosis as a mechanism of intracellular bacterial killing. Clin. Exp. Immunol. 174:193–202 [Google Scholar]
  34. Steinwede K, Henken S, Bohling J, Maus R, Ueberberg B. 34.  et al. 2012. TNF-related apoptosis-inducing ligand (TRAIL) exerts therapeutic efficacy for the treatment of pneumococcal pneumonia in mice. J. Exp. Med. 209:1937–52 [Google Scholar]
  35. Cohen TS, Prince AS. 35.  2013. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J. Clin. Investig. 123:1630–37 [Google Scholar]
  36. Dela Cruz CS, Liu W, He CH, Jacoby A, Gornitzky A. 36.  et al. 2012. Chitinase 3-like-1 promotes Streptococcus pneumoniae killing and augments host tolerance to lung antibacterial responses. Cell Host Microbe 12:34–46 [Google Scholar]
  37. Weber M, Lambeck S, Ding N, Henken S, Kohl M. 37.  et al. 2012. Hepatic induction of cholesterol biosynthesis reflects a remote adaptive response to pneumococcal pneumonia. FASEB J. 26:2424–36 [Google Scholar]
  38. Alymova IV, Samarasinghe A, Vogel P, Green AM, Weinlich R, McCullers JA. 38.  2014. A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. J. Virol. 88:503–15 [Google Scholar]
  39. Nakahira K, Choi AM. 39.  2013. Autophagy: a potential therapeutic target in lung diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 305:L93–107 [Google Scholar]
  40. Byrne BG, Dubuisson JF, Joshi AD, Persson JJ, Swanson MS. 40.  2013. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio 4:e00620–12 [Google Scholar]
  41. Yuan K, Huang C, Fox J, Laturnus D, Carlson E. 41.  et al. 2012. Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages. J. Cell Sci. 125:507–15 [Google Scholar]
  42. Tam JM, Mansour MK, Khan NS, Seward M, Puranam S. 42.  et al. 2014. Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J. Infect. Dis. 2101844–54 [Google Scholar]
  43. Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. 43.  2013. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 188:913–22 [Google Scholar]
  44. Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE. 44.  et al. 2014. Muc5b is required for airway defence. Nature 505:412–16 [Google Scholar]
  45. Wright JR. 45.  2005. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 5:58–68 [Google Scholar]
  46. Mijares LA, Wangdi T, Sokol C, Homer R, Medzhitov R, Kazmierczak BI. 46.  2011. Airway epithelial MyD88 restores control of Pseudomonas aeruginosa murine infection via an IL-1-dependent pathway. J. Immunol. 186:7080–88 [Google Scholar]
  47. Moser C, Weiner DJ, Lysenko E, Bals R, Weiser JN, Wilson JM. 47.  2002. β-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70:3068–72 [Google Scholar]
  48. Yamamoto K, Ahyi AN, Pepper-Cunningham ZA, Ferrari JD, Wilson AA. 48.  et al. 2014. Roles of lung epithelium in neutrophil recruitment during pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol. 50:253–62 [Google Scholar]
  49. Yamamoto K, Ferrari JD, Cao Y, Ramirez MI, Jones MR. 49.  et al. 2012. Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumonia. J. Immunol. 189:2450–59 [Google Scholar]
  50. Starner TD, Barker CK, Jia HP, Kang Y, McCray PB Jr. 50.  2003. CCL20 is an inducible product of human airway epithelia with innate immune properties. Am. J. Respir. Cell Mol. Biol. 29:627–33 [Google Scholar]
  51. Kovach MA, Ballinger MN, Newstead MW, Zeng X, Bhan U. 51.  et al. 2012. Cathelicidin-related antimicrobial peptide is required for effective lung mucosal immunity in Gram-negative bacterial pneumonia. J. Immunol. 189:304–11 [Google Scholar]
  52. Markart P, Korfhagen TR, Weaver TE, Akinbi HT. 52.  2004. Mouse lysozyme M is important in pulmonary host defense against Klebsiella pneumoniae infection. Am. J. Respir. Crit. Care Med. 169:454–58 [Google Scholar]
  53. Chan YR, Liu JS, Pociask DA, Zheng M, Mietzner TA. 53.  et al. 2009. Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J. Immunol. 182:4947–56 [Google Scholar]
