Disruption of circadian rhythms, provoked by artificial lighting at night, inconsistent sleep-wake schedules, and transmeridian air travel, is increasingly prevalent in modern society. Desynchrony of biological rhythms from environmental light cycles has dramatic consequences for human health. In particular, disrupting homeostatic oscillations in endocrine tissues and the hormones that these tissues regulate can have cascading effects on physiology and behavior. Accumulating evidence suggests that chronic disruption of circadian organization of endocrine function may lead to metabolic, reproductive, sleep, and mood disorders. This review discusses circadian control of endocrine systems and the consequences of distorting rhythmicity of these systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bastianini S, Silvani A, Berteotti C, Lo Martire V, Zoccoli G. 1.  2012. Mice show circadian rhythms of blood pressure during each wake-sleep state. Chronobiol. Int. 29:82–86 [Google Scholar]
  2. Kang T-H, Lindsey-Boltz LA, Reardon JT, Sancar A. 2.  2010. Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. PNAS 107:4890–5 [Google Scholar]
  3. Halberg F, Reinberg A, Haus E, Ghata J, Siffre M. 3.  1970. Human biological rhythms during and after several months of isolation underground in natural caves. Bull. Natl. Speleol. Soc. 32:89–115 [Google Scholar]
  4. Colin J, Timbal J, Boutelier C, Houdas Y, Siffre M. 4.  1968. Rhythm of the rectal temperature during a 6-month free-running experiment. J. Appl. Physiol. 25:170–76 [Google Scholar]
  5. Czeisler CA, Duffy JF, Shanahan TL, Brown EM, Mitchell JF. 5.  et al. 1999. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284:2177–81 [Google Scholar]
  6. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R. 6.  et al. 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–85 [Google Scholar]
  7. Partch CL, Green CB, Takahashi JS. 7.  2014. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24:90–99 [Google Scholar]
  8. Gallego M, Virshup DM. 8.  2007. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8:139–48 [Google Scholar]
  9. O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. 9.  2008. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–53 [Google Scholar]
  10. O'Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F. 10.  et al. 2011. Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–58 [Google Scholar]
  11. O'Neill JS, Reddy AB. 11.  2011. Circadian clocks in human red blood cells. Nature 469:498–503 [Google Scholar]
  12. Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L. 12.  et al. 1997. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–53 [Google Scholar]
  13. Albrecht U, Sun ZS, Eichele G, Lee CC. 13.  1997. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–64 [Google Scholar]
  14. Kyba CC, Tong KP, Bennie J, Birriel I, Birriel JJ. 14.  et al. 2015. Worldwide variations in artificial skyglow. Sci. Rep. 5:8409 [Google Scholar]
  15. Chang AM, Aeschbach D, Duffy JF, Czeisler CA. 15.  2015. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. PNAS 112:1232–37 [Google Scholar]
  16. Czeisler CA. 16.  2013. Perspective: casting light on sleep deficiency. Nature 497:S13 [Google Scholar]
  17. Bedrosian TA, Galan A, Vaughn CA, Weil ZM, Nelson RJ. 17.  2013. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters. J. Neuroendocrinol. 25:590–96 [Google Scholar]
  18. Zeitzer JM. 18.  2015. Real life trumps laboratory in matters of public health. PNAS 112E1513 [Google Scholar]
  19. Zeitzer JM, Friedman L, Yesavage JA. 19.  2011. Effectiveness of evening phototherapy for insomnia is reduced by bright daytime light exposure. Sleep Med. 12:805–7 [Google Scholar]
  20. Chang AM, Scheer FA, Czeisler CA. 20.  2011. The human circadian system adapts to prior photic history. J. Physiol. 589:1095–102 [Google Scholar]
  21. Boubekri M, Cheung IN, Reid KJ, Wang CH, Zee PC. 21.  2014. Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. J. Clin. Sleep Med. 10:603–11 [Google Scholar]
  22. McMenamin TM. 22.  2007. A time to work: recent trends in shift work and flexible schedules. Mon. Labor Rev. 130:3–15 [Google Scholar]
  23. Arendt J. 23.  2009. Managing jet lag: some of the problems and possible new solutions. Sleep Med. Rev. 13:249–56 [Google Scholar]
