1932

Abstract

Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca2+], or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021113-170358
2015-02-10
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/physiol/77/1/annurev-physiol-021113-170358.html?itemId=/content/journals/10.1146/annurev-physiol-021113-170358&mimeType=html&fmt=ahah

Literature Cited

  1. Lemmon MA. 1.  2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9:299–111 [Google Scholar]
  2. McLaughlin S, Murray D. 2.  2005. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:7068605–11 [Google Scholar]
  3. Di Paolo G, De Camilli P. 3.  2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:7112651–57 [Google Scholar]
  4. Van Meer G, Voelker DR, Feigenson GW. 4.  2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:2112–24 [Google Scholar]
  5. Roth MG. 5.  2004. Phosphoinositides in constitutive membrane traffic. Physiol. Rev. 84:3699–730 [Google Scholar]
  6. Behnia R, Munro S. 6.  2005. Organelle identity and the signposts for membrane traffic. Nature 438:7068597–604 [Google Scholar]
  7. Barlow CA, Laishram RS, Anderson RA. 7.  2010. Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol. 20:125–35 [Google Scholar]
  8. Jones DR, Divecha N. 8.  2004. Linking lipids to chromatin. Curr. Opin. Genet. Dev. 14:2196–202 [Google Scholar]
  9. Logothetis DE, Petrou VI, Adney SK, Mahajan R. 9.  2010. Channelopathies linked to plasma membrane phosphoinositides. Pflüg. Arch. 460:2321–41 [Google Scholar]
  10. Berman DE, Dall'Armi C, Voronov SV, McIntire LBJ, Zhang H. 10.  et al. 2008. Oligomeric amyloid-β peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nat. Neurosci. 11:5547–54 [Google Scholar]
  11. Voronov SV, Frere SG, Giovedi S, Pollina EA, Borel C. 11.  et al. 2008. Synaptojanin 1–linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. PNAS 105:279415–20 [Google Scholar]
  12. Nawaz S, Kippert A, Saab AS, Werner HB, Lang T. 12.  et al. 2009. Phosphatidylinositol 4,5-bisphosphate–dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J. Neurosci. 29:154794–807 [Google Scholar]
  13. Cremona O, De Camilli P. 13.  2001. Phosphoinositides in membrane traffic at the synapse. J. Cell Sci. 114:61041–52 [Google Scholar]
  14. Murthy VN, De Camilli P. 14.  2003. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26:701–28 [Google Scholar]
  15. Takei K, Yoshida Y, Yamada H. 15.  2005. Regulatory mechanisms of dynamin-dependent endocytosis. J. Biochem. 137:3243–47 [Google Scholar]
  16. Clayton EL, Cousin MA. 16.  2009. The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. J. Neurochem. 111:4901–14 [Google Scholar]
  17. Koch M, Holt M. 17.  2012. Coupling exo- and endocytosis: an essential role for PIP2 at the synapse. Biochim. Biophys. Acta 1821:81114–32 [Google Scholar]
  18. Wenk MR, De Camilli P. 18.  2004. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. PNAS 101:228262–69 [Google Scholar]
  19. Bai J, Tucker WC, Chapman ER. 19.  2004. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11:136–44 [Google Scholar]
  20. Cingolani LA, Goda Y. 20.  2008. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9:5344–56 [Google Scholar]
  21. Hotulainen P, Hoogenraad CC. 21.  2010. Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189:4619–29 [Google Scholar]
  22. Sechi AS, Wehland J. 22.  2000. The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P2 influences cytoskeletal protein activity at the plasma membrane. J. Cell Sci. 113:Part 213685–95 [Google Scholar]