  54. Warszawska JM, Gawish R, Sharif O, Sigel S, Doninger B. 54.  et al. 2013. Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J. Clin. Investig. 123:3363–72 [Google Scholar]
  55. Choi SM, McAleer JP, Zheng M, Pociask DA, Kaplan MH. 55.  et al. 2013. Innate Stat3-mediated induction of the antimicrobial protein Reg3γ is required for host defense against MRSA pneumonia. J. Exp. Med. 210:551–61 [Google Scholar]
  56. Liu Y, Bartlett JA, Di ME, Bomberger JM, Chan YR. 56.  et al. 2013. SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection. Am. J. Pathol. 182:1519–31 [Google Scholar]
  57. Liu Y, Di ME, Chu HW, Liu X, Wang L. 57.  et al. 2013. Increased susceptibility to pulmonary Pseudomonas infection in Splunc1 knockout mice. J. Immunol. 191:4259–68 [Google Scholar]
  58. Fischer AJ, Lennemann NJ, Krishnamurthy S, Pocza P, Durairaj L. 58.  et al. 2011. Enhancement of respiratory mucosal antiviral defenses by the oxidation of iodide. Am. J. Respir. Cell Mol. Biol. 45:874–81 [Google Scholar]
  59. Moskwa P, Lorentzen D, Excoffon KJ, Zabner J, McCray PB Jr. 59.  et al. 2007. A novel host defense system of airways is defective in cystic fibrosis. Am. J. Respir. Crit. Care Med. 175:174–83 [Google Scholar]
  60. Evans SE, Xu Y, Tuvim MJ, Dickey BF. 60.  2010. Inducible innate resistance of lung epithelium to infection. Annu. Rev. Physiol. 72:413–35 [Google Scholar]
  61. Cleaver JO, You D, Michaud DR, Pruneda FA, Juarez MM. 61.  et al. 2014. Lung epithelial cells are essential effectors of inducible resistance to pneumonia. Mucosal Immunol. 7:78–88 [Google Scholar]
  62. Mei J, Liu Y, Dai N, Favara M, Greene T. 62.  et al. 2010. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity 33:106–17 [Google Scholar]
  63. Bozinovski S, Jones J, Beavitt SJ, Cook AD, Hamilton JA, Anderson GP. 63.  2004. Innate immune responses to LPS in mouse lung are suppressed and reversed by neutralization of GM-CSF via repression of TLR-4. Am. J. Physiol. Lung Cell. Mol. Physiol. 286:L877–85 [Google Scholar]
  64. Unkel B, Hoegner K, Clausen BE, Lewe-Schlosser P, Bodner J. 64.  et al. 2012. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J. Clin. Investig. 122:3652–64 [Google Scholar]
  65. Kallal LE, Schaller MA, Lindell DM, Lira SA, Lukacs NW. 65.  2010. CCL20/CCR6 blockade enhances immunity to RSV by impairing recruitment of DC. Eur. J. Immunol. 40:1042–52 [Google Scholar]
  66. Phadke AP, Akangire G, Park SJ, Lira SA, Mehrad B. 66.  2007. The role of CC chemokine receptor 6 in host defense in a model of invasive pulmonary aspergillosis. Am. J. Respir. Crit. Care Med. 175:1165–72 [Google Scholar]
  67. Matsuzaki Y, Xu Y, Ikegami M, Besnard V, Park KS. 67.  et al. 2006. Stat3 is required for cytoprotection of the respiratory epithelium during adenoviral infection. J. Immunol. 177:527–37 [Google Scholar]
  68. Quinton LJ, Jones MR, Robson BE, Simms BT, Whitsett JA, Mizgerd JP. 68.  2008. Alveolar epithelial STAT3, IL-6 family cytokines, and host defense during Escherichia coli pneumonia. Am. J. Respir. Cell Mol. Biol. 38:699–706 [Google Scholar]
  69. Laan M, Prause O, Miyamoto M, Sjostrand M, Hytonen AM. 69.  et al. 2003. A role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF-α. Eur. Respir. J. 21:387–93 [Google Scholar]
  70. Shui JW, Larange A, Kim G, Vela JL, Zahner S. 70.  et al. 2012. HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria. Nature 488:222–25 [Google Scholar]
  71. Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C, Mantovani A. 71.  2013. Neutrophils in innate and adaptive immunity. Semin. Immunopathol. 35:377–94 [Google Scholar]
  72. Brandes M, Klauschen F, Kuchen S, Germain RN. 72.  2013. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell 154:197–212 [Google Scholar]