  24. Waterhouse J, Reilly T, Atkinson G, Edwards B. 24.  2007. Jet lag: trends and coping strategies. Lancet 369:1117–29 [Google Scholar]
  25. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. 25.  2012. Social jetlag and obesity. Curr. Biol. 22:939–43 [Google Scholar]
  26. Wittmann M, Dinich J, Merrow M, Roenneberg T. 26.  2006. Social jetlag: misalignment of biological and social time. Chronobiol. Int. 23:497–509 [Google Scholar]
  27. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ. 27.  et al. 1995. Suppression of melatonin secretion in some blind patients by exposure to bright light. N. Engl. J. Med. 332:6–11 [Google Scholar]
  28. Duffy JF, Wright KP Jr. 28.  2005. Entrainment of the human circadian system by light. J. Biol. Rhythm. 20:326–38 [Google Scholar]
  29. Zhu L, Zee PC. 29.  2012. Circadian rhythm sleep disorders. Neurol. Clin. 30:1167–91 [Google Scholar]
  30. Gradisar M, Gardner G, Dohnt H. 30.  2011. Recent worldwide sleep patterns and problems during adolescence: a review and meta-analysis of age, region, and sleep. Sleep Med. 12:110–18 [Google Scholar]
  31. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. 31.  2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–61 [Google Scholar]
  32. Ralph CL, Mull D, Lynch HJ, Hedlund L. 32.  1971. A melatonin rhythm persists in rat pineals in darkness. Endocrinology 89:1361–66 [Google Scholar]
  33. Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A. 33.  et al. 2011. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J. Pineal Res. 51:17–43 [Google Scholar]
  34. Brainard GC, Lewy AJ, Menaker M, Fredrickson RH, Miller LS. 34.  et al. 1988. Dose-response relationship between light irradiance and the suppression of plasma melatonin in human volunteers. Brain Res. 454:212–18 [Google Scholar]
  35. McIntyre IM, Norman TR, Burrows GD, Armstrong SM. 35.  1989. Human melatonin suppression by light is intensity dependent. J. Pineal Res. 6:149–56 [Google Scholar]
  36. Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C. 36.  2000. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J. Physiol. 526:3695–702 [Google Scholar]
  37. Wood B, Rea MS, Plitnick B, Figueiro MG. 37.  2013. Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Appl. Ergon. 44:237–40 [Google Scholar]
  38. Brainard GC, Richardson BA, King TS, Matthews SA, Reiter RJ. 38.  1983. The suppression of pineal melatonin content and N-acetyltransferase activity by different light irradiances in the Syrian hamster: a dose-response relationship. Endocrinology 113:293–96 [Google Scholar]
  39. Kwak SP, Morano MI, Young EA, Watson SJ, Akil H. 39.  1993. Diurnal CRH mRNA rhythm in the hypothalamus: Decreased expression in the evening is not dependent on endogenous glucocorticoids. Neuroendocrinology 57:96–105 [Google Scholar]
  40. Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MGP, Ter Horst GJ. 40.  et al. 1999. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur. J. Neurosci. 11:1535–44 [Google Scholar]
  41. Stephan FK, Zucker I. 41.  1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. PNAS 69:1583–86 [Google Scholar]
  42. Moore RY, Eichler VB. 42.  1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42:201–6 [Google Scholar]
  43. Cuesta M, Cermakian N, Boivin DB. 43.  2014. Glucocorticoids entrain molecular clock components in human peripheral cells. FASEB J. 29:1360–70 [Google Scholar]
  44. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C. 44.  et al. 2000. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–47 [Google Scholar]
  45. Bittman EL, Doherty L, Huang L, Paroskie A. 45.  2003. Period gene expression in mouse endocrine tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:561–69 [Google Scholar]
  46. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D. 46.  et al. 2006. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4:163–73 [Google Scholar]
  47. Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH. 47.  et al. 2011. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552–56 [Google Scholar]
  48. Fonken LK, Nelson RJ. 48.  2014. The effects of light at night on circadian clocks and metabolism. Endocr. Rev. 35:648–70 [Google Scholar]