  23. Saarikangas J, Zhao H, Lappalainen P. 23.  2010. Regulation of the actin cytoskeleton–plasma membrane interplay by phosphoinositides. Physiol. Rev. 90:1259–89 [Google Scholar]
  24. Niggli V. 24.  2005. Regulation of protein activities by phosphoinositide phosphates. Annu. Rev. Cell Dev. Biol. 21:57–79 [Google Scholar]
  25. Li H, Chen G, Zhou B, Duan S. 25.  2008. Actin filament assembly by myristoylated alanine-rich C kinase substrate–phosphatidylinositol-4,5-diphosphate signaling is critical for dendrite branching. Mol. Biol. Cell 19:114804–13 [Google Scholar]
  26. Sasaki Y. 26.  2003. New aspects of neurotransmitter release and exocytosis: Rho-kinase-dependent myristoylated alanine-rich C-kinase substrate phosphorylation and regulation of neurofilament structure in neuronal cells. J. Pharmacol. Sci. 93:135–40 [Google Scholar]
  27. Larsson C. 27.  2006. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal. 18:3276–84 [Google Scholar]
  28. Robertson HR, Gibson ES, Benke TA, Dell'Acqua ML. 28.  2009. Regulation of postsynaptic structure and function by an A-kinase anchoring protein–membrane-associated guanylate kinase scaffolding complex. J. Neurosci. 29:247929–43 [Google Scholar]
  29. Bauman AL, Goehring AS, Scott JD. 29.  2004. Orchestration of synaptic plasticity through AKAP signaling complexes. Neuropharmacology 46:3299–310 [Google Scholar]
  30. Dell'Acqua ML, Smith KE, Gorski JA, Horne EA, Gibson ES, Gomez LL. 30.  2006. Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur. J. Cell Biol. 85:7627–33 [Google Scholar]
  31. Wickner W, Schekman R. 31.  2008. Membrane fusion. Nat. Struct. Mol. Biol. 15:658–64 [Google Scholar]
  32. Penzes P, Cahill ME, Jones KA, Srivastava DP. 32.  2008. Convergent CaMK and RacGEF signals control dendritic structure and function. Trends Cell Biol. 18:9405–13 [Google Scholar]
  33. Hall A, Lalli G. 33.  2010. Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb. Perspect. Biol. 2:2 doi:10.1101/cshperspect.a001818 [Google Scholar]
  34. Hilgemann DW, Ball R. 34.  1996. Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273:5277956–59 [Google Scholar]
  35. Hilgemann DW. 35.  1997. Cytoplasmic ATP-dependent regulation of ion transporters and channels: mechanisms and messengers. Annu. Rev. Physiol. 59:193–220 [Google Scholar]
  36. Hilgemann DW, Feng S, Nasuhoglu C. 36.  2001. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE 2001:111re19 [Google Scholar]
  37. Takano M, Kuratomi S. 37.  2003. Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism. Prog. Biophys. Mol. Biol. 81:167–79 [Google Scholar]
  38. Suh B-C, Hille B. 38.  2005. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol. 15:3370–78 [Google Scholar]
  39. Xie L-H, John SA, Ribalet B, Weiss JN. 39.  2007. Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): interaction with other regulatory ligands. Prog. Biophys. Mol. Biol. 94:3320–35 [Google Scholar]
  40. Huang C-L. 40.  2007. Complex roles of PIP2 in the regulation of ion channels and transporters. Am. J. Physiol. Ren. Physiol. 293:6F1761–65 [Google Scholar]
  41. Gamper N, Shapiro MS. 41.  2007. Regulation of ion transport proteins by membrane phosphoinositides. Nat. Rev. Neurosci. 8:12921–34 [Google Scholar]
  42. Rosenhouse-Dantsker A, Logothetis D. 42.  2007. Molecular characteristics of phosphoinositide binding. Pflüg. Arch. 455:145–53 [Google Scholar]
