1932

Abstract

Following the discovery of ceramide as the central signaling and metabolic relay among sphingolipids, studies of its involvement in lung health and pathophysiology have exponentially increased. In this review, we highlight key studies in the context of recent progress in metabolomics and translational research methodologies. Evidence points toward an important role for the ceramide/sphingosine-1-phosphate rheostat in maintaining lung cell survival, vascular barrier function, and proper host response to airway microbial infections. Sphingosine kinase 1 has emerged as an important determinant of sphingosine-1-phosphate lung levels, which, when aberrantly high, contribute to lung fibrosis, maladaptive vascular remodeling, and allergic asthma. New sphingolipid metabolites have been discovered as potential biomarkers of several lung diseases. Although multiple acute and chronic lung pathological conditions involve perturbations in sphingolipid signaling and metabolism, there are specific patterns, unique sphingolipid species, enzymes, metabolites, and receptors, which have emerged that deepen our understanding of lung pathophysiology and inform the development of new therapies for lung diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-105221
2016-02-10
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/physiol/78/1/annurev-physiol-021115-105221.html?itemId=/content/journals/10.1146/annurev-physiol-021115-105221&mimeType=html&fmt=ahah

Literature Cited

  1. Zhao Y, Kalari SK, Usatyuk PV, Gorshkova I, He D. 1.  et al. 2007. Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J. Biol. Chem. 282:14165–77 [Google Scholar]
  2. Petrache I, Kamocki K, Poirier C, Pewzner-Jung Y, Laviad EL. 2.  et al. 2013. Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models. PLOS ONE 8:e62968 [Google Scholar]
  3. Xu Z, Zhou J, McCoy DM, Mallampalli RK. 3.  2005. LASS5 is the predominant ceramide synthase isoform involved in de novo sphingolipid synthesis in lung epithelia. J. Lipid Res. 46:1229–38 [Google Scholar]
  4. Poirier C, Berdyshev EV, Dimitropoulou C, Bogatcheva NV, Biddinger PW, Verin AD. 4.  2012. Neutral sphingomyelinase 2 deficiency is associated with lung anomalies similar to emphysema. Mamm. Genome 23:758–63 [Google Scholar]
  5. Longo CA, Tyler D, Mallampalli RK. 5.  1997. Sphingomyelin metabolism is developmentally regulated in rat lung. Am. J. Respir. Cell Mol. Biol. 16:605–12 [Google Scholar]
  6. Spiegel S, Milstien S. 6.  2011. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11:403–15 [Google Scholar]
  7. Rosen H, Goetzl EJ. 7.  2005. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat. Rev. Immunol. 5:560–70 [Google Scholar]
  8. Justice MJ, Petrusca DN, Rogozea AL, Williams JA, Schweitzer KS. 8.  et al. 2014. Effects of lipid interactions on model vesicle engulfment by alveolar macrophages. Biophys. J. 106:598–609 [Google Scholar]
  9. Pinto SN, Laviad EL, Stiban J, Kelly SL, Merrill AH Jr. 9.  2014. Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipid N-acyl chain. J. Lipid Res. 55:53–61 [Google Scholar]
  10. Hannun YA, Obeid LM. 10.  2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9:139–50 [Google Scholar]
  11. Peng H, Li C, Kadow S, Henry BD, Steinmann J. 11.  et al. 2015. Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J. Mol. Med. 93:675–89 [Google Scholar]
  12. Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M. 12.  et al. 1997. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J. Exp. Med. 186:1831–41 [Google Scholar]
  13. Goggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K. 13.  et al. 2004. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat. Med. 10:155–60 [Google Scholar]
  14. Tibboel J, Reiss I, de Jongste JC, Post M. 14.  2014. Sphingolipids in lung growth and repair. Chest 145:120–28 [Google Scholar]
  15. Devlin CM, Lahm T, Hubbard WC. Demark M, Wang KC. 15. , Van et al. 2011. Dihydroceramide-based response to hypoxia. J. Biol. Chem. 286:38069–78 [Google Scholar]
  16. Kuebler WM, Yang Y, Samapati R, Uhlig S. 16.  2010. Vascular barrier regulation by PAF, ceramide, caveolae, and NO—an intricate signaling network with discrepant effects in the pulmonary and systemic vasculature. Cell. Physiol. Biochem. 26:29–40 [Google Scholar]
  17. Samapati R, Yang Y, Yin J, Stoerger C, Arenz C. 17.  et al. 2012. Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and transient receptor potential classical 6. Am. J. Respir. Crit. Care Med. 185:160–70 [Google Scholar]
  18. Presson RG Jr, Brown MB, Fisher AJ, Sandoval RM, Dunn KW. 18.  et al. 2011. Two-photon imaging within the murine thorax without respiratory and cardiac motion artifact. Am. J. Pathol. 179:75–82 [Google Scholar]