  49. Fonken LK, Kitsmiller E, Smale L, Nelson RJ. 49.  2012. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J. Biol. Rhythm. 27:319–27 [Google Scholar]
  50. Bedrosian TA, Fonken LK, Walton JC, Haim A, Nelson RJ. 50.  2011. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology 36:1062–69 [Google Scholar]
  51. Fonken LK, Aubrecht TG, Melendez-Fernandez OH, Weil ZM, Nelson RJ. 51.  2013. Dim light at night disrupts molecular circadian rhythms and increases body weight. J. Biol. Rhythm. 28:262–71 [Google Scholar]
  52. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS. 52.  et al. 2010. Light at night increases body mass by shifting the time of food intake. PNAS 107:18664–69 [Google Scholar]
  53. Coomans CP, van den Berg SA, Houben T, van Klinken JB, van den Berg R. 53.  et al. 2013. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 27:1721–32 [Google Scholar]
  54. Ma WP, Cao J, Tian M, Cui MH, Han HL. 54.  et al. 2007. Exposure to chronic constant light impairs spatial memory and influences long-term depression in rats. Neurosci. Res. 59:224–30 [Google Scholar]
  55. Jung CM, Khalsa SB, Scheer FA, Cajochen C, Lockley SW. 55.  et al. 2010. Acute effects of bright light exposure on cortisol levels. J. Biol. Rhythm. 25:208–16 [Google Scholar]
  56. Griefahn B, Kuenemund C, Robens S. 56.  2006. Shifts of the hormonal rhythms of melatonin and cortisol after a 4 h bright-light pulse in different diurnal types. Chronobiol. Int. 23:659–73 [Google Scholar]
  57. Scheer FA, Buijs RM. 57.  1999. Light affects morning salivary cortisol in humans. J. Clin. Endocrinol. Metab. 84:3395–98 [Google Scholar]
  58. Harb F, Hidalgo MP, Martau B. 58.  2015. Lack of exposure to natural light in the workspace is associated with physiological, sleep and depressive symptoms. Chronobiol. Int. 32:368–75 [Google Scholar]
  59. Amirian I, Andersen LT, Rosenberg J, Gogenur I. 59.  2015. Working night shifts affects surgeons' biological rhythm. Am. J. Surg. 210:2389–95 [Google Scholar]
  60. Goichot B, Weibel L, Chapotot F, Gronfier C, Piquard F, Brandenberger G. 60.  1998. Effect of the shift of the sleep-wake cycle on three robust endocrine markers of the circadian clock. Am. J. Physiol. Endocrinol. Metab. 275:E243–48 [Google Scholar]
  61. Wright KP Jr., Drake AL, Frey DJ, Fleshner M, Desouza CA. 61.  et al. 2015. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav. Immun. 47:24–34 [Google Scholar]
  62. Manenschijn L, van Kruysbergen RG, de Jong FH, Koper JW, van Rossum EF. 62.  2011. Shift work at young age is associated with elevated long-term cortisol levels and body mass index. J. Clin. Endocrinol. Metab. 96:1862–65 [Google Scholar]
  63. Guyon A, Balbo M, Morselli LL, Tasali E, Leproult R. 63.  et al. 2014. Adverse effects of two nights of sleep restriction on the hypothalamic-pituitary-adrenal axis in healthy men. J. Clin. Endocrinol. Metab. 99:2861–68 [Google Scholar]
  64. Joo EY, Yoon CW, Koo DL, Kim D, Hong SB. 64.  2012. Adverse effects of 24 hours of sleep deprivation on cognition and stress hormones. J. Clin. Neurol. 8:146–50 [Google Scholar]
  65. Klumpers UM, Veltman DJ, van Tol MJ, Kloet RW, Boellaard R. 65.  et al. 2015. Neurophysiological effects of sleep deprivation in healthy adults, a pilot study. PLOS ONE 10:e0116906 [Google Scholar]
  66. Rutters F, Lemmens SG, Adam TC, Bremmer MA, Elders PJ. 66.  et al. 2014. Is social jetlag associated with an adverse endocrine, behavioral, and cardiovascular risk profile?. J. Biol. Rhythm. 29:377–83 [Google Scholar]
  67. Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P. 67.  2012. Coordination of the transcriptome and metabolome by the circadian clock. PNAS 109:5541–46 [Google Scholar]
  68. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH. 68.  et al. 2004. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. PNAS 101:5339–46 [Google Scholar]
  69. Tahara Y, Kuroda H, Saito K, Nakajima Y, Kubo Y. 69.  et al. 2012. In vivo monitoring of peripheral circadian clocks in the mouse. Curr. Biol. 22:1029–34 [Google Scholar]
  70. Kalsbeek A, Fliers E, Romijn JA, La Fleur SE, Wortel J. 70.  et al. 2001. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142:2677–85 [Google Scholar]
  71. Gavrila A, Peng CK, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS. 71.  2003. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J. Clin. Endocrinol. Metab. 88:2838–43 [Google Scholar]