  43. Logothetis DE, Jin T, Lupyan D, Rosenhouse-Dantsker A. 43.  2007. Phosphoinositide-mediated gating of inwardly rectifying K+ channels. Pflüg. Arch. 455:183–95 [Google Scholar]
  44. Logothetis DE, Lupyan D, Rosenhouse-Dantsker A. 44.  2007. Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J. Physiol. 582:3953–65 [Google Scholar]
  45. Tucker SJ, Baukrowitz T. 45.  2008. How highly charged anionic lipids bind and regulate ion channels. J. Gen. Physiol. 131:5431–38 [Google Scholar]
  46. Suh B-C, Hille B. 46.  2008. PIP2 is a necessary cofactor for ion channel function: how and why?. Annu. Rev. Biophys. 37:175–95 [Google Scholar]
  47. Michailidis IE, Rusinova R, Georgakopoulos A, Chen Y, Iyengar R. 47.  et al. 2011. Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation. Pflüg. Arch. 461:3387–97 [Google Scholar]
  48. Von Heijne G, Gavel Y. 48.  1988. Topogenic signals in integral membrane proteins. Eur. J. Biochem. FEBS 174:4671–78 [Google Scholar]
  49. Van Klompenburg W, Nilsson I, von Heijne G, de Kruijff B. 49.  1997. Anionic phospholipids are determinants of membrane protein topology. EMBO J. 16:144261–66 [Google Scholar]
  50. Hansen SB, Tao X, MacKinnon R. 50.  2011. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:7365495–98 [Google Scholar]
  51. Whorton MR, MacKinnon R. 51.  2011. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147:1199–208 [Google Scholar]
  52. Whorton MR, MacKinnon R. 52.  2013. X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature 498:7453190–97 [Google Scholar]
  53. Nishida M, Cadene M, Chait BT, MacKinnon R. 53.  2007. Crystal structure of a Kir3.1–prokaryotic Kir channel chimera. EMBO J. 26:174005–15 [Google Scholar]
  54. Lopes CMB, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE. 54.  2002. Alterations in conserved Kir channel–PIP2 interactions underlie channelopathies. Neuron 34:6933–44 [Google Scholar]
  55. Fürst O, Mondou B, D'Avanzo N. 55.  2014. Phosphoinositide regulation of inward rectifier potassium (Kir) channels. Front. Physiol. 4:404 [Google Scholar]
  56. Lee S-J, Wang S, Borschel W, Heyman S, Gyore J, Nichols CG. 56.  2013. Secondary anionic phospholipid binding site and gating mechanism in Kir2.1 inward rectifier channels. Nat. Commun. 4:2786 [Google Scholar]
  57. Rohács T, Lopes CMB, Jin T, Ramdya PP, Molnár Z, Logothetis DE. 57.  2003. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. PNAS 100:2745–50 [Google Scholar]
  58. Rohács T, Lopes C, Mirshahi T, Jin T, Zhang H, Logothetis DE. 58.  2002. Assaying phosphatidylinositol bisphosphate regulation of potassium channels. Methods Enzymol. 345:71–92 [Google Scholar]
  59. Jin T, Sui JL, Rosenhouse-Dantsker A, Chan KW, Jan LY, Logothetis DE. 59.  2008. Stoichiometry of Kir channels with phosphatidylinositol bisphosphate. Channels 2:119–33 [Google Scholar]
  60. Xie L-H, John SA, Ribalet B, Weiss JN. 60.  2008. Phosphatidylinositol-4,5-bisphosphate (PIP2) regulation of strong inward rectifier Kir2.1 channels: multilevel positive cooperativity. J. Physiol. 586:71833–48 [Google Scholar]
  61. Meng X-Y, Zhang H-X, Logothetis DE, Cui M. 61.  2012. The molecular mechanism by which PIP2 opens the intracellular G-loop gate of a Kir3.1 channel. Biophys. J. 102:92049–59 [Google Scholar]
  62. Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A. 62.  et al. 2005. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat. Neurosci. 8:3279–87 [Google Scholar]
  63. Ma D, Tang XD, Rogers TB, Welling PA. 63.  2007. An Andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway. J. Biol. Chem. 282:85781–89 [Google Scholar]
