Angiogenesis has traditionally been viewed from the perspective of how endothelial cells (ECs) coordinate migration and proliferation in response to growth factor activation to form new vessel branches. However, ECs must also coordinate their metabolism and adapt metabolic fluxes to the rising energy and biomass demands of branching vessels. Recent studies have highlighted the importance of such metabolic regulation in the endothelium and uncovered core metabolic pathways and mechanisms of regulation that drive the angiogenic process. In this review, we discuss our current understanding of EC metabolism, how it intersects with angiogenic signal transduction, and how alterations in metabolic pathways affect vessel morphogenesis. Understanding EC metabolism promises to reveal new perspectives on disease mechanisms in the vascular system with therapeutic implications for disorders with aberrant vessel growth and function.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams RH, Alitalo K. 1.  2007. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8:464–78 [Google Scholar]
  2. Herbert SP, Stainier DY. 2.  2011. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12:551–64 [Google Scholar]
  3. Potente M, Gerhardt H, Carmeliet P. 3.  2011. Basic and therapeutic aspects of angiogenesis. Cell 146:873–87 [Google Scholar]
  4. De Bock K, Georgiadou M, Carmeliet P. 4.  2013. Role of endothelial cell metabolism in vessel sprouting. Cell Metab 18:634–47 [Google Scholar]
  5. Ghesquiere B, Wong BW, Kuchnio A, Carmeliet P. 5.  2014. Metabolism of stromal and immune cells in health and disease. Nature 511:167–76 [Google Scholar]
  6. Carmeliet P, Jain RK. 6.  2011. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307 [Google Scholar]
  7. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A. 7.  et al. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161:1163–77 [Google Scholar]
  8. Adams RH, Eichmann A. 8.  2010. Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2:a001875 [Google Scholar]
  9. Geudens I, Gerhardt H. 9.  2011. Coordinating cell behaviour during blood vessel formation. Development 138:4569–83 [Google Scholar]
  10. Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B. 10.  et al. 2010. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12:943–53 [Google Scholar]
  11. Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T. 11.  et al. 2009. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:839–51 [Google Scholar]
  12. Koch S, Claesson-Welsh L. 12.  2012. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2:a006502 [Google Scholar]
  13. Eichmann A, Simons M. 13.  2012. VEGF signaling inside vascular endothelial cells and beyond. Curr. Opin. Cell Biol. 24:188–93 [Google Scholar]
  14. Blanco R, Gerhardt H. 14.  2013. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 3:a006569 [Google Scholar]
  15. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 15.  2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20 [Google Scholar]
  16. Magistretti PJ, Allaman I. 16.  2015. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901 [Google Scholar]
  17. Kolwicz SC Jr., Purohit S, Tian R. 17.  2013. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113:603–16 [Google Scholar]
  18. Vander Heiden MG, Cantley LC, Thompson CB. 18.  2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33 [Google Scholar]
  19. Krutzfeldt A, Spahr R, Mertens S, Siegmund B, Piper HM. 19.  1990. Metabolism of exogenous substrates by coronary endothelial cells in culture. J. Mol. Cell. Cardiol. 22:1393–404 [Google Scholar]
  20. Culic O, Gruwel ML, Schrader J. 20.  1997. Energy turnover of vascular endothelial cells. Am. J. Physiol. 273:C205–13 [Google Scholar]
  21. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW. 21.  et al. 2013. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–63 [Google Scholar]
  22. Chung SJ, Lee SH, Lee YJ, Park HS, Bunger R, Kang YH. 22.  2004. Pyruvate protection against endothelial cytotoxicity induced by blockade of glucose uptake. J. Biochem. Mol. Biol. 37:239–45 [Google Scholar]