  72. Ruiter M, La Fleur SE, van Heijningen C, van der Vliet J, Kalsbeek A, Buijs RM. 72.  2003. The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52:1709–15 [Google Scholar]
  73. Scheer FA, Chan JL, Fargnoli J, Chamberland J, Arampatzi K. 73.  et al. 2010. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia 53:2401–5 [Google Scholar]
  74. Boden G, Ruiz J, Urbain JL, Chen X. 74.  1996. Evidence for a circadian rhythm of insulin secretion. Am. J. Physiol. Endocrinol. Metab. 271:E246–52 [Google Scholar]
  75. Porcellati F, Lucidi P, Bolli GB, Fanelli CG. 75.  2013. Thirty years of research on the dawn phenomenon: lessons to optimize blood glucose control in diabetes. Diabetes Care 36:3860–62 [Google Scholar]
  76. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G. 76.  et al. 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–45 [Google Scholar]
  77. Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH. 77.  2013. Circadian disruption leads to insulin resistance and obesity. Curr. Biol. 23:372–81 [Google Scholar]
  78. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. 78.  2001. Entrainment of the circadian clock in the liver by feeding. Science 291:490–93 [Google Scholar]
  79. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC. 79.  et al. 2002. Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83 [Google Scholar]
  80. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H. 80.  et al. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–31 [Google Scholar]
  81. LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R. 81.  2009. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. PNAS 106:13582–87 [Google Scholar]
  82. Zuber AM, Centeno G, Pradervand S, Nikolaeva S, Maquelin L. 82.  et al. 2009. Molecular clock is involved in predictive circadian adjustment of renal function. PNAS 106:16523–28 [Google Scholar]
  83. McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC. 83.  et al. 2006. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314:1304–8 [Google Scholar]
  84. Lamia KA, Storch KF, Weitz CJ. 84.  2008. Physiological significance of a peripheral tissue circadian clock. PNAS 105:15172–77 [Google Scholar]
  85. Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G. 85.  et al. 2012. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat. Med. 18:1768–77 [Google Scholar]
  86. Gamble KL, Berry R, Frank SJ, Young ME. 86.  2014. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 10:466–75 [Google Scholar]
  87. Hoffman GS, Lee W-S, Attardi B, Yann V, Fitzsimmons MD. 87.  1990. Luteinizing hormone–releasing hormone neurons express c-fos antigen after steroid activation. Endocrinology 126:1736–41 [Google Scholar]
  88. Lee W-S, Smith MS, Hoffman GE. 88.  1990. Luteinizing hormone–releasing hormone neurons express Fos protein during the proestrous surge of luteinizing hormone. PNAS 87:5163–67 [Google Scholar]
  89. Kawakami M, Arita J, Yoshioka E. 89.  1980. Loss of estrogen-induced daily surges of prolactin and gonadotropins by suprachiasmatic nucleus lesions in ovariectomized rats. Endocrinology 106:1087–92 [Google Scholar]
  90. Kerdelhue B, Brown S, Lenoir V, Queenan JT Jr., Jones GS. 90.  et al. 2002. Timing of initiation of the preovulatory luteinizing hormone surge and its relationship with the circadian cortisol rhythm in the human. Neuroendocrinology 75:158–63 [Google Scholar]
  91. Cahill DJ, Wardle PG, Harlow CR, Hull MG. 91.  1998. Onset of the preovulatory luteinizing hormone surge: diurnal timing and critical follicular prerequisites. Fertil. Steril. 70:56–59 [Google Scholar]
  92. Campbell CS, Ryan KD, Schwartz NB. 92.  1976. Estrous cycles in the mouse: relative influence of continuous light and the presence of a male. Biol. Reprod. 14:292–99 [Google Scholar]
  93. Dominoni D, Quetting M, Partecke J. 93.  2013. Artificial light at night advances avian reproductive physiology. Proc. Biol. Sci. 280:20123017 [Google Scholar]
  94. Lawson CC, Whelan EA, Lividoti H, Spiegelman D, Schernhammer ES, Rich-Edwards JW. 94.  2011. Rotating shift work and menstrual cycle characteristics. Epidemiology 22:305–12 [Google Scholar]