  64. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G. 64.  et al. 2002. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Investig. 110:3381–88 [Google Scholar]
  65. Bendahhou S, Donaldson MR, Plaster NM, Tristani-Firouzi M, Fu Y-H, Ptácek LJ. 65.  2003. Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil syndrome. J. Biol. Chem. 278:5151779–85 [Google Scholar]
  66. Proks P, Girard C, Haider S, Gloyn AL, Hattersley AT. 66.  et al. 2005. A gating mutation at the internal mouth of the Kir6.2 pore is associated with DEND syndrome. EMBO Rep. 6:5470–75 [Google Scholar]
  67. Leal-Pinto E, Gómez-Llorente Y, Sundaram S, Tang Q-Y, Ivanova-Nikolova T. 67.  et al. 2010. Gating of a G protein–sensitive mammalian Kir3.1–prokaryotic Kir channel chimera in planar lipid bilayers. J. Biol. Chem. 285:5139790–800 [Google Scholar]
  68. Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ, Gulbis JM. 68.  2010. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Cell 141:61018–29 [Google Scholar]
  69. Rosenhouse-Dantsker A, Logothetis DE, Levitan I. 69.  2011. Cholesterol sensitivity of Kir2.1 is controlled by a belt of residues around the cytosolic pore. Biophys. J. 100:2381–89 [Google Scholar]
  70. Liou H-H, Zhou S-S, Huang C-L. 70.  1999. Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate–dependent mechanism. PNAS 96:105820–25 [Google Scholar]
  71. Lopes CMB, Remon JI, Matavel A, Sui JL, Keselman I. 71.  et al. 2007. Protein kinase A modulates PLC-dependent regulation and PIP2-sensitivity of K+ channels. Channels 1:2124–34 [Google Scholar]
  72. Zeng W-Z, Li X-J, Hilgemann DW, Huang C-L. 72.  2003. Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate–dependent mechanism. J. Biol. Chem. 278:1916852–56 [Google Scholar]
  73. Keselman I, Fribourg M, Felsenfeld DP, Logothetis DE. 73.  2007. Mechanism of PLC-mediated Kir3 current inhibition. Channels 1:2113–23 [Google Scholar]
  74. Zhang M, Meng X-Y, Cui M, Pascal J, Logothetis D, Zhang J-F. 74.  2014. Modulation of the PIP2 sensitivity of the CaM-SK channel complex through selective phosphorylation. Nat. Chem. Biol. 109753–59 [Google Scholar]
  75. Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T. 75.  et al. 1998. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:6701503–7 [Google Scholar]
  76. Allen D, Fakler B, Maylie J, Adelman JP. 76.  2007. Organization and regulation of small conductance Ca2+-activated K+ channel multiprotein complexes. J. Neurosci. 27:92369–76 [Google Scholar]
  77. Bildl W, Strassmaier T, Thurm H, Andersen J, Eble S. 77.  et al. 2004. Protein kinase CK2 is coassembled with small conductance Ca2+-activated K+ channels and regulates channel gating. Neuron 43:6847–58 [Google Scholar]
  78. Maingret F, Coste B, Hao J, Giamarchi A, Allen D. 78.  et al. 2008. Neurotransmitter modulation of small-conductance Ca2+-activated K+ channels by regulation of Ca2+ gating. Neuron 59:3439–49 [Google Scholar]
  79. Zhang M, Pascal JM, Zhang J-F. 79.  2013. Unstructured to structured transition of an intrinsically disordered protein peptide in coupling Ca2+-sensing and SK channel activation. PNAS 110:124828–33 [Google Scholar]
  80. Tang Q-Y, Zhang Z, Meng X-Y, Cui M, Logothetis DE. 80.  2014. Structural determinants of PIP2 regulation of BK channel activity through the RCK1 Ca2+ coordination site. J. Biol. Chem. 289:2718860–72 [Google Scholar]