  23. Merchan JR, Kovacs K, Railsback JW, Kurtoglu M, Jing Y. 23.  et al. 2010. Antiangiogenic activity of 2-deoxy-D-glucose. PLOS ONE 5:e13699 [Google Scholar]
  24. Wang Q, Liang B, Shirwany NA, Zou MH. 24.  2011. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLOS ONE 6:e17234 [Google Scholar]
  25. Schulze A, Harris AL. 25.  2012. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491:364–73 [Google Scholar]
  26. Ward PS, Thompson CB. 26.  2012. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308 [Google Scholar]
  27. Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. 27.  2010. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 299:L513–22 [Google Scholar]
  28. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. 28.  2010. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. PNAS 107:10696–701 [Google Scholar]
  29. Jones RG, Thompson CB. 29.  2009. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–48 [Google Scholar]
  30. Amemiya T. 30.  1983. Glycogen metabolism in the capillary endothelium. Electron histochemical study of glycogen synthetase and phosphorylase in the pecten capillary of the chick. Acta Histochem. 73:93–96 [Google Scholar]
  31. Vizán P, Sánchez-Tena S, Alcarraz-Vizán G, Soler M, Messeguer R. 31.  et al. 2009. Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets. Carcinogenesis 30:946–52 [Google Scholar]
  32. Zhang Z, Apse K, Pang J, Stanton RC. 32.  2000. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J. Biol. Chem. 275:40042–47 [Google Scholar]
  33. Markowska AI, Jefferies KC, Panjwani N. 33.  2011. Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J. Biol. Chem. 286:29913–21 [Google Scholar]
  34. Benedito R, Roca C, Sorensen I, Adams S, Gossler A. 34.  et al. 2009. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–35 [Google Scholar]
  35. Pavlova NN, Thompson CB. 35.  2016. The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47 [Google Scholar]
  36. Blouin A, Bolender RP, Weibel ER. 36.  1977. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J. Cell Biol. 72:441–55 [Google Scholar]
  37. Dranka BP, Hill BG, Darley-Usmar VM. 37.  2010. Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic. Biol. Med. 48:905–14 [Google Scholar]
  38. Oldendorf WH, Brown WJ. 38.  1975. Greater number of capillary endothelial cell mitochondria in brain than in muscle. Proc. Soc. Exp. Biol. Med. 149:736–38 [Google Scholar]
  39. Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. 39.  2011. The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci 12:40 [Google Scholar]
  40. Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G. 40.  et al. 2015. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520:192–97 [Google Scholar]
  41. Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY. 41.  et al. 2015. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57:95–107 [Google Scholar]
  42. Schug ZT, Frezza C, Galbraith LC, Gottlieb E. 42.  2012. The music of lipids: how lipid composition orchestrates cellular behaviour. Acta Oncol. 51:301–10 [Google Scholar]
  43. Browne CD, Hindmarsh EJ, Smith JW. 43.  2006. Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J 20:2027–35 [Google Scholar]
  44. Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG. 44.  et al. 2012. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br. J. Cancer 107:977–87 [Google Scholar]
  45. Wei X, Schneider JG, Shenouda SM, Lee A, Towler DA. 45.  et al. 2011. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J. Biol. Chem. 286:2933–45 [Google Scholar]
  46. DeBerardinis RJ, Cheng T. 46.  2010. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–24 [Google Scholar]
  47. Lohmann R, Souba WW, Bode BP. 47.  1999. Rat liver endothelial cell glutamine transporter and glutaminase expression contrast with parenchymal cells. Am. J. Physiol. 276:G743–50 [Google Scholar]
  48. Wu G, Haynes TE, Yan W, Meininger CJ. 48.  2001. Presence of glutamine:fructose-6-phosphate amidotransferase for glucosamine-6-phosphate synthesis in endothelial cells: effects of hyperglycaemia and glutamine. Diabetologia 44:196–202 [Google Scholar]
  49. Strasser GA, Kaminker JS, Tessier-Lavigne M. 49.  2010. Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115:5102–10 [Google Scholar]
  50. Unterluggauer H, Mazurek S, Lener B, Hutter E, Eigenbrodt E. 50.  et al. 2008. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 9:247–59 [Google Scholar]
  51. Hamanaka RB, Chandel NS. 51.  2010. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35:505–13 [Google Scholar]
  52. Ali MH, Pearlstein DP, Mathieu CE, Schumacker PT. 52.  2004. Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am. J. Physiol. Lung Cell. Mol. Physiol. 287:L486–96 [Google Scholar]
  53. Wright GL, Maroulakou IG, Eldridge J, Liby TL, Sridharan V. 53.  et al. 2008. VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase. FASEB J 22:3264–75 [Google Scholar]
  54. Chua CC, Hamdy RC, Chua BH. 54.  1998. Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic. Biol. Med. 25:891–97 [Google Scholar]
  55. Wang Y, Zang QS, Liu Z, Wu Q, Maass D. 55.  et al. 2011. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am. J. Physiol. Cell Physiol. 301:C695–704 [Google Scholar]
  56. Colavitti R, Pani G, Bedogni B, Anzevino R, Borrello S. 56.  et al. 2002. Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J. Biol. Chem. 277:3101–8 [Google Scholar]
  57. Majmundar AJ, Wong WJ, Simon MC. 57.  2010. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40:294–309 [Google Scholar]
  58. Wellen KE, Thompson CB. 58.  2010. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 40:323–32 [Google Scholar]
  59. Warren CM, Ziyad S, Briot A, Der A, Iruela-Arispe ML. 59.  2014. A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci. Signal. 7:ra1 [Google Scholar]
  60. Sawada N, Jiang A, Takizawa F, Safdar A, Manika A. 60.  et al. 2014. Endothelial PGC-1α mediates vascular dysfunction in diabetes. Cell Metab 19:246–58 [Google Scholar]
  61. Mallat Z, Tedgui A. 61.  2000. Apoptosis in the vasculature: mechanisms and functional importance. Br. J. Pharmacol. 130:947–62 [Google Scholar]
  62. Kluge MA, Fetterman JL, Vita JA. 62.  2013. Mitochondria and endothelial function. Circ. Res. 112:1171–88 [Google Scholar]
  63. Watson EC, Whitehead L, Adams RH, Dewson G, Coultas L. 63.  2016. Endothelial cell survival during angiogenesis requires the pro-survival protein MCL1. Cell Death Differ 23:1371–79 [Google Scholar]
  64. Domigan CK, Warren CM, Antanesian V, Happel K, Ziyad S. 64.  et al. 2015. Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. J. Cell Sci. 128:2236–48 [Google Scholar]
  65. Eelen G, de Zeeuw P, Simons M, Carmeliet P. 65.  2015. Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 116:1231–44 [Google Scholar]
  66. Yeh WL, Lin CJ, Fu WM. 66.  2008. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol. Pharmacol. 73:170–77 [Google Scholar]
  67. Peters K, Kamp G, Berz A, Unger RE, Barth S. 67.  et al. 2009. Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of “aerobic glycolysis” and proliferation. Cell. Physiol. Biochem. 24:483–92 [Google Scholar]
  68. Ebert BL, Gleadle JM, O'Rourke JF, Bartlett SM, Poulton J, Ratcliffe PJ. 68.  1996. Isoenzyme-specific regulation of genes involved in energy metabolism by hypoxia: similarities with the regulation of erythropoietin. Biochem. J. 313:Pt. 3809–14 [Google Scholar]
  69. Obach M, Navarro-Sabaté A, Caro J, Kong X, Duran J. 69.  et al. 2004. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J. Biol. Chem. 279:53562–70 [Google Scholar]
  70. Fukasawa M, Tsuchiya T, Takayama E, Shinomiya N, Uyeda K. 70.  et al. 2004. Identification and characterization of the hypoxia-responsive element of the human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. J. Biochem. 136:273–77 [Google Scholar]
  71. Dagher Z, Ruderman N, Tornheim K, Ido Y. 71.  2001. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Circ. Res. 88:1276–82 [Google Scholar]
  72. Patella F, Schug ZT, Persi E, Neilson LJ, Erami Z. 72.  et al. 2015. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol. Cell. Proteom. 14:621–34 [Google Scholar]
  73. Jeon SM, Chandel NS, Hay N. 73.  2012. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–65 [Google Scholar]