  95. Bisanti L, Olsen J, Basso O, Thonneau P, Karmaus W. 95.  1996. Shift work and subfecundity: a European multicenter study. J. Occup. Environ. Med. 38:352–58 [Google Scholar]
  96. Aspholm R, Lindbohm ML, Paakkulainen H, Taskinen H, Nurminen T, Tiitinen A. 96.  1999. Spontaneous abortions among Finnish flight attendants. J. Occup. Environ. Med. 41:486–91 [Google Scholar]
  97. Xu X, Ding M, Li B, Christiani DC. 97.  1994. Association of rotating shiftwork with preterm births and low birth weight among never smoking women textile workers in China. Occup. Environ. Med. 51:470–74 [Google Scholar]
  98. Summa KC, Vitaterna MH, Turek FW. 98.  2012. Environmental perturbation of the circadian clock disrupts pregnancy in the mouse. PLOS ONE 7:e37668 [Google Scholar]
  99. Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM. 99.  2002. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. PNAS 99:2134–39 [Google Scholar]
  100. Gray GD, Söderstein P, Tallentire D, Davidson JM. 100.  1978. Effects of lesions in various structures of the suprachiasmatic-preoptic region on LH regulation and sexual behavior in female rats. Neuroendocrinology 25:174–91 [Google Scholar]
  101. Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL. 101.  1999. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140:207–18 [Google Scholar]
  102. Ratajczak CK, Boehle KL, Muglia LJ. 102.  2009. Impaired steroidogenesis and implantation failure in Bmal1−/− mice. Endocrinology 150:1879–85 [Google Scholar]
  103. Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ. 103.  2010. Reproductive biology of female Bmal1 null mice. Reproduction 139:1077–90 [Google Scholar]
  104. Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS. 104.  2004. Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr. Biol. 14:1367–73 [Google Scholar]
  105. Silver AC, Arjona A, Walker WE, Fikrig E. 105.  2012. The circadian clock controls Toll-like receptor 9–mediated innate and adaptive immunity. Immunity 36:251–61 [Google Scholar]
  106. Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF. 106.  2015. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav. Immun. 45:171–79 [Google Scholar]
  107. Alamili M, Bendtzen K, Lykkesfeldt J, Rosenberg J, Gogenur I. 107.  2014. Pronounced inflammatory response to endotoxaemia during nighttime: a randomised cross-over trial. PLOS ONE 9:e87413 [Google Scholar]
  108. Durrington HJ, Farrow SN, Loudon AS, Ray DW. 108.  2014. The circadian clock and asthma. Thorax 69:90–92 [Google Scholar]
  109. Gibbs JE, Ray DW. 109.  2013. The role of the circadian clock in rheumatoid arthritis. Arthritis Res. Ther. 15:205 [Google Scholar]
  110. Rhen T, Cidlowski JA. 110.  2005. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N. Engl. J. Med. 353:1711–23 [Google Scholar]
  111. Reiter RJ, Tan DX, Galano A. 111.  2014. Melatonin: exceeding expectations. Physiology 29:325–33 [Google Scholar]
  112. Pevet P, Challet E. 112.  2011. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J. Physiol. Paris 105:170–82 [Google Scholar]
  113. Fonken LK, Nelson RJ. 113.  2013. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain Behav. Immun. 34:159–63 [Google Scholar]
  114. Phillips DJ, Savenkova MI, Karatsoreos IN. 114.  2015. Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse. Brain Behav. Immun. 47:14–23 [Google Scholar]
  115. Fonken LK, Haim A, Nelson RJ. 115.  2012. Dim light at night increases immune function in Nile grass rats, a diurnal rodent. Chronobiol. Int. 29:26–34 [Google Scholar]
  116. Adams KL, Castanon-Cervantes O, Evans JA, Davidson AJ. 116.  2013. Environmental circadian disruption elevates the IL-6 response to lipopolysaccharide in blood. J. Biol. Rhythm. 28:272–77 [Google Scholar]
  117. Prendergast BJ, Cable EJ, Patel PN, Pyter LM, Onishi KG. 117.  et al. 2013. Impaired leukocyte trafficking and skin inflammatory responses in hamsters lacking a functional circadian system. Brain Behav. Immun. 32:94–104 [Google Scholar]
  118. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL. 118.  et al. 2010. Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 185:5796–805 [Google Scholar]
  119. Evans JA, Davidson AJ. 119.  2013. Health consequences of circadian disruption in humans and animal models. Prog. Mol. Biol. Transl. Sci. 119:283–323 [Google Scholar]