  73. Ichikawa A, Kuba K, Morita M, Chida S, Tezuka H. 73.  et al. 2013. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am. J. Respir. Crit. Care Med. 187:65–77 [Google Scholar]
  74. Yamada M, Gomez JC, Chugh PE, Lowell CA, Dinauer MC. 74.  et al. 2011. Interferon-γ production by neutrophils during bacterial pneumonia in mice. Am. J. Respir. Crit. Care Med. 183:1391–401 [Google Scholar]
  75. Puga I, Cols M, Barra CM, He B, Cassis L. 75.  et al. 2012. B cell–helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13:170–80 [Google Scholar]
  76. Tillett WS, Francis T. 76.  1930. Serological reactions in pneumonia with non-protein somatic fraction of pneumococcus. J. Exp. Med. 52:561–71 [Google Scholar]
  77. Gabay C, Kushner I. 77.  1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340:448–54 [Google Scholar]
  78. Ahyi AN, Quinton LJ, Jones MR, Ferrari JD, Pepper-Cunningham ZA. 78.  et al. 2013. Roles of STAT3 in protein secretion pathways during the acute-phase response. Infect. Immun. 81:1644–53 [Google Scholar]
  79. Quinton LJ, Blahna MT, Jones MR, Allen E, Ferrari JD. 79.  et al. 2012. Hepatocyte-specific mutation of both NF-κB RelA and STAT3 abrogates the acute phase response in mice. J. Clin. Investig. 122:1758–63 [Google Scholar]
  80. Mizgerd JP, Spieker MR, Doerschuk CM. 80.  2001. Early response cytokines and innate immunity: essential roles for TNF receptor 1 and type I IL-1 receptor during Escherichia coli pneumonia in mice. J. Immunol. 166:4042–48 [Google Scholar]
  81. Lu J, Marnell LL, Marjon KD, Mold C, Du Clos TW, Sun PD. 81.  2008. Structural recognition and functional activation of FcγR by innate pentraxins. Nature 456:989–92 [Google Scholar]
  82. Yuste J, Botto M, Bottoms SE, Brown JS. 82.  2007. Serum amyloid P aids complement-mediated immunity to Streptococcus pneumoniae. PLOS Pathog. 3:1208–19 [Google Scholar]
  83. Matthay MA, Zemans RL. 83.  2011. The acute respiratory distress syndrome: pathogenesis and treatment. Annu. Rev. Pathol. 6:147–63 [Google Scholar]
  84. Freeman AF, Holland SM. 84.  2009. Clinical manifestations, etiology, and pathogenesis of the hyper-IgE syndromes. Pediatr. Res. 65:R32–37 [Google Scholar]
  85. Freeman AF, Kleiner DE, Nadiminti H, Davis J, Quezado M. 85.  et al. 2007. Causes of death in hyper-IgE syndrome. J. Allergy Clin. Immunol. 119:1234–40 [Google Scholar]
  86. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ. 86.  et al. 2008. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–76 [Google Scholar]
  87. Saito M, Nagasawa M, Takada H, Hara T, Tsuchiya S. 87.  et al. 2011. Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells. J. Exp. Med. 208:235–49 [Google Scholar]
  88. Hokuto I, Ikegami M, Yoshida M, Takeda K, Akira S. 88.  et al. 2004. Stat-3 is required for pulmonary homeostasis during hyperoxia. J. Clin. Investig. 113:28–37 [Google Scholar]
  89. Ikegami M, Falcone A, Whitsett JA. 89.  2008. STAT-3 regulates surfactant phospholipid homeostasis in normal lung and during endotoxin-mediated lung injury. J. Appl. Physiol. 104:1753–60 [Google Scholar]
  90. Kida H, Mucenski ML, Thitoff AR, Le Cras TD, Park KS. 90.  et al. 2008. GP130-STAT3 regulates epithelial cell migration and is required for repair of the bronchiolar epithelium. Am. J. Pathol. 172:1542–54 [Google Scholar]
  91. Lian X, Qin Y, Hossain SA, Yang L, White A. 91.  et al. 2005. Overexpression of Stat3C in pulmonary epithelium protects against hyperoxic lung injury. J. Immunol. 174:7250–56 [Google Scholar]
  92. Li Y, Du H, Qin Y, Roberts J, Cummings OW, Yan C. 92.  2007. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res. 67:8494–503 [Google Scholar]
  93. Jones MR, Quinton LJ, Simms BT, Lupa MM, Kogan MS, Mizgerd JP. 93.  2006. Roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. J. Infect. Dis. 193:360–69 [Google Scholar]
