The neural control of appetite is important for understanding motivated behavior as well as the present rising prevalence of obesity. Over the past several years, new tools for cell type-specific neuron activity monitoring and perturbation have enabled increasingly detailed analyses of the mechanisms underlying appetite-control systems. Three major neural circuits strongly and acutely influence appetite but with notably different characteristics. Although these circuits interact, they have distinct properties and thus appear to contribute to separate but interlinked processes influencing appetite, thereby forming three pillars of appetite control. Here, we summarize some of the key characteristics of appetite circuits that are emerging from recent work and synthesize the findings into a provisional framework that can guide future studies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. 1.  2014. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311:806–14 [Google Scholar]
  2. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH. 2.  et al. 2015. Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206 [Google Scholar]
  3. Sternson SM, Atasoy D. 3.  2014. Agouti-related protein neuron circuits that regulate appetite. Neuroendocrinology 100:95–102 [Google Scholar]
  4. Stuber GD, Wise RA. 4.  2016. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci. 19:198–205 [Google Scholar]
  5. Swanson LW. 5.  2000. Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–64 [Google Scholar]
  6. Tinbergen N. 6.  1989. The Study of Instinct New York: Oxford Univ. Press [Google Scholar]
  7. Dickinson A, Balleine B. 7.  2002. The role of learning in the operation of motivational systems. Stevens’ Handbook of Experimental Psychology R Gallistel 497–533 New York: John Wiley & Sons [Google Scholar]
  8. Berridge KC. 8.  2004. Motivation concepts in behavioral neuroscience. Physiol. Behav. 81:179–209 [Google Scholar]
  9. Saper CB, Chou TC, Elmquist JK. 9.  2002. The need to feed: homeostatic and hedonic control of eating. Neuron 36:199–211 [Google Scholar]
  10. Gao Q, Horvath TL. 10.  2007. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci. 30:367–98 [Google Scholar]
  11. Myers MG, Cowley MA, Munzberg H. 11.  2008. Mechanisms of leptin action and leptin resistance. Annu. Rev. Physiol. 70:537–56 [Google Scholar]
  12. Sternson SM. 12.  2016. Hunger: the carrot and the stick. Mol. Metab. 5:1–2 [Google Scholar]
  13. Wiepkema PR. 13.  1971. Positive feedbacks at work during feeding. Behaviour 39:266–73 [Google Scholar]
  14. Cowley MA. 14.  2003. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37:649–61 [Google Scholar]
  15. van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D. 15.  2004. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat. Neurosci. 7:493–94 [Google Scholar]
  16. Yang Y, Atasoy D, Su HH, Sternson SM. 16.  2011. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146:992–1003 [Google Scholar]
  17. Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE. 17.  et al. 2014. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507:238–42 [Google Scholar]
  18. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S. 18.  et al. 2001. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–84 [Google Scholar]
  19. Atasoy D, Aponte Y, Su HH, Sternson SM. 19.  2008. A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28:7025–30 [Google Scholar]
  20. Clark JT, Kalra PS, Crowley WR, Kalra SP. 20.  1984. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115:427–29 [Google Scholar]
  21. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y. 21.  et al. 1997. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135–38 [Google Scholar]
  22. Aponte Y, Atasoy D, Sternson SM. 22.  2011. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14:351–55 [Google Scholar]
  23. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC. 23.  et al. 2011. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Investig. 121:1424–28 [Google Scholar]
  24. Betley JN, Xu S, Cao ZF, Gong R, Magnus CJ. 24.  et al. 2015. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521:180–85 [Google Scholar]
  25. Atasoy D, Betley JN, Su HH, Sternson SM. 25.  2012. Deconstruction of a neural circuit for hunger. Nature 488:172–77 [Google Scholar]
  26. Krashes MJ, Shah BP, Koda S, Lowell BB. 26.  2013. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 18:588–95 [Google Scholar]
  27. Sipols AJ, Brief DJ, Ginter KL, Saghafi S, Woods SC. 27.  1992. Neuropeptide Y paradoxically increases food intake yet causes conditioned flavor aversions. Physiol. Behav. 51:1257–60 [Google Scholar]
  28. Stunkard AJ, Rush J. 28.  1974. Dieting and depression reexamined. A critical review of reports of untoward responses during weight reduction for obesity. Ann. Intern. Med 81526–33 [Google Scholar]
  29. Wadden TA, Stunkard AJ, Smoller JW. 29.  1986. Dieting and depression: a methodological study. J. Consult. Clin. Psychol. 54:869–71 [Google Scholar]
  30. Keys A, Brozek J, Henshel A, Mickelsen O, Taylor HL. 30.  1950. The Biology of Human Starvation Minneapolis: Univ. Minn. Press [Google Scholar]
  31. Chen Y, Lin YC, Kuo TW, Knight ZA. 31.  2015. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160:829–41 [Google Scholar]
  32. Mandelblat-Cerf Y, Ramesh RN, Burgess CR, Patella P, Yang Z. 32.  et al. 2015. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. eLife 4:e07122 [Google Scholar]
  33. Xu S, Eiselt AK, Magnus C, Sternson S. 33.  2014. Deep brain Ca2+ imaging of AGRP and POMC neuronal dynamics in the arcuate nucleus of freely moving mice Presented at Annu. Meet. Soc. Neurosci., Washington, DC [Google Scholar]
  34. Seeley RJ, Payne CJ, Woods SC. 34.  1995. Neuropeptide Y fails to increase intraoral intake in rats. Am. J. Physiol. 268:R423–27 [Google Scholar]
  35. Luquet S, Perez FA, Hnasko TS, Palmiter RD. 35.  2005. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310:683–85 [Google Scholar]
  36. Wu Q, Boyle M, Palmiter R. 36.  2009. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137:1225–34 [Google Scholar]
  37. Denis RG, Joly-Amado A, Webber E, Langlet F, Schaeffer M. 37.  et al. 2015. Palatability can drive feeding independent of AgRP neurons. Cell Metab 22:646–57 [Google Scholar]
  38. Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. 38.  1998. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. PNAS 95:15043–48 [Google Scholar]
  39. Betley JN, Cao ZFH, Ritola KD, Sternson SM. 39.  2013. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155:1337–50 [Google Scholar]
  40. Kelly J, Rothstein J, Grossman SP. 40.  1979. GABA and hypothalamic feeding systems. I. Topographic analysis of the effects of microinjections of muscimol. Physiol. Behav. 23:1123–34 [Google Scholar]
  41. Stachniak TJ, Ghosh A, Sternson SM. 41.  2014. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82:797–808 [Google Scholar]
  42. Garfield AS, Li C, Madara JC, Shah BP, Webber E. 42.  et al. 2015. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 18:863–71 [Google Scholar]
  43. Brown CM, Coscina DV, Fletcher PJ. 43.  2000. The rewarding properties of neuropeptide Y in perifornical hypothalamus vs. nucleus accumbens. Peptides 21:1279–87 [Google Scholar]
  44. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. 44.  1997. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–68 [Google Scholar]
  45. Zhan C, Zhou J, Feng Q, Zhang JE, Lin S. 45.  et al. 2013. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33:3624–32 [Google Scholar]
  46. Davis JF, Choi DL, Shurdak JD, Krause EG, Fitzgerald MF. 46.  et al. 2011. Central melanocortins modulate mesocorticolimbic activity and food seeking behavior in the rat. Physiol. Behav. 102:491–95 [Google Scholar]
  47. Chen Y, Lin YC, Zimmerman CA, Essner RA, Knight ZA. 47.  2016. Hunger neurons drive feeding through a sustained, positive reinforcement signal. Elife 5:e18640 [Google Scholar]
  48. Delgado JM, Anand BK. 48.  1953. Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am. J. Physiol. 172:162–68 [Google Scholar]
  49. Hoebel BG, Teitelbaum P. 49.  1962. Hypothalamic control of feeding and self-stimulation. Science 135:375–77 [Google Scholar]