  74. Carracedo A, Cantley LC, Pandolfi PP. 74.  2013. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13:227–32 [Google Scholar]
  75. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF. 75.  et al. 2016. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529:216–20 [Google Scholar]
  76. Dang CV. 76.  2012. MYC on the path to cancer. Cell 149:22–35 [Google Scholar]
  77. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. 77.  2015. MYC, metabolism, and cancer. Cancer Discov 5:1024–39 [Google Scholar]
  78. Menssen A, Hermeking H. 78.  2002. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. PNAS 99:6274–79 [Google Scholar]
  79. Salih DA, Brunet A. 79.  2008. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. 20:126–36 [Google Scholar]
  80. Eijkelenboom A, Burgering BM. 80.  2013. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14:83–97 [Google Scholar]
  81. Doddaballapur A, Michalik KM, Manavski Y, Lucas T, Houtkooper RH. 81.  et al. 2015. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler. Thromb. Vasc. Biol. 35:137–45 [Google Scholar]
  82. Wellen KE, Thompson CB. 82.  2012. A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 13:270–76 [Google Scholar]
  83. DeBerardinis RJ, Thompson CB. 83.  2012. Cellular metabolism and disease: What do metabolic outliers teach us?. Cell 148:1132–44 [Google Scholar]
  84. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. 84.  2014. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15:536–50 [Google Scholar]
  85. Haigis MC, Sinclair DA. 85.  2010. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5:253–95 [Google Scholar]
  86. Houtkooper RH, Pirinen E, Auwerx J. 86.  2012. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13:225–38 [Google Scholar]
  87. Imai S, Guarente L. 87.  2014. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24:464–71 [Google Scholar]
  88. Zecchin A, Pattarini L, Gutierrez MI, Mano M, Mai A. 88.  et al. 2014. Reversible acetylation regulates vascular endothelial growth factor receptor-2 activity. J. Mol. Cell Biol. 6:116–27 [Google Scholar]
  89. Guarani V, Deflorian G, Franco CA, Krüger M, Phng LK. 89.  et al. 2011. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473:234–38 [Google Scholar]
  90. Popko-Scibor AE, Lindberg MJ, Hansson ML, Holmlund T, Wallberg AE. 90.  2011. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1. Biochem. Biophys. Res. Commun. 416:300–6 [Google Scholar]
  91. Chen Y, Zhao W, Yang JS, Cheng Z, Luo H. 91.  et al. 2012. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol. Cell. Proteom. 11:1048–62 [Google Scholar]
  92. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT. 92.  et al. 2009. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science 324:1289–93 [Google Scholar]
  93. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. 93.  2010. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol. Cell 38:864–78 [Google Scholar]
  94. Finley LW, Carracedo A, Lee J, Souza A, Egia A. 94.  et al. 2011. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19:416–28 [Google Scholar]
  95. Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE. 95.  et al. 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140:280–93 [Google Scholar]
  96. Slawson C, Copeland RJ, Hart GW. 96.  2010. O-GlcNAc signaling: a metabolic link between diabetes and cancer?. Trends Biochem. Sci. 35:547–55 [Google Scholar]
  97. Croci DO, Cerliani JP, Dalotto-Moreno T, Méndez-Huergo SP, Mascanfroni ID. 97.  et al. 2014. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156:744–58 [Google Scholar]
  98. Kaelin WG Jr., McKnight SL. 98.  2013. Influence of metabolism on epigenetics and disease. Cell 153:56–69 [Google Scholar]
  99. Boeckel JN, Guarani V, Koyanagi M, Roexe T, Lengeling A. 99.  et al. 2011. Jumonji domain-containing protein 6 (Jmjd6) is required for angiogenic sprouting and regulates splicing of VEGF-receptor 1. PNAS 108:3276–81 [Google Scholar]
  100. Oldham WM, Clish CB, Yang Y, Loscalzo J. 100.  2015. Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab 22:291–303 [Google Scholar]