  94. Heymann D, L'Her E, Nguyen J-M, Raher S, Canfrere I. 94.  et al. 1996. Leukaemia inhibitory factor (LIF) production in pleural effusions: comparison with production of IL-4, IL-8, IL-10 and macrophage-colony stimulating factor (M-CSF). Cytokine 8:410–16 [Google Scholar]
  95. Jorens PG, De Jongh R, Bossaert LL, De Backer W, Herman AG. 95.  et al. 1996. High levels of leukaemia inhibitory factor in ARDS. Cytokine 8:873–76 [Google Scholar]
  96. Dagoneau N, Scheffer D, Huber C, Al-Gazali LI, Di Rocco M. 96.  et al. 2004. Null leukemia inhibitory factor receptor (LIFR) mutations in Stuve-Wiedemann/Schwartz-Jampel type 2 syndrome. Am. J. Hum. Genet. 74:298–305 [Google Scholar]
  97. Quinton LJ, Mizgerd JP, Hilliard KL, Jones MR, Kwon CY, Allen E. 97.  2012. Leukemia inhibitory factor signaling is required for lung protection during pneumonia. J. Immunol. 188:6300–8 [Google Scholar]
  98. Bhattacharya J, Matthay MA. 98.  2013. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu. Rev. Physiol. 75:593–615 [Google Scholar]
  99. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ. 99.  et al. 2008. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 14:275–81 [Google Scholar]
  100. Kumar P, Thakar MS, Ouyang W, Malarkannan S. 100.  2013. IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. Mucosal Immunol. 6:69–82 [Google Scholar]
  101. Pociask DA, Scheller EV, Mandalapu S, McHugh KJ, Enelow RI. 101.  et al. 2013. IL-22 is essential for lung epithelial repair following influenza infection. Am. J. Pathol. 182:1286–96 [Google Scholar]
  102. Zemans RL, Briones N, Campbell M, McClendon J, Young SK. 102.  et al. 2011. Neutrophil transmigration triggers repair of the lung epithelium via β-catenin signaling. Proc. Natl. Acad. Sci. USA 108:15990–95 [Google Scholar]
  103. Liu Y, Sadikot RT, Adami GR, Kalinichenko VV, Pendyala S. 103.  et al. 2011. FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa. J. Exp. Med. 208:1473–84 [Google Scholar]
  104. Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS. 104.  et al. 2011. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147:525–38 [Google Scholar]
  105. Kotton DN. 105.  2012. Next-generation regeneration: the hope and hype of lung stem cell research. Am. J. Respir. Crit. Care Med. 185:1255–60 [Google Scholar]
  106. Korfhagen TR, Kitzmiller J, Chen G, Sridharan A, Haitchi HM. 106.  et al. 2012. SAM-pointed domain ETS factor mediates epithelial cell–intrinsic innate immune signaling during airway mucous metaplasia. Proc. Natl. Acad. Sci. USA 109:16630–35 [Google Scholar]
  107. Chen G, Korfhagen TR, Karp CL, Impey S, Xu Y. 107.  et al. 2014. Foxa3 induces goblet cell metaplasia and inhibits innate antiviral immunity. Am. J. Respir. Crit. Care Med. 189:301–13 [Google Scholar]
  108. Kim KC. 108.  2012. Role of epithelial mucins during airway infection. Pulm. Pharmacol. Ther. 25:415–19 [Google Scholar]
  109. Choi S, Park YS, Koga T, Treloar A, Kim KC. 109.  2011. TNF-α is a key regulator of MUC1, an anti-inflammatory molecule, during airway Pseudomonas aeruginosa infection. Am. J. Respir. Cell Mol. Biol. 44:255–60 [Google Scholar]
  110. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU. 110.  et al. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–53 [Google Scholar]
  111. Aggarwal NR, King LS, D'Alessio FR. 111.  2014. Diverse macrophage populations mediate acute lung inflammation and resolution. Am. J. Physiol. Lung Cell. Mol. Physiol. 306:L709–25 [Google Scholar]
  112. Johnston LK, Rims CR, Gill SE, McGuire JK, Manicone AM. 112.  2012. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am. J. Respir. Cell Mol. Biol. 47:417–26 [Google Scholar]
  113. Wang J, Li F, Sun R, Gao X, Wei H. 113.  et al. 2013. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat. Commun. 4:2106 [Google Scholar]