  120. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. 120.  2014. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J. Clin. 64:207–18 [Google Scholar]
  121. Hahm BJ, Jo B, Dhabhar FS, Palesh O, Aldridge-Gerry A. 121.  et al. 2014. Bedtime misalignment and progression of breast cancer. Chronobiol. Int. 31:214–21 [Google Scholar]
  122. Kloog I, Haim A, Stevens RG, Portnov BA. 122.  2009. Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol. Int. 26:108–25 [Google Scholar]
  123. Davis S, Mirick DK, Stevens RG. 123.  2001. Night shift work, light at night, and risk of breast cancer. J. Natl. Cancer Inst. 93:1557–62 [Google Scholar]
  124. Ramsey MR, Ellisen LW. 124.  2011. Circadian function in cancer: regulating the DNA damage response. PNAS 108:10379–80 [Google Scholar]
  125. Blask DE, Hill SM, Dauchy RT, Xiang S, Yuan L. 125.  et al. 2011. Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J. Pineal Res. 51:259–69 [Google Scholar]
  126. Sahar S, Sassone-Corsi P. 126.  2009. Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9:886–96 [Google Scholar]
  127. Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr.. 127.  2007. Circadian rhythm sleep disorders. Part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of Sleep Medicine review. Sleep 30:1484–501 [Google Scholar]
  128. Gandhi AV, Mosser EA, Oikonomou G, Prober DA. 128.  2015. Melatonin is required for the circadian regulation of sleep. Neuron 85:1193–99 [Google Scholar]
  129. Wu YH, Swaab DF. 129.  2007. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer's disease. Sleep Med. 8:623–36 [Google Scholar]
  130. Bunney BG, Li JZ, Walsh DM, Stein R, Vawter MP. 130.  et al. 2015. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder. Mol. Psychiatry 20:48–55 [Google Scholar]
  131. McClung CA. 131.  2013. How might circadian rhythms control mood? Let me count the ways. Biol. Psychiatry 74:242–49 [Google Scholar]
  132. Workman JL, Nelson RJ. 132.  2011. Potential animal models of seasonal affective disorder. Neurosci. Biobehav. Rev. 35:669–79 [Google Scholar]
  133. Rosen LN, Targum SD, Terman M, Bryant MJ, Hoffman H. 133.  et al. 1990. Prevalence of seasonal affective disorder at four latitudes. Psychiatry Res. 31:131–44 [Google Scholar]
  134. Wehr TA, Duncan WC Jr, Sher L, Aeschbach D, Schwartz PJ. 134.  et al. 2001. A circadian signal of change of season in patients with seasonal affective disorder. Arch. Gen. Psychiatry 58:1108–14 [Google Scholar]
  135. Terman M, Terman JS, Quitkin FM, McGrath PJ, Stewart JW, Rafferty B. 135.  1989. Light therapy for seasonal affective disorder. A review of efficacy. Neuropsychopharmacology 2:1–22 [Google Scholar]
  136. Rosenthal NE, Sack DA, Jacobsen FM, James SP, Parry BL. 136.  et al. 1986. Melatonin in seasonal affective disorder and phototherapy. J. Neural Transm. Suppl. 21:257–67 [Google Scholar]
  137. Bara AC, Arber S. 137.  2009. Working shifts and mental health—findings from the British Household Panel Survey (1995–2005). Scand. J. Work Environ. Health 35:361–67 [Google Scholar]
  138. Bedrosian TA, Fonken LK, Demas GE, Nelson RJ. 138.  2012. Photoperiod-dependent effects of neuronal nitric oxide synthase inhibition on aggression in Siberian hamsters. Horm. Behav. 61:176–80 [Google Scholar]
  139. Bedrosian TA, Vaughn CA, Galan A, Daye G, Weil ZM, Nelson RJ. 139.  2013. Nocturnal light exposure impairs affective responses in a wavelength-dependent manner. J. Neurosci. 33:13081–87 [Google Scholar]
  140. Obayashi K, Saeki K, Iwamoto J, Okamoto N, Tomioka K. 140.  et al. 2013. Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: a cross-sectional analysis of the HEIJO-KYO study. J. Clin. Endocrinol. Metab. 98:337–44 [Google Scholar]
  141. Kennedy SH, Avedisova A, Giménez-Montesinos N, Belaidi C, de Bodinat C. 141.  Agomelatine Study Group 2014. A placebo-controlled study of three agomelatine dose regimens (10 mg, 25 mg, 25–50 mg) in patients with major depressive disorder. Eur. Neuropsychopharmacol. 24:553–63 [Google Scholar]
  142. Jarcho MR, Slavich GM, Tylova-Stein H, Wolkowitz OM, Burke HM. 142.  2013. Dysregulated diurnal cortisol pattern is associated with glucocorticoid resistance in women with major depressive disorder. Biol. Psychol. 93:150–58 [Google Scholar]