  19. Natarajan V, Dudek SM, Jacobson JR, Moreno-Vinasco L, Huang LS. 19.  et al. 2013. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury. Am. J. Respir. Cell Mol. Biol. 49:6–17 [Google Scholar]
  20. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J. 20.  et al. 2011. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. PNAS 108:9613–18 [Google Scholar]
  21. Szczepaniak WS, Zhang Y, Hagerty S, Crow MT, Kesari P. 21.  et al. 2008. Sphingosine 1-phosphate rescues canine LPS-induced acute lung injury and alters systemic inflammatory cytokine production in vivo. Transl. Res. 152:213–24 [Google Scholar]
  22. Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA. 22.  et al. 2001. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J. Clin. Investig. 108:689–701 [Google Scholar]
  23. Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P. 23.  et al. 2004. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J. Biol. Chem. 279:24692–700 [Google Scholar]
  24. Shikata Y, Birukov KG, Garcia JG. 24.  2003. S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. J. Appl. Physiol. 94:1193–203 [Google Scholar]
  25. Bhattacharya M, Su G, Su X, Oses-Prieto JA, Li JT. 25.  et al. 2012. IQGAP1 is necessary for pulmonary vascular barrier protection in murine acute lung injury and pneumonia. Am. J. Physiol. Lung Cell. Mol. Physiol. 303:L12–19 [Google Scholar]
  26. Sammani S, Moreno-Vinasco L, Mirzapoiazova T, Singleton PA, Chiang ET. 26.  et al. 2010. Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am. J. Respir. Cell Mol. Biol. 43:394–402 [Google Scholar]
  27. Sun X, Singleton PA, Letsiou E, Zhao J, Belvitch P. 27.  et al. 2012. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am. J. Respir. Cell Mol. Biol. 47:628–36 [Google Scholar]
  28. Sun X, Ma SF, Wade MS, Acosta-Herrera M, Villar J. 28.  et al. 2013. Functional promoter variants in sphingosine 1-phosphate receptor 3 associate with susceptibility to sepsis-associated acute respiratory distress syndrome. Am. J. Physiol. Lung Cell. Mol. Physiol. 305:L467–77 [Google Scholar]
  29. Strader CR, Pearce CJ, Oberlies NH. 29.  2011. Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J. Nat. Prod. 74:900–7 [Google Scholar]
  30. Lu X, Byun HS, Bittman R. 30.  2004. Synthesis of l-lyxo-phytosphingosine and its 1-phosphonate analogue using a threitol acetal synthon. J. Org. Chem. 69:5433–38 [Google Scholar]
  31. Lu X, Sun C, Valentine WJ, Shuyu E, Liu J. 31.  et al. 2009. Chiral vinylphosphonate and phosphonate analogues of the immunosuppressive agent FTY720. J. Org. Chem. 74:3192–95 [Google Scholar]
  32. Camp SM, Bittman R, Chiang ET, Moreno-Vinasco L, Mirzapoiazova T. 32.  et al. 2009. Synthetic analogs of FTY720 [2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] differentially regulate pulmonary vascular permeability in vivo and in vitro. J. Pharmacol. Exp. Ther. 331:54–64 [Google Scholar]
  33. Wang L, Sammani S, Moreno-Vinasco L, Letsiou E, Wang T. 33.  et al. 2014. FTY720 (S)-phosphonate preserves sphingosine 1-phosphate receptor 1 expression and exhibits superior barrier protection to FTY720 in acute lung injury. Crit. Care Med. 42:e189–99 [Google Scholar]
  34. Zhao Y, Gorshkova IA, Berdyshev E, He D, Fu P. 34.  et al. 2011. Protection of LPS-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression. Am. J. Respir. Cell Mol. Biol. 45:426–35 [Google Scholar]
  35. Jozefowski S, Czerkies M, Lukasik A, Bielawska A, Bielawski J. 35.  et al. 2010. Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide. J. Immunol. 185:6960–73 [Google Scholar]
  36. von Bismarck P, Winoto-Morbach S, Herzberg M, Uhlig U, Schutze S. 36.  et al. 2012. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model. Pulm. Pharmacol. Ther. 25:228–35 [Google Scholar]
  37. Chang ZQ, Lee SY, Kim HJ, Kim JR, Kim SJ. 37.  et al. 2011. Endotoxin activates de novo sphingolipid biosynthesis via nuclear factor kappa B–mediated upregulation of Sptlc2. Prostaglandins Other Lipid Mediat. 94:44–52 [Google Scholar]
  38. Monick MM, Mallampalli RK, Bradford M, McCoy D, Gross TJ. 38.  et al. 2004. Cooperative prosurvival activity by ERK and Akt in human alveolar macrophages is dependent on high levels of acid ceramidase activity. J. Immunol. 173:123–35 [Google Scholar]
  39. Lin WC, Lin CF, Chen CL, Chen CW, Lin YS. 39.  2011. Inhibition of neutrophil apoptosis via sphingolipid signaling in acute lung injury. J. Pharmacol. Exp. Ther. 339:45–53 [Google Scholar]
  40. Ali M, Saroha A, Pewzner-Jung Y, Futerman AH. 40.  2015. LPS-mediated septic shock is augmented in ceramide synthