Perception of the environment requires differentiating between external sensory inputs and those that are self-generated. Some of the clearest insights into the neural mechanisms underlying this process have come from studies of the electrosensory systems of fish. Neurons at the first stage of electrosensory processing generate negative images of the electrosensory consequences of the animal's own behavior. By canceling out the effects of predictable, self-generated inputs, negative images allow for the selective encoding of unpredictable, externally generated stimuli. Combined experimental and theoretical studies of electrosensory systems have led to detailed accounts of how negative images are formed at the level of synaptic plasticity rules, cells, and circuits. Here, I review these accounts and discuss their implications for understanding how predictions of the sensory consequences of behavior may be generated in other sensory structures and the cerebellum.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Sperry RW. 1.  1950. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43:482–89 [Google Scholar]
  2. von Holst E, Mittelstaedt H. 2.  1950. Das Reafferenz Princip. [The principle of reafference]. Naturwissenschaften 37:464–76 [Google Scholar]
  3. Grüsser OJ. 3.  1986. Interaction of efferent and afferent signals in visual perception: a history of ideas and experimental paradigms. Acta Psychol 63:3–21 [Google Scholar]
  4. Wolpert DM, Miall RC. 4.  1996. Forward models for physiological motor control. Neural Netw 9:1265–79 [Google Scholar]
  5. Wolpert DM, Ghahramani Z. 5.  2000. Computational principles of movement neuroscience. Nat. Neurosci. 3:1212–17 [Google Scholar]
  6. Haswell CC, Izawa J, Dowell R, Mostofsky H, Shadmehr R. 6.  2009. Representation of internal models of action in the autistic brain. Nat. Neurosci. 12:970–72 [Google Scholar]
  7. Mathalon DH, Ford JM. 7.  2008. Corollary discharge dysfunction in schizophrenia: evidence for an elemental deficit. Clin. EEG Neurosci. 39:82–86 [Google Scholar]
  8. Ito M. 8.  2008. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9:304–13 [Google Scholar]
  9. Crapse TB, Sommer MA. 9.  2008. Corollary discharge across the animal kingdom. Nat. Rev. Neurosci. 9:587–600 [Google Scholar]
  10. Cullen KE. 10.  2004. Sensory signals during active versus passive movement. Curr. Opin. Neurobiol. 14:698–706 [Google Scholar]
  11. Poulet JF, Hedwig B. 11.  2007. New insights into corollary discharges mediated by identified neural pathways. Trends Neurosci 30:14–21 [Google Scholar]
  12. Bullock TH. 12.  1982. Electroreception. Annu. Rev. Neurosci. 5:121–70 [Google Scholar]
  13. Heiligenberg W, Bastian J. 13.  1984. The electric sense of weakly electric fish. Annu. Rev. Physiol. 46:561–83 [Google Scholar]
  14. Montgomery JC, Bodznick D. 14.  1999. Signals and noise in the elasmobranch electrosensory system. J. Exp. Biol. 202:1349–55 [Google Scholar]
  15. Bell CC, Russell CJ. 15.  1978. Effect of electric organ discharge on ampullary receptors in a mormyrid. Brain Res 145:85–96 [Google Scholar]
  16. Bastian J. 16.  1995. Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs. J. Comp. Physiol. 176:63–78 [Google Scholar]
  17. Chen L, House JL, Krahe R, Nelson ME. 17.  2005. Modeling signal and background components of electrosensory scenes. J. Comp. Physiol. A 191:331–45 [Google Scholar]
  18. Fotowat H, Harrison RR, Krahe R. 18.  2013. Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus. J. Neurosci. 33:13758–72 [Google Scholar]