  143. Yehuda R, Teicher MH, Trestman RL, Levengood RA, Siever LJ. 143.  1996. Cortisol regulation in posttraumatic stress disorder and major depression: a chronobiological analysis. Biol. Psychiatry 40:79–88 [Google Scholar]
  144. Doane LD, Mineka S, Zinbarg RE, Craske M, Griffith JW, Adam EK. 144.  2013. Are flatter diurnal cortisol rhythms associated with major depression and anxiety disorders in late adolescence? The role of life stress and daily negative emotion. Dev. Psychopathol. 25:629–42 [Google Scholar]
  145. Vreeburg SA, Kruijtzer BP, van Pelt J, van Dyck R, DeRijk RH. 145.  et al. 2009. Associations between sociodemographic, sampling and health factors and various salivary cortisol indicators in a large sample without psychopathology. Psychoneuroendocrinology 34:1109–20 [Google Scholar]
  146. Liston C, Cichon JM, Jeanneteau F, Jia Z, Chao MV, Gan WB. 146.  2013. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat. Neurosci. 16:698–705 [Google Scholar]
  147. Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS. 147.  2011. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. PNAS 108:1657–62 [Google Scholar]
  148. Parsons MJ, Moffitt TE, Gregory AM, Goldman-Mellor S, Nolan PM. 148.  et al. 2014. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int. J. Obes. 39:5842–48 [Google Scholar]
  149. McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP. 149.  2013. Melatonin secretion and the incidence of type 2 diabetes. JAMA 309:1388–96 [Google Scholar]
  150. Bonnefond A, Clement N, Fawcett K, Yengo L, Vaillant E. 150.  et al. 2012. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44:297–301 [Google Scholar]
  151. Park JH, Shim HM, Na AY, Bae KC, Bae JH. 151.  et al. 2014. Melatonin prevents pancreatic beta-cell loss due to glucotoxicity: the relationship between oxidative stress and endoplasmic reticulum stress. J. Pineal Res. 56:143–53 [Google Scholar]
  152. Rubio-Sastre P, Scheer FA, Gomez-Abellan P, Madrid JA, Garaulet M. 152.  2014. Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep 37:1715–19 [Google Scholar]
  153. Sartori C, Dessen P, Mathieu C, Monney A, Bloch J. 153.  et al. 2009. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet–fed insulin-resistant mice. Endocrinology 150:5311–17 [Google Scholar]
  154. Agil A, Rosado I, Ruiz R, Figueroa A, Zen N, Fernandez-Vazquez G. 154.  2012. Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats. J. Pineal Res. 52:203–10 [Google Scholar]
  155. Rios-Lugo MJ, Cano P, Jimenez-Ortega V, Fernandez-Mateos MP, Scacchi PA. 155.  et al. 2010. Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides and cholesterol in normal and high fat-fed rats. J. Pineal Res. 49:342–48 [Google Scholar]
  156. Terron MP, Delgado-Adamez J, Pariente JA, Barriga C, Paredes SD, Rodriguez AB. 156.  2013. Melatonin reduces body weight gain and increases nocturnal activity in male Wistar rats. Physiol. Behav. 118:8–13 [Google Scholar]
  157. Reid KJ, Santostasi G, Baron KG, Wilson J, Kang J, Zee PC. 157.  2014. Timing and intensity of light correlate with body weight in adults. PLOS ONE 9:e92251 [Google Scholar]
  158. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. 158.  2009. Adverse metabolic and cardiovascular consequences of circadian misalignment. PNAS 106:4453–58 [Google Scholar]
  159. McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM. 159.  et al. 2014. Impact of circadian misalignment on energy metabolism during simulated nightshift work. PNAS 111:17302–7 [Google Scholar]
  160. Nguyen J, Wright KP Jr. 160.  2010. Influence of weeks of circadian misalignment on leptin levels. Nat. Sci. Sleep 2:9–18 [Google Scholar]
  161. Garaulet M, Gomez-Abellan P. 161.  2014. Timing of food intake and obesity: a novel association. Physiol. Behav. 134:44–50 [Google Scholar]
  162. Garaulet M, Gomez-Abellan P, Alburquerque-Bejar JJ, Lee YC, Ordovas JM, Scheer FA. 162.  2013. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 37:604–11 [Google Scholar]
  163. Wang JB, Patterson RE, Ang A, Emond JA, Shetty N, Arab L. 163.  2014. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 27:Suppl. 2255–62 [Google Scholar]
  164. Bandín C, Scheer FAJL, Luque AJ, Ávila-Gandía V, Zamora S. 164.  et al. 2014. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: a randomized, crossover trial. Int. J. Obes. 39:828–33 [Google Scholar]