  81. Vaithianathan T, Bukiya A, Liu J, Liu P, Asuncion-Chin M. 81.  et al. 2008. Direct regulation of BK channels by phosphatidylinositol 4,5-bisphosphate as a novel signaling pathway. J. Gen. Physiol. 132:113–28 [Google Scholar]
  82. Huang C-L, Feng S, Hilgemann DW. 82.  1998. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391:6669803–6 [Google Scholar]
  83. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE. 83.  1999. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat. Cell Biol. 1:3183–88 [Google Scholar]
  84. Mahajan R, Ha J, Zhang M, Kawano T, Kozasa T, Logothetis DE. 84.  2013. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Sci. Signal. 6:288ra69 [Google Scholar]
  85. Rosenhouse-Dantsker A, Sui JL, Zhao Q, Rusinova R, Rodríguez-Menchaca AA. 85.  et al. 2008. A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P2. Nat. Chem. Biol. 4:10624–31 [Google Scholar]
  86. Yang Z, Xu H, Cui N, Qu Z, Chanchevalap S. 86.  et al. 2000. Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH. J. Gen. Physiol. 116:133–46 [Google Scholar]
  87. Rapedius M, Fowler PW, Shang L, Sansom MSP, Tucker SJ, Baukrowitz T. 87.  2007. H bonding at the helix-bundle crossing controls gating in Kir potassium channels. Neuron 55:4602–14 [Google Scholar]
  88. Delmas P, Brown DA. 88.  2005. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6:11850–62 [Google Scholar]
  89. Michailidis I, Zhang Y, Yang J. 89.  2007. The lipid connection—regulation of voltage-gated Ca2+ channels by phosphoinositides. Pflüg. Arch. 455:1147–55 [Google Scholar]
  90. Roberts-Crowley ML, Mitra-Ganguli T, Liu L, Rittenhouse AR. 90.  2009. Regulation of voltage-gated Ca2+ channels by lipids. Cell Calcium 45:6589–601 [Google Scholar]
  91. Rodríguez-Menchaca AA, Adney SK, Zhou L, Logothetis DE. 91.  2012. Dual regulation of voltage-sensitive ion channels by PIP2. Pharmacol. Ion Channels Channelopathies 3:170 [Google Scholar]
  92. Rodríguez-Menchaca AA, Adney SK, Tang Q-Y, Meng X-Y, Rosenhouse-Dantsker A. 92.  et al. 2012. PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker. PNAS 109:36E2399–408 [Google Scholar]
  93. Abderemane-Ali F, Es-Salah-Lamoureux Z, Delemotte L, Kasimova MA, Labro AJ. 93.  et al. 2012. Dual effect of phosphatidyl (4,5)-bisphosphate PIP2 on shaker K+ channels. J. Biol. Chem. 287:4336158–67 [Google Scholar]
  94. Kruse M, Hammond GRV, Hille B. 94.  2012. Regulation of voltage-gated potassium channels by Pi(4,5)P2. J. Gen. Physiol. 140:2189–205 [Google Scholar]
  95. Kruse M, Hille B. 95.  2013. The phosphoinositide sensitivity of the Kv channel family. Channels 7:6530–36 [Google Scholar]
  96. Krause Y, Krause S, Huang J, Liu C-H, Hardie RC, Weckström M. 96.  2008. Light-dependent modulation of Shab channels via phosphoinositide depletion in Drosophila photoreceptors. Neuron 59:4596–607 [Google Scholar]
  97. Yaradanakul A, Feng S, Shen C, Lariccia V, Lin M-J. 97.  et al. 2007. Dual control of cardiac Na+–Ca2+ exchange by PIP2: electrophysiological analysis of direct and indirect mechanisms. J. Physiol. 582:3991–1010 [Google Scholar]
  98. Shen C, Lin M-J, Yaradanakul A, Lariccia V, Hill JA, Hilgemann DW. 98.  2007. Dual control of cardiac Na+–Ca2+ exchange by PIP2: analysis of the surface membrane fraction by extracellular cysteine PEGylation. J. Physiol. 582:31011–26 [Google Scholar]
  99. Lariccia V, Fine M, Magi S, Lin M-J, Yaradanakul A. 99.  et al. 2011. Massive calcium-activated endocytosis without involvement of classical endocytic proteins. J. Gen. Physiol. 137:1111–32 [Google Scholar]