  19. Sawtell NB, Williams A. 19.  2008. Transformations of electrosensory encoding associated with an adaptive filter. J. Neurosci. 28:1598–612 [Google Scholar]
  20. Bell CC. 20.  2002. Evolution of cerebellum-like structures. Brain Behav. Evol. 59:312–26 [Google Scholar]
  21. Bell CC, Han V, Sawtell NB. 21.  2008. Cerebellum-like structures and their implications for cerebellar function. Annu. Rev. Neurosci. 31:1–24 [Google Scholar]
  22. Oertel D, Young ED. 22.  2004. What's a cerebellar circuit doing in the auditory system?. Trends Neurosci 27:104–10 [Google Scholar]
  23. Borges-Merjane C, Trussell LO. 23.  2015. ON and OFF unipolar brush cells transform multisensory inputs to the auditory system. Neuron 85:1029–42 [Google Scholar]
  24. Campbell HR, Meek J, Zhang J, Bell CC. 24.  2007. Anatomy of the posterior caudal lobe of the cerebellum and the eminentia granularis posterior in a mormyrid fish. J. Comp. Neurol. 502:714–35 [Google Scholar]
  25. Kennedy A, Wayne G, Kaifosh P, Alvina K, Abbott LF, Sawtell NB. 25.  2014. A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat. Neurosci. 17:416–22 [Google Scholar]
  26. Meek J, Yang JY, Han VZ, Bell CC. 26.  2008. Morphological analysis of the mormyrid cerebellum using immunohistochemistry, with emphasis on the unusual neuronal organization of the valvula. J. Comp. Neurol. 510:396–421 [Google Scholar]
  27. Yaeger DB, Trussell LO. 27.  2015. Single granule cells excite Golgi cells and evoke feedback inhibition in the cochlear nucleus. J. Neurosci. 35:4741–50 [Google Scholar]
  28. Bastian J. 28.  1996. Plasticity in an electrosensory system. I. General features of dynamic sensory filter. J. Neurophysiol. 76:2483–96 [Google Scholar]
  29. Bell CC. 29.  1981. An efference copy modified by reafferent input. Science 214:450–53 [Google Scholar]
  30. Bell CC, Caputi A, Grant K. 30.  1997. Physiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe. J. Neurosci. 17:6409–22 [Google Scholar]
  31. Bodznick D, Montgomery JC, Carey M. 31.  1999. Adaptive mechanisms in the elasmobranch hindbrain. J. Exp. Biol. 202:1357–64 [Google Scholar]
  32. Dean P, Porrill J, Stone JV. 32.  2002. Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc. Biol. Sci. 269:1895–904 [Google Scholar]
  33. Dean P, Porrill J, Ekerot CF, Jorntell H. 33.  2010. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11:30–43 [Google Scholar]
  34. Fujita M. 34.  1982. Adaptive filter model of the cerebellum. Biol. Cybern. 45:195–206 [Google Scholar]
  35. Ebner TJ, Pasalar S. 35.  2008. Cerebellum predicts the future motor state. Cerebellum 7:583–88 [Google Scholar]
  36. Wolpert DM, Miall C, Kawato M. 36.  1998. Internal models in the cerebellum. Trends Cogn. Sci. 2:338–47 [Google Scholar]
  37. Bastian J. 37.  1996. Plasticity in an electrosensory system. II. Postsynaptic events associated with a dynamic sensory filter. J. Neurophysiol. 76:2497–507 [Google Scholar]
  38. Bell CC, Caputi A, Grant K, Serrier J. 38.  1993. Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish. PNAS 90:4650–54 [Google Scholar]
  39. Bell CC, Han VZ, Sugawara S, Grant K. 39.  1997. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–81 [Google Scholar]
  40. Harvey-Girard E, Lewis J, Maler L. 40.  2010. Burst-induced anti-Hebbian depression acts through short-term synaptic dynamics to cancel redundant sensory signals. J. Neurosci. 30:6152–69 [Google Scholar]
  41. Zhang Z, Bodznick D. 41.  2010. The importance of N-methyl-D-aspartate (NMDA) receptors in subtraction of electrosensory reafference in the dorsal nucleus of skates. J. Exp. Biol. 213:2700–9 [Google Scholar]