  101. Intlekofer AM, Dematteo RG, Venneti S, Finley LW, Lu C. 101.  et al. 2015. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 22:304–11 [Google Scholar]
  102. Jang C, Oh SF, Wada S, Rowe GC, Liu L. 102.  et al. 2016. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22:421–26 [Google Scholar]
  103. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. 103.  2011. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 71:2550–60 [Google Scholar]
  104. Kumar VB, Viji RI, Kiran MS, Sudhakaran PR. 104.  2007. Endothelial cell response to lactate: implication of PAR modification of VEGF. J. Cell. Physiol. 211:477–85 [Google Scholar]
  105. Ruan GX, Kazlauskas A. 105.  2013. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J. Biol. Chem. 288:21161–72 [Google Scholar]
  106. Hardie DG, Schaffer BE, Brunet A. 106.  2016. AMPK: An energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26:190–201 [Google Scholar]
  107. Fisslthaler B, Fleming I. 107.  2009. Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ. Res. 105:114–27 [Google Scholar]
  108. Dagher Z, Ruderman N, Tornheim K, Ido Y. 108.  1999. The effect of AMP-activated protein kinase and its activator AICAR on the metabolism of human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 265:112–15 [Google Scholar]
  109. Nagata D, Mogi M, Walsh K. 109.  2003. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J. Biol. Chem. 278:31000–6 [Google Scholar]
  110. Laplante M, Sabatini DM. 110.  2012. mTOR signaling in growth control and disease. Cell 149:274–93 [Google Scholar]
  111. Dibble CC, Manning BD. 111.  2013. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15:555–64 [Google Scholar]
  112. Albert V, Hall MN. 112.  2015. mTOR signaling in cellular and organismal energetics. Curr. Opin. Cell Biol. 33:55–66 [Google Scholar]
  113. Efeyan A, Comb WC, Sabatini DM. 113.  2015. Nutrient-sensing mechanisms and pathways. Nature 517:302–10 [Google Scholar]
  114. Sun S, Chen S, Liu F, Wu H, McHugh J. 114.  et al. 2015. Constitutive activation of mTORC1 in endothelial cells leads to the development and progression of lymphangiosarcoma through VEGF autocrine signaling. Cancer Cell 28:758–72 [Google Scholar]
  115. Sodhi A, Chaisuparat R, Hu J, Ramsdell AK, Manning BD. 115.  et al. 2006. The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell 10:133–43 [Google Scholar]
  116. Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L. 116.  et al. 2007. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21:2644–58 [Google Scholar]
  117. Davignon J, Ganz P. 117.  2004. Role of endothelial dysfunction in atherosclerosis. Circulation 109Suppl. 127–32
  118. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. 118.  2014. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103:137–49 [Google Scholar]
  119. Pober JS, Min W, Bradley JR. 119.  2009. Mechanisms of endothelial dysfunction, injury, and death. Annu. Rev. Pathol. 4:71–95 [Google Scholar]
  120. Schalkwijk CG, Stehouwer CD. 120.  2005. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin. Sci. 109:143–59 [Google Scholar]
  121. Xu J, Zou MH. 121.  2009. Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation 120:1266–86 [Google Scholar]
  122. Kolluru GK, Bir SC, Kevil CG. 122.  2012. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int. J. Vasc. Med. 2012:918267 [Google Scholar]
  123. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z. 123.  et al. 2003. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Investig. 112:1049–57 [Google Scholar]
  124. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H. 124.  et al. 2000. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. PNAS 97:12222–26 [Google Scholar]
  125. Giacco F, Brownlee M. 125.  2010. Oxidative stress and diabetic complications. Circ. Res. 107:1058–70 [Google Scholar]
  126. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F. 126.  et al. 2002. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:466–72 [Google Scholar]
  127. Lorenzi M. 127.  2007. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp. Diabetes Res. 2007:61038 [Google Scholar]