  50. Anand BK, Brobeck JR. 50.  1951. Localization of a “feeding center” in the hypothalamus of the rat. Proc. Soc. Exp. Biol. Med. 77:323–24 [Google Scholar]
  51. Landgren S, Olsson . 51.  1980. The effect of electrical stimulation in the hypothalamus on the monosynaptic jaw closing and the disynaptic jaw opening reflexes in the cat. Exp. Brain Res. 39:389–400 [Google Scholar]
  52. Moran TH, Schwartz GJ, Blass EM. 52.  1983. Organized behavioral responses to lateral hypothalamic electrical stimulation in infant rats. J. Neurosci. 3:10–19 [Google Scholar]
  53. Weiner S, Shaikh MB, Siegel A. 53.  1993. Electromyographic activity in the masseter muscle resulting from stimulation of hypothalamic behavioral sites in the cat. J. Orofac. Pain 7:370–77 [Google Scholar]
  54. Mogenson GJ, Stevenson JA. 54.  1967. Drinking induced by electrical stimulation of the lateral hypothalamus. Exp. Neurol. 17:119–27 [Google Scholar]
  55. Greer MA. 55.  1955. Suggestive evidence of a primary drinking center in hypothalamus of the rat. Proc. Soc. Exp. Biol. Med. 89:59–62 [Google Scholar]
  56. Woodworth CH. 56.  1971. Attack elicited in rats by electrical stimulation of the lateral hypothalamus. Physiol. Behav. 6:345–53 [Google Scholar]
  57. Miller NE. 57.  1957. Experiments on motivation. Studies combining psychological, physiological, and pharmacological techniques. Science 126:1271–78 [Google Scholar]
  58. Valenstein ES, Cox VC, Kakolewski JW. 58.  1968. Modification of motivated behavior elicited by electrical stimulation of the hypothalamus. Science 159:1119–21 [Google Scholar]
  59. Vaughan E, Fisher AE. 59.  1962. Male sexual behavior induced by intracranial electrical stimulation. Science 137:758–60 [Google Scholar]
  60. Wise RA. 60.  1969. Plasticity of hypothalamic motivational systems. Science 165:929–30 [Google Scholar]
  61. Wise RA. 61.  1974. Lateral hypothalamic electrical stimulation: Does it make animals ‘hungry’?. Brain Res 67:187–209 [Google Scholar]
  62. Coons EE, Levak M, Miller NE. 62.  1965. Lateral hypothalamus: learning of food-seeking response motivated by electrical stimulation. Science 150:1320–21 [Google Scholar]
  63. Wise RA, Devor MG, Milgram NW, Hoebel BG. 63.  1970. Physiological control of hypothalamically elicited feeding and drinking. J. Comp. Physiol. Psychol. 73:226–32 [Google Scholar]
  64. Margules DL, Olds J. 64.  1962. Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rats. Science 135:374–75 [Google Scholar]
  65. Kenny PJ. 65.  2011. Reward mechanisms in obesity: new insights and future directions. Neuron 69:664–79 [Google Scholar]
  66. Rolls ET. 66.  2007. Sensory processing in the brain related to the control of food intake. Proc. Nutr. Soc. 66:96–112 [Google Scholar]
  67. Jennings JH, Rizzi G, Stamatakis AM, Ung RL, Stuber GD. 67.  2013. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341:1517–21 [Google Scholar]
  68. Jennings JH, Ung RL, Resendez SL, Stamatakis AM, Taylor JG. 68.  et al. 2015. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160:516–27 [Google Scholar]
  69. Ono T, Nishino H, Sasaki K, Fukuda M, Muramoto KI. 69.  1981. Monkey lateral hypothalamic neuron response to sight of food, and during bar press and ingestion. Neurosci. Lett. 21:99–104 [Google Scholar]
  70. Rolls ET, Sanghera MK, Roper-Hall A. 70.  1979. The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res 164:121–35 [Google Scholar]
  71. Burton MJ, Rolls ET, Mora F. 71.  1976. Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Exp. Neurol. 51:668–77 [Google Scholar]
  72. de Araujo IE, Gutierrez R, Oliveira-Maia AJ, Pereira A Jr., Nicolelis MA, Simon SA. 72.  2006. Neural ensemble coding of satiety states. Neuron 51:483–94 [Google Scholar]
  73. Ferssiwi A, Cardo B, Velley L. 73.  1987. Gustatory preference-aversion thresholds are increased by ibotenic acid lesion of the lateral hypothalamus in the rat. Brain Res 437:142–50 [Google Scholar]
  74. Roth SR, Schwartz M, Teitelbaum P. 74.  1973. Failure of recovered lateral hypothalamic rats to learn specific food aversions. J. Comp. Physiol. Psychol. 83:184–97 [Google Scholar]
  75. Touzani K, Sclafani A. 75.  2001. Conditioned flavor preference and aversion: role of the lateral hypothalamus. Behav. Neurosci. 115:84–93 [Google Scholar]
  76. Touzani K, Sclafani A. 76.  2002. Lateral hypothalamic lesions impair flavour-nutrient and flavour-toxin trace learning in rats. Eur. J. Neurosci. 16:2425–33 [Google Scholar]
  77. Li JX, Yoshida T, Monk KJ, Katz DB. 77.  2013. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics. J. Neurosci. 33:9462–73 [Google Scholar]
  78. Norgren R. 78.  1970. Gustatory responses in the hypothalamus. Brain Res 21:63–77 [Google Scholar]
  79. Schwartzbaum JS. 79.  1988. Electrophysiology of taste, feeding and reward in lateral hypothalamus of rabbit. Physiol. Behav. 44:507–26 [Google Scholar]
  80. Norgren R. 80.  1974. Gustatory afferents to ventral forebrain. Brain Res 81:285–95 [Google Scholar]
  81. Tokita K, Armstrong WE, St John SJ, Boughter JD. 81.  2014. Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli. Front. Neural Circuits 8:86 [Google Scholar]
  82. Hamburg MD. 82.  1971. Hypothalamic unit activity and eating behavior. Am. J. Physiol. 220:980–85 [Google Scholar]
  83. Nieh EH, Matthews GA, Allsop SA, Presbrey KN, Leppla CA. 83.  et al. 2015. Decoding neural circuits that control compulsive sucrose seeking. Cell 160:528–41 [Google Scholar]
  84. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA. 84.  et al. 1996. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–47 [Google Scholar]
  85. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM. 85.  et al. 1998. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–85 [Google Scholar]
  86. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE. 86.  et al. 1998. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. PNAS 95:322–27 [Google Scholar]
  87. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. 87.  2005. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–98 [Google Scholar]
  88. González JA, Jensen LT, Iordanidou P, Storm M, Fugger L, Burdakov D. 88.  2016. Inhibitory interplay between orexin neurons and eating. Curr. Biol 26:2486–91 [Google Scholar]
  89. Lee MG, Hassani OK, Jones BE. 89.  2005. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 25:6716–20 [Google Scholar]
  90. Hassani OK, Lee MG, Jones BE. 90.  2009. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. PNAS 106:2418–22 [Google Scholar]
  91. González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D. 91.  2016. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat. Commun. 7:11395 [Google Scholar]
  92. Domingos AI, Sordillo A, Dietrich MO, Liu ZW, Tellez LA. 92.  et al. 2013. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. eLife 2:e01462 [Google Scholar]
  93. Stratford TR, Kelley AE. 93.  1997. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J. Neurosci. 17:4434–40 [Google Scholar]
  94. Stratford TR, Kelley AE. 94.  1999. Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J. Neurosci. 19:11040–48 [Google Scholar]
  95. Kelley AE, Baldo BA, Pratt WE. 95.  2005. A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J. Comp. Neurol. 493:72–85 [Google Scholar]
  96. Roitman MF, Wheeler RA, Carelli RM. 96.  2005. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron 45:587–97 [Google Scholar]
  97. Mora F, Mogenson GJ, Rolls ET. 97.  1977. Activity of neurons in the region of the substantia nigra during feeding in the monkey. Brain Res 133:267–76 [Google Scholar]
  98. Barbano MF, Cador M. 98.  2007. Opiods for hedonic experience and dopamine to get ready for it. Psychopharmacology 191:497–506 [Google Scholar]
  99. Berridge KC. 99.  2009. ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol. Behav. 97:537–50 [Google Scholar]
  100. Salamone JD, Correa M, Farrar AM, Nunes EJ, Pardo M. 100.  2009. Dopamine, behavioral economics, and effort. Front. Behav. Neurosci. 3:13 [Google Scholar]
  101. O'Connor EC, Kremer Y, Lefort S, Harada M, Pascoli V. 101.  et al. 2015. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88:553–64 [Google Scholar]
  102. Smith KS, Berridge KC. 102.  2007. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci. 27:1594–605 [Google Scholar]
  103. Stratford TR, Wirtshafter D. 103.  2013. Lateral hypothalamic involvement in feeding elicited from the ventral pallidum. Eur. J. Neurosci. 37:648–53 [Google Scholar]
  104. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A. 104.  et al. 2009. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–84 [Google Scholar]
  105. Phillips AG, Nikaido RS. 105.  1975. Disruption of brain stimulation-induced feeding by dopamine receptor blockade. Nature 258:750–51 [Google Scholar]
  106. Schultz W, Dayan P, Montague PR. 106.  1997. A neural substrate of prediction and reward. Science 275:1593–9 [Google Scholar]
  107. Wise R. 107.  2004. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5:483–94 [Google Scholar]
  108. van der Plasse G, van Zessen R, Luijendijk MC, Erkan H, Stuber GD. 108.  et al. 2015. Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin. Int. J. Obes 39:1742–49 [Google Scholar]
  109. Rossi MA, Fan D, Barter JW, Yin HH. 109.  2013. Bidirectional modulation of substantia nigra activity by motivational state. PLOS ONE 8:e71598 [Google Scholar]
  110. Hikosaka O, Wurtz RH. 110.  1983. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49:1230–53 [Google Scholar]
  111. Rossi MA, Li HE, Lu D, Kim IH, Bartholomew RA. 111.  et al. 2016. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat. Neurosci. 19:742–48 [Google Scholar]
  112. Travers JB, Dinardo LA, Karimnamazi H. 112.  1997. Motor and premotor mechanisms of licking. Neurosci. Biobehav. Rev. 21:631–47 [Google Scholar]
  113. Mendelson J, Freed WJ. 113.  1973. Do rats terminate hypothalamic stimulation only in order to turn it on again?. Behav. Biol. 8:619–28 [Google Scholar]
  114. Bower GH, Miller NE. 114.  1958. Rewarding and punishing effects from stimulating the same place in the rat's brain. J. Comp. Physiol. Psychol. 51:669–74 [Google Scholar]
  115. Berridge KC, Valenstein ES. 115.  1991. What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus?. Behav. Neurosci. 105:3–14 [Google Scholar]
  116. Matsumoto M, Hikosaka O. 116.  2007. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447:1111–15 [Google Scholar]
  117. Stamatakis AM, Stuber GD. 117.  2012. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat. Neurosci. 15:1105–7 [Google Scholar]
  118. Poller WC, Madai VI, Bernard R, Laube G, Veh RW. 118.  2013. A glutamatergic projection from the lateral hypothalamus targets VTA-projecting neurons in the lateral habenula of the rat. Brain Res 1507:45–60 [Google Scholar]
  119. Stamatakis AM, Van Swieten M, Basiri ML, Blair GA, Kantak P, Stuber GD. 119.  2016. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci. 36:302–11 [Google Scholar]
  120. Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF. 120.  et al. 2009. Leptin targets in the mouse brain. J. Comp. Neurol. 514:518–32 [Google Scholar]
  121. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. 121.  2006. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494:528–48 [Google Scholar]
  122. Fulton S, Woodside B, Shizgal P. 122.  2000. Modulation of brain reward circuitry by leptin. Science 287:125–8 [Google Scholar]
  123. Hommel JD. 123.  2006. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–10 [Google Scholar]
  124. Domingos AI, Vaynshteyn J, Voss HU, Ren X, Gradinaru V. 124.  et al. 2011. Leptin regulates the reward value of nutrient. Nat. Neurosci. 14:1562–68 [Google Scholar]
  125. Figlewicz DP, Higgins MS, Ng-Evans SB, Havel PJ. 125.  2001. Leptin reverses sucrose-conditioned place preference in food-restricted rats. Physiol. Behav. 73:229–34 [Google Scholar]
  126. Petrovich GD, Setlow B, Holland PC, Gallagher M. 126.  2002. Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. J. Neurosci. 22:8748–53 [Google Scholar]
  127. Blundell JE, Herberg LJ. 127.  1968. Relative effects of nutritional deficit and deprivation period on rate of electrical self-stimulation of lateral hypothalamus. Nature 219:627–28 [Google Scholar]
  128. de Ruiter L, Wiepkema PR, Reddingius J. 128.  1969. Ethological and neurological aspects of the regulation of food intake. Ann. N.Y. Acad. Sci. 157:1204–16 [Google Scholar]
  129. Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA. 129.  1985. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Investig. 75:1144–52 [Google Scholar]
  130. Gibbs J, Young RC, Smith GP. 130.  1973. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84:488–95 [Google Scholar]
  131. Campbell JE, Drucker DJ. 131.  2013. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17:819–37 [Google Scholar]
  132. Halford JC, Wanninayake SC, Blundell JE. 132.  1998. Behavioral satiety sequence (BSS) for the diagnosis of drug action on food intake. Pharmacol. Biochem. Behav. 61:159–68 [Google Scholar]
  133. Moran TH. 133.  2004. Gut peptides in the control of food intake: 30 years of ideas. Physiol. Behav. 82:175–80 [Google Scholar]
  134. Reilly S. 134.  1999. The parabrachial nucleus and conditioned taste aversion. Brain Res. Bull. 48:239–54 [Google Scholar]
  135. Alhadeff AL, Hayes MR, Grill HJ. 135.  2014. Leptin receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307:R1338–44 [Google Scholar]
  136. Alhadeff AL, Baird JP, Swick JC, Hayes MR, Grill HJ. 136.  2014. Glucagon-like peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed. Neuropsychopharmacology 39:2233–43 [Google Scholar]
  137. Baird JP, Travers JB, Travers SP. 137.  2001. Parametric analysis of gastric distension responses in the parabrachial nucleus. Am. J. Physiol. 281:R1568–80 [Google Scholar]
  138. Sabbatini M, Molinari C, Grossini E, Mary DA, Vacca G, Cannas M. 138.  2004. The pattern of c-Fos immunoreactivity in the hindbrain of the rat following stomach distension. Exp. Brain Res. 157:315–23 [Google Scholar]
  139. Carter ME, Soden ME, Zweifel LS, Palmiter RD. 139.  2013. Genetic identification of a neural circuit that suppresses appetite. Nature 503:111–14 [Google Scholar]
  140. Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD. 140.  2015. Elucidating an affective pain circuit that creates a threat memory. Cell 162:363–74 [Google Scholar]
  141. Carter ME, Han S, Palmiter RD. 141.  2015. Parabrachial calcitonin gene-related peptide neurons mediate conditioned taste aversion. J. Neurosci. 35:4582–86 [Google Scholar]
  142. Campos CA, Bowen AJ, Schwartz MW, Palmiter RD. 142.  2016. Parabrachial CGRP neurons control meal termination. Cell Metab 23:811–20 [Google Scholar]
  143. Wu Q, Clark MS, Palmiter RD. 143.  2012. Deciphering a neuronal circuit that mediates appetite. Nature 483:594–97 [Google Scholar]
  144. Travagli RA, Hermann GE, Browning KN, Rogers RC. 144.  2006. Brainstem circuits regulating gastric function. Annu. Rev. Physiol. 68:279–305 [Google Scholar]
  145. LeDoux J. 145.  2012. Rethinking the emotional brain. Neuron 73:653–76 [Google Scholar]
  146. Robinson MJ, Warlow SM, Berridge KC. 146.  2014. Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another. J. Neurosci. 34:16567–80 [Google Scholar]
  147. Balleine BW, Killcross S. 147.  2006. Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci 29:272–79 [Google Scholar]
  148. Cai H, Haubensak W, Anthony TE, Anderson DJ. 148.  2014. Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 17:1240–48 [Google Scholar]
  149. Craig W. 149.  1918. Appetites and aversions as constituents of instincts. Biol. Bull. 34:91–107 [Google Scholar]
  150. Dietrich MO, Bober J, Ferreira JG, Tellez LA, Mineur YS. 150.  et al. 2012. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nat. Neurosci. 15:1108–10 [Google Scholar]
  151. Wu Z, Kim ER, Sun H, Xu Y, Mangieri LR. 151.  et al. 2015. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding. J. Neurosci. 35:3312–18 [Google Scholar]
  152. Li CS, Cho YK, Smith DV. 152.  2005. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J. Neurophysiol. 93:1183–96 [Google Scholar]
  153. Shah BP, Vong L, Olson DP, Koda S, Krashes MJ. 153.  et al. 2014. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. PNAS 111:13193–98 [Google Scholar]
  154. Barbano MF, Wang HL, Morales M, Wise RA. 154.  2016. Feeding and reward are differentially induced by activating GABAergic lateral hypothalamic projections to VTA. J. Neurosci. 36:2975–85 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error