  42. von der Emde G, Bleckmann H. 42.  1998. Finding food: senses involved in foraging for insect larvae in the electric fish Gnathonemus petersii. J. Exp. Biol. 201:969–80 [Google Scholar]
  43. Bell CC. 43.  1982. Properties of a modifiable efference copy in electric fish. J. Neurophysiol. 47:1043–56 [Google Scholar]
  44. Bell CC. 44.  1986. Duration of plastic change in a modifiable efference copy. Brain Res 369:29–36 [Google Scholar]
  45. Han VZ, Grant G, Bell CC. 45.  2000. Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27:611–22 [Google Scholar]
  46. Bell CC, Finger TE, Russell CJ. 46.  1981. Central connections of the posterior lateral line lobe in mormyrid fish. Exp. Brain Res. 42:9–22 [Google Scholar]
  47. Grant K, Meek J, Sugawara Y, Veron M, Denizot JP. 47.  et al. 1996. Projection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunocytochemistry and synaptology. J. Comp. Neurol. 375:18–42 [Google Scholar]
  48. Meek J, Grant K, Sugawara S, Hafmans TGM, Veron M, Denizot JP. 48.  1996. Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunocytochemistry, and synaptology. J. Comp. Neurol. 375:43–65 [Google Scholar]
  49. Finger TE. 49.  1978. Efferent neurons of the teleost cerebellum. Brain Res 153:608–14 [Google Scholar]
  50. Meek J. 50.  1992. Comparative aspects of cerebellar organization. Eur. J. Morphol. 30:37–51 [Google Scholar]
  51. Clarke SE, Longtin A, Maler L. 51.  2015. Contrast coding in the electrosensory system: parallels with visual computation. Nat. Rev. Neurosci. 16:733–44 [Google Scholar]
  52. Grant K, Sugawara S, Gomez L, Han VZ, Bell CC. 52.  1998. The mormyrid electrosensory lobe in vitro: physiology and pharmacology of cells and circuits. J. Neurosci. 18:6009–25 [Google Scholar]
  53. Sawtell NB, Williams A, Bell CC. 53.  2007. Central control of dendritic spikes shapes the responses of Purkinje-like cells through spike timing-dependent synaptic plasticity. J. Neurosci. 27:1552–65 [Google Scholar]
  54. Markram H, Gerstner W, Sjöström PJ. 54.  2011. A history of spike-timing-dependent plasticity. Front. Synaptic. Neurosci. 3:4 [Google Scholar]
  55. Roberts PD, Bell CC. 55.  2000. Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. J. Comput. Neurosci. 9:67–83 [Google Scholar]
  56. Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD. 56.  2000. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20:5516–25 [Google Scholar]
  57. Bell CC, Libouban S, Szabo T. 57.  1983. Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J. Comp. Neurol. 216:327–38 [Google Scholar]
  58. Bell CC, Grant K, Serrier J. 58.  1992. Corollary discharge effects and sensory processing in the mormyrid electrosensory lobe: I. Field potentials and cellular activity in associated structures. J. Neurophysiol. 68:843–58 [Google Scholar]
  59. Mugnaini E, Sekerkova G, Martina M. 59.  2011. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res. Rev. 66:220–45 [Google Scholar]
  60. van Dorp S, De Zeeuw CI. 60.  2014. Variable timing of synaptic transmission in cerebellar unipolar brush cells. PNAS 111:5403–8 [Google Scholar]
  61. von der Emde G, Amey M, Engelmann J, Fetz S, Folde C. 61.  et al. 2008. Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. J. Physiol. Paris 102:279–90 [Google Scholar]
  62. Amey-Özel M, von der Emde G, Engelmann J, Grant K. 62.  2015. More a finger than a nose: the trigeminal motor and sensory innervation of the Schnauzenorgan in the elephant-nose fish Gnathonemus petersii. J. Comp. Neurol. 523:769–89 [Google Scholar]
  63. Szabo T, Libouban S, Denizot JP. 63.  1990. A well defined spinocerebellar system in the weakly electric teleost fish Gnathonemus petersii. A tracing and immuno-histochemical study. Arch. Ital. Biol. 128:229–47 [Google Scholar]
  64. Sawtell NB. 64.  2010. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron 66:573–84 [Google Scholar]
  65. Requarth T, Sawtell NB. 65.  2014. Plastic corollary discharge predicts sensory consequences of movements in a cerebellum-like circuit. Neuron 82:896–907 [Google Scholar]
  66. Requarth T, Kaifosh P, Sawtell NB. 66.  2014. A role for mixed corollary discharge and proprioceptive signals in predicting the sensory consequences of movements. J. Neurosci. 34:16103–16 [Google Scholar]
  67. Albus JS. 67.  1971. A theory of cerebellar function. Math. Biosci. 10:25–61 [Google Scholar]
  68. Marr D. 68.  1969. A theory of cerebellar cortex. J. Physiol. Lond. 202:437–71 [Google Scholar]
  69. Mumford D. 69.  1995. Neuronal architectures for pattern theoretic problems. Large-Scale Neuronal Theories of the Brain C Koch, JL Davis 125–52 Cambridge, MA: MIT Press [Google Scholar]
  70. Rao RPN, Ballard DH. 70.  1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:79–87 [Google Scholar]
  71. Bastian J. 71.  1986. Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe. J. Neurosci. 6:553–62 [Google Scholar]
  72. Bastian J, Bratton B. 72.  1990. Descending control of electroreception. I. Properties of nucleus praeeminentialis neurons projecting indirectly to the electrosensory lateral line lobe. J. Neurosci. 10:1226–40 [Google Scholar]
  73. von der Emde G, Bell C. 73.  1996. Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses. J. Neurophysiol. 76:1581–96 [Google Scholar]
  74. Bastian J, Chacron MJ, Maler L. 74.  2004. Plastic and nonplastic pyramidal cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron 41:767–79 [Google Scholar]
  75. Hosoya T, Baccus SA, Meister M. 75.  2005. Dynamic predictive coding by the retina. Nature 436:71–77 [Google Scholar]
  76. Post N, von der Emde G. 76.  1999. The ‘novelty response’ in an electric fish: response properties and habituation. Physiol. Behav. 68:115–28 [Google Scholar]
  77. Berrebi AS, Morgan JI, Mugnaini E. 77.  1990. The Purkinje cell class may extend beyond the cerebellum. J. Neurocytol. 19:643–54 [Google Scholar]
  78. Carey M, Lisberger S. 78.  2002. Embarrassed, but not depressed: eye opening lessons for cerebellar learning. Neuron 35:223–26 [Google Scholar]
  79. Raymond JL, Lisberger SG, Mauk MD. 79.  1996. The cerebellum: a neuronal learning machine. Science 272:1126–31 [Google Scholar]
  80. Kano M, Rexhausen U, Dreessen J, Konnerth A. 80.  1992. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356:601–4 [Google Scholar]
  81. Jörntell H, Ekerot CF. 81.  2003. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J. Neurosci. 23:9620–31 [Google Scholar]
  82. Mittmann W, Hausser M. 82.  2007. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J. Neurosci. 27:5559–70 [Google Scholar]
  83. Roberts PD. 83.  2000. Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish. J. Neurophysiol. 84:2035–47 [Google Scholar]
  84. Márquez BT, Krahe R, Chacron MJ. 84.  2013. Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish. J. Exp. Biol. 216:2442–50 [Google Scholar]
  85. Meek J, Joosten HWJ. 85.  1989. Distribution of serotonin in the brain of the mormyrid teleost Gnathonemus petersii. . J. Comp. Neurol. 281:206–24 [Google Scholar]
  86. Cant NB. 86.  1992. The cochlear nucleus: neuronal types and their synaptic organization. The Mammalian Auditory Pathway: Neuroanatomy DB Webster, AN Popper, RR Fay 66–116 New York: Springer [Google Scholar]