  114. Westphalen K, Gusarova GA, Islam MN, Subramanian M, Cohen TS. 114.  et al. 2014. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506:503–6 [Google Scholar]
  115. Huynh ML, Fadok VA, Henson PM. 115.  2002. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Investig. 109:41–50 [Google Scholar]
  116. Levy BD, Serhan CN. 116.  2014. Resolution of acute inflammation in the lung. Annu. Rev. Physiol. 76:467–92 [Google Scholar]
  117. Deng JC, Cheng G, Newstead MW, Zeng X, Kobayashi K. 117.  et al. 2006. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J. Clin. Investig. 116:2532–42 [Google Scholar]
  118. D'Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH. 118.  et al. 2009. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J. Clin. Investig. 119:2898–913 [Google Scholar]
  119. Braciale TJ, Sun J, Kim TS. 119.  2012. Regulating the adaptive immune response to respiratory virus infection. Nat. Rev. Immunol. 12:295–305 [Google Scholar]
  120. Xu X, Weiss ID, Zhang HH, Singh SP, Wynn TA. 120.  et al. 2014. Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia. J. Immunol. 192:1778–86 [Google Scholar]
  121. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CGK. 121.  et al. 2011. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12:1045–54 [Google Scholar]
  122. Jamieson AM, Pasman L, Yu S, Gamradt P, Homer RJ. 122.  et al. 2013. Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science 340:1230–34 [Google Scholar]
  123. Geisler F, Algul H, Paxian S, Schmid RM. 123.  2007. Genetic inactivation of RelAp65 sensitizes adult mouse hepatocytes to TNF-induced apoptosis in vivo and in vitro. Gastroenterology 132:2489–503 [Google Scholar]
  124. Sander LE, Sackett SD, Dierssen U, Beraza N, Linke RP. 124.  et al. 2010. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J. Exp. Med. 207:1453–64 [Google Scholar]
  125. Poe SL, Arora M, Oriss TB, Yarlagadda M, Isse K. 125.  et al. 2013. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. Mucosal Immunol. 6:189–99 [Google Scholar]
  126. Herold S, Tabar TS, Janssen H, Hoegner K, Cabanski M. 126.  et al. 2011. Exudate macrophages attenuate lung injury by the release of IL-1 receptor antagonist in gram-negative pneumonia. Am. J. Respir. Crit. Care Med. 183:1380–90 [Google Scholar]
  127. Aggarwal NR, Tsushima K, Eto Y, Tripathi A, Mandke P. 127.  et al. 2014. Immunological priming requires regulatory T cells and IL-10–producing macrophages to accelerate resolution from severe lung inflammation. J. Immunol. 92:4453–64 [Google Scholar]
  128. Gupta N, Krasnodembskaya A, Kapetanaki M, Mouded M, Tan X. 128.  et al. 2012. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–39 [Google Scholar]
  129. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. 129.  2009. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl. Acad. Sci. USA 106:16357–62 [Google Scholar]
  130. Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W. 130.  et al. 2013. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19:1305–12 [Google Scholar]
  131. Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M. 131.  et al. 2012. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18:274–80 [Google Scholar]
  132. Strutt TM, McKinstry KK, Marshall NB, Vong AM, Dutton RW, Swain SL. 132.  2013. Multipronged CD4+ T-cell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunol. Rev. 255:149–64 [Google Scholar]
  133. Malley R, Anderson PW. 133.  2012. Serotype-independent pneumococcal experimental vaccines that induce cellular as well as humoral immunity. Proc. Natl. Acad. Sci. USA 109:3623–27 [Google Scholar]
  134. Chen K, McAleer JP, Lin Y, Paterson DL, Zheng M. 134.  et al. 2011. Th17 cells mediate clade-specific, serotype-independent mucosal immunity. Immunity 35:997–1009 [Google Scholar]