  165. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J. 165.  et al. 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–29 [Google Scholar]
  166. Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P. 166.  et al. 2014. Circadian disorganization alters intestinal microbiota. PLOS ONE 9:e97500 [Google Scholar]
  167. Zarrinpar A, Chaix A, Yooseph S, Panda S. 167.  2014. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20:1006–17 [Google Scholar]
  168. McFadden E, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. 168.  2014. The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study. Am. J. Epidemiol. 180:245–50 [Google Scholar]
  169. Lee XH, Moreno I, Sun CC. 169.  2013. High-performance LED street lighting using microlens arrays. Opt. Expr. 21:10612–21 [Google Scholar]
  170. Rahman SA, Shapiro CM, Wang F, Ainlay H, Kazmi S. 170.  et al. 2013. Effects of filtering visual short wavelengths during nocturnal shiftwork on sleep and performance. Chronobiol. Int. 30:951–62 [Google Scholar]
  171. van der Lely S, Frey S, Garbazza C, Wirz-Justice A, Jenni OG. 171.  et al. 2015. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J. Adolesc. Health 56:113–19 [Google Scholar]
  172. Czeisler CA, Allan JS, Strogatz SH, Ronda JM, Sanchez R. 172.  et al. 1986. Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. Science 233:667–71 [Google Scholar]
  173. Rosenthal NE, Joseph-Vanderpool JR, Levendosky AA, Johnston SH, Allen R. 173.  et al. 1990. Phase-shifting effects of bright morning light as treatment for delayed sleep phase syndrome. Sleep 13:354–61 [Google Scholar]
  174. Viola AU, James LM, Schlangen LJ, Dijk DJ. 174.  2008. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand. J. Work Environ. Health 34:297–306 [Google Scholar]
  175. Figueiro MG, Plitnick BA, Lok A, Jones GE, Higgins P. 175.  et al. 2014. Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer's disease and related dementia living in long-term care facilities. Clin. Interv. Aging 9:1527–37 [Google Scholar]
  176. Lee D, Shin WC. 176.  2015. Forced entrainment by using light therapy, modafinil and melatonin in a sighted patient with non-24-hour sleep-wake disorder. Sleep Med. 16:305–7 [Google Scholar]
  177. Dahlitz M, Alvarez B, Vignau J, English J, Arendt J, Parkes JD. 177.  1991. Delayed sleep phase syndrome response to melatonin. Lancet 337:1121–24 [Google Scholar]
  178. Herxheimer A, Petrie KJ. 178.  2002. Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst. Rev. 2002:CD00 1520 [Google Scholar]
  179. Eckerberg B, Lowden A, Nagai R, Akerstedt T. 179.  2012. Melatonin treatment effects on adolescent students' sleep timing and sleepiness in a placebo-controlled crossover study. Chronobiol. Int. 29:1239–48 [Google Scholar]
  180. Riemersma–van der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJ. 180.  2008. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA 299:2642–55 [Google Scholar]
  181. Liira J, Verbeek J, Ruotsalainen J. 181.  2015. Pharmacological interventions for sleepiness and sleep disturbances caused by shift work. JAMA 313:961–62 [Google Scholar]
  182. Burke TM, Markwald RR, Chinoy ED, Snider JA, Bessman SC. 182.  et al. 2013. Combination of light and melatonin time cues for phase advancing the human circadian clock. Sleep 36:1617–24 [Google Scholar]
  183. Schroeder AM, Colwell CS. 183.  2013. How to fix a broken clock. Trends Pharmacol. Sci. 34:605–19 [Google Scholar]
  184. Baehr EK, Eastman CI, Revelle W, Olson SH, Wolfe LF, Zee PC. 184.  2003. Circadian phase-shifting effects of nocturnal exercise in older compared with young adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284:R1542–50 [Google Scholar]
  185. Fairbrother K, Cartner B, Alley JR, Curry CD, Dickinson DL. 185.  et al. 2014. Effects of exercise timing on sleep architecture and nocturnal blood pressure in prehypertensives. Vasc. Health Risk Manag. 10:691–98 [Google Scholar]
  186. Vetter C, Fischer D, Matera JL, Roenneberg T. 186.  2015. Aligning work and circadian time in shift workers improves sleep and reduces circadian disruption. Curr. Biol. 25:907–11 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error