  87. Kanold PO, Young ED. 87.  2001. Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus. J. Neurosci. 21:7848–58 [Google Scholar]
  88. Tzounopoulos T, Kim Y, Oertel D, Trussell LO. 88.  2004. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat. Neurosci. 7:719–25 [Google Scholar]
  89. Tzounopoulos T, Rubio ME, Keen JE, Trussell LO. 89.  2007. Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 54:291–301 [Google Scholar]
  90. Zhao Y, Tzounopoulos T. 90.  2011. Physiological activation of cholinergic inputs controls associative synaptic plasticity via modulation of endocannabinoid signaling. J. Neurosci. 31:3158–68 [Google Scholar]
  91. Kanold PO, Davis KA, Young ED. 91.  2010. Somatosensory context alters auditory responses in the cochlear nucleus. J. Neurophysiol. 105:1063–70 [Google Scholar]
  92. Koehler SD, Shore SE. 92.  2013. Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J. Neurosci. 33:19647–56 [Google Scholar]
  93. Koehler SD, Shore SE. 93.  2013. Stimulus-timing dependent multisensory plasticity in the guinea pig dorsal cochlear nucleus. PLOS ONE 8:e59828 [Google Scholar]
  94. Ito M. 94.  1984. The Cerebellum and Neural Control New York: Raven Press
  95. Medina JF, Nores WL, Ohyama T, Mauk MD. 95.  2000. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr. Opin. Neurobiol. 10:717–24 [Google Scholar]
  96. Ohyama T, Nores WL, Murphy M, Mauk MD. 96.  2003. What the cerebellum computes. Trends Neurosci 26:222–27 [Google Scholar]
  97. Halverson HE, Khilkevich A, Mauk MD. 97.  2015. Relating cerebellar Purkinje cell activity to the timing and amplitude of conditioned eyelid responses. J. Neurosci. 35:7813–32 [Google Scholar]
  98. Jirenhed DA, Bengtsson F, Hesslow G. 98.  2007. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J. Neurosci. 27:2493–502 [Google Scholar]
  99. Jirenhed DA, Hesslow G. 99.  2011. Learning stimulus intervals—adaptive timing of conditioned Purkinje cell responses. Cerebellum 10:523–35 [Google Scholar]
  100. ten Brinke MM, Boele HJ, Spanke JK, Potters JW, Kornysheva K. 100.  et al. 2015. Evolving models of Pavlovian conditioning: cerebellar cortical dynamics in awake behaving mice. Cell Rep 13:1977–88 [Google Scholar]
  101. Medina JF, Mauk MD. 101.  2000. Computer simulation of cerebellar information processing. Nat. Neurosci. 3:1205–11 [Google Scholar]
  102. Johansson F, Jirenhed D-A, Rasmussen A, Zucca R, Hesslow G. 102.  2014. Memory trace and timing mechanism localized to cerebellar Purkinje cells. PNAS 111:14930–34 [Google Scholar]
  103. Brooks JX, Cullen KE. 103.  2013. The primate cerebellum selectively encodes unexpected self-motion. Curr. Biol. 23:947–55 [Google Scholar]
  104. Brooks JX, Carriot J, Cullen KE. 104.  2015. Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat. Neurosci. 18:1310–17 [Google Scholar]
  105. Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C. 105.  et al. 2015. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14:197–220 [Google Scholar]
  106. Machado AS, Darmohray DM, Fayad J, Marques HG, Carey MR. 106.  2015. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. eLife 4:e07892 [Google Scholar]
  107. Bastian AJ. 107.  2006. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr. Opin. Neurobiol. 16:645–49 [Google Scholar]
  108. Nixon PD, Passingham RE. 108.  2001. Predicting sensory events: the role of the cerebellum in motor learning. Exp. Brain Res. 138:251–57 [Google Scholar]
  109. Pasalar S, Roitman AV, Durfee WK, Ebner TJ. 109.  2006. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat. Neurosci. 9:1404–11 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error