  135. Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M. 135.  2005. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc. Natl. Acad. Sci. USA 102:4848–53 [Google Scholar]
  136. Cohen JM, Khandavilli S, Camberlein E, Hyams C, Baxendale HE, Brown JS. 136.  2011. Protective contributions against invasive Streptococcus pneumoniae pneumonia of antibody and Th17-cell responses to nasopharyngeal colonisation. PLOS ONE 6:e25558 [Google Scholar]
  137. Lundgren A, Bhuiyan TR, Novak D, Kaim J, Reske A. 137.  et al. 2012. Characterization of Th17 responses to Streptococcus pneumoniae in humans: comparisons between adults and children in a developed and a developing country. Vaccine 30:3897–907 [Google Scholar]
  138. Wright AK, Bangert M, Gritzfeld JF, Ferreira DM, Jambo KC. 138.  et al. 2013. Experimental human pneumococcal carriage augments IL-17A-dependent T-cell defence of the lung. PLOS Pathog. 9:e1003274 [Google Scholar]
  139. Giefing C, Meinke AL, Hanner M, Henics T, Bui MD. 139.  et al. 2008. Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J. Exp. Med. 205:117–31 [Google Scholar]
  140. Purwar R, Campbell J, Murphy G, Richards WG, Clark RA, Kupper TS. 140.  2011. Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity. PLOS ONE 6:e16245 [Google Scholar]
  141. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P. 141.  et al. 2013. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38:187–97 [Google Scholar]
  142. Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrançois L, Farber DL. 142.  2011. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187:5510–14 [Google Scholar]
  143. Wakim LM, Gupta N, Mintern JD, Villadangos JA. 143.  2013. Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3. Nat. Immunol. 14:238–45 [Google Scholar]
  144. Paget C, Trottein F. 144.  2013. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol. 6:1054–67 [Google Scholar]
  145. Gold MC, Lewinsohn DM. 145.  2013. Co-dependents: MR1-restricted MAIT cells and their antimicrobial function. Nat. Rev. Microbiol. 11:14–19 [Google Scholar]
  146. Nakasone C, Yamamoto N, Nakamatsu M, Kinjo T, Miyagi K. 146.  et al. 2007. Accumulation of γ/δ T cells in the lungs and their roles in neutrophil-mediated host defense against pneumococcal infection. Microbes Infect. 9:251–58 [Google Scholar]
  147. Randall TD, Mebius RE. 147.  2014. The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol. 7:3455–66 [Google Scholar]
  148. Krone CL, van de Groep K, Trzcinski K, Sanders EA, Bogaert D. 148.  2014. Immunosenescence and pneumococcal disease: an imbalance in host-pathogen interactions. Lancet Respir. Med. 2:141–53 [Google Scholar]
  149. Vijg J, Suh Y. 149.  2013. Genome instability and aging. Annu. Rev. Physiol. 75:645–68 [Google Scholar]
  150. Tevy MF, Giebultowicz J, Pincus Z, Mazzoccoli G, Vinciguerra M. 150.  2013. Aging signaling pathways and circadian clock–dependent metabolic derangements. Trends Endocrinol. Metab. 24:229–37 [Google Scholar]
  151. Campisi J. 151.  2013. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75:685–705 [Google Scholar]
  152. Lalley PM. 152.  2013. The aging respiratory system—pulmonary structure, function and neural control. Respir. Physiol. Neurobiol. 187:199–210 [Google Scholar]
  153. Faner R, Rojas M, Macnee W, Agusti A. 153.  2012. Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 186:306–13 [Google Scholar]
  154. Fedson DS. 154.  2013. Treating influenza with statins and other immunomodulatory agents. Antivir. Res. 99:417–35 [Google Scholar]
  155. Griffin MR, Zhu Y, Moore MR, Whitney CG, Grijalva CG. 155.  2013. US hospitalizations for pneumonia after a decade of pneumococcal vaccination. N. Engl. J. Med. 369:155–63 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021014-071937
Loading
/content/journals/10.1146/annurev-physiol-021014-071937
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error