  128. Wautier JL, Schmidt AM. 128.  2004. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res. 95:233–38 [Google Scholar]
  129. Cheung AK, Fung MK, Lo AC, Lam TT, So KF. 129.  et al. 2005. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 54:3119–25 [Google Scholar]
  130. Obrosova IG, Minchenko AG, Vasupuram R, White L, Abatan OI. 130.  et al. 2003. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes 52:864–71 [Google Scholar]
  131. Tammali R, Reddy AB, Srivastava SK, Ramana KV. 131.  2011. Inhibition of aldose reductase prevents angiogenesis in vitro and in vivo. Angiogenesis 14:209–21 [Google Scholar]
  132. Yadav UC, Srivastava SK, Ramana KV. 132.  2012. Prevention of VEGF-induced growth and tube formation in human retinal endothelial cells by aldose reductase inhibition. J. Diabetes Complic. 26:369–77 [Google Scholar]
  133. Bourajjaj M, Stehouwer CD, van Hinsbergh VW, Schalkwijk CG. 133.  2003. Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem. Soc. Trans. 31:1400–2 [Google Scholar]
  134. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR. 134.  et al. 1998. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Investig. 101:1142–47 [Google Scholar]
  135. Nakayama K, Nakayama M, Iwabuchi M, Terawaki H, Sato T. 135.  et al. 2008. Plasma α-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients. Am. J. Nephrol. 28:871–78 [Google Scholar]
  136. Odani H, Shinzato T, Matsumoto Y, Usami J, Maeda K. 136.  1999. Increase in three α,β-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochem. Biophys. Res. Commun. 256:89–93 [Google Scholar]
  137. Drummond GR, Sobey CG. 137.  2014. Endothelial NADPH oxidases: Which NOX to target in vascular disease?. Trends Endocrinol. Metab. 25:452–63 [Google Scholar]
  138. Baynes JW, Thorpe SR. 138.  1999. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9 [Google Scholar]
  139. Sasaki N, Yamashita T, Takaya T, Shinohara M, Shiraki R. 139.  et al. 2008. Augmentation of vascular remodeling by uncoupled endothelial nitric oxide synthase in a mouse model of diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 28:1068–76 [Google Scholar]
  140. Cai S, Khoo J, Mussa S, Alp NJ, Channon KM. 140.  2005. Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation. Diabetologia 48:1933–40 [Google Scholar]
  141. Su Y, Qadri SM, Hossain M, Wu L, Liu L. 141.  2013. Uncoupling of eNOS contributes to redox-sensitive leukocyte recruitment and microvascular leakage elicited by methylglyoxal. Biochem. Pharmacol. 86:1762–74 [Google Scholar]
  142. Su Y, Qadri SM, Wu L, Liu L. 142.  2013. Methylglyoxal modulates endothelial nitric oxide synthase-associated functions in EA.hy926 endothelial cells. Cardiovasc. Diabetol. 12:134 [Google Scholar]
  143. Pangare M, Makino A. 143.  2012. Mitochondrial function in vascular endothelial cell in diabetes. J. Smooth Muscle Res. 48:1–26 [Google Scholar]
  144. Shenouda SM, Widlansky ME, Chen K, Xu G, Holbrook M. 144.  et al. 2011. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124:444–53 [Google Scholar]
  145. Tang X, Luo YX, Chen HZ, Liu DP. 145.  2014. Mitochondria, endothelial cell function, and vascular diseases. Front. Physiol. 5:175 [Google Scholar]
  146. Kakimoto M, Inoguchi T, Sonta T, Yu HY, Imamura M. 146.  et al. 2002. Accumulation of 8-hydroxy-2′-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats. Diabetes 51:1588–95 [Google Scholar]
  147. Leopold JA, Cap A, Scribner AW, Stanton RC, Loscalzo J. 147.  2001. Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability. FASEB J. 15:1771–73 [Google Scholar]
  148. Chang T, Wang R, Wu L. 148.  2005. Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells. Free Radic. Biol. Med. 38:286–93 [Google Scholar]
  149. Sena CM, Matafome P, Crisostomo J, Rodrigues L, Fernandes R. 149.  et al. 2012. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol. Res. 65:497–506 [Google Scholar]
  150. Matafome P, Sena C, Seica R. 150.  2013. Methylglyoxal, obesity, and diabetes. Endocrine 43:472–84 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error