  100. Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A. 100.  et al. 2007. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. J. Gen. Physiol. 130:4399–413 [Google Scholar]
  101. Weixel KM, Edinger RS, Kester L, Guerriero CJ, Wang H. 101.  et al. 2007. Phosphatidylinositol 4-phosphate 5-kinase reduces cell surface expression of the epithelial sodium channel (ENaC) in cultured collecting duct cells. J. Biol. Chem. 282:5036534–42 [Google Scholar]
  102. Trebak M, Lemonnier L, DeHaven W, Wedel B, Bird G, Putney J. 102.  2009. Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflüg. Arch. 457:4757–69 [Google Scholar]
  103. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE. 103.  2004. Rapid vesicular translocation and insertion of TRP channels. Nat. Cell Biol. 6:8709–20 [Google Scholar]
  104. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T. 104.  2007. Dual regulation of TRPV1 by phosphoinositides. J. Neurosci. 27:267070–80 [Google Scholar]
  105. Zhang X, Huang J, McNaughton PA. 105.  2005. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 24:244211–23 [Google Scholar]
  106. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. 106.  2006. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J. Gen. Physiol. 128:5509–22 [Google Scholar]
  107. Michailidis IE, Helton TD, Petrou VI, Mirshahi T, Ehlers MD, Logothetis DE. 107.  2007. Phosphatidylinositol-4,5-bisphosphate regulates NMDA receptor activity through α-actinin. J. Neurosci. 27:205523–32 [Google Scholar]
  108. Mandal M, Yan Z. 108.  2009. Phosphatidylinositol (4,5)-bisphosphate regulation of N-methyl-d-aspartate receptor channels in cortical neurons. Mol. Pharmacol. 76:61349–59 [Google Scholar]
  109. Gong L-W, De Camilli P. 109.  2008. Regulation of postsynaptic AMPA responses by synaptojanin 1. PNAS 105:4517561–66 [Google Scholar]
  110. Arendt KL, Royo M, Fernandez-Monreal M, Knafo S, Petrok CN. 110.  et al. 2010. PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat. Neurosci. 13:136–44 [Google Scholar]
  111. Zeng W-Z, Liou H-H, Krishna UM, Falck JR, Huang C-L. 111.  2002. Structural determinants and specificities for ROMK1-phosphoinositide interaction. Am. J. Physiol. Ren. Physiol. 282:5F826–34 [Google Scholar]
  112. MacGregor GG, Dong K, Vanoye CG, Tang L, Giebisch G, Hebert SC. 112.  2002. Nucleotides and phospholipids compete for binding to the C terminus of KATP channels. PNAS 99:52726–31 [Google Scholar]
  113. Fan Z, Makielski JC. 113.  1997. Anionic phospholipids activate ATP-sensitive potassium channels. J. Biol. Chem. 272:95388–95 [Google Scholar]
  114. Dong K, Tang L, MacGregor GG, Hebert SC. 114.  2002. Localization of the ATP/phosphatidylinositol 4,5 diphosphate–binding site to a 39-amino acid region of the carboxyl terminus of the ATP-regulated K+ channel Kir1.1. J. Biol. Chem. 277:5149366–73 [Google Scholar]
  115. Leung Y-M, Zeng W-Z, Liou H-H, Solaro CR, Huang C-L. 115.  2000. Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms. J. Biol. Chem. 275:1410182–89 [Google Scholar]
  116. Schulze D, Krauter T, Fritzenschaft H, Soom M, Baukrowitz T. 116.  2003. Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels: a tale of an active and a silent PIP2 site in the N terminus. J. Biol. Chem. 278:1210500–505 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021113-170358
Loading
/content/journals/10.1146/annurev-physiol-021113-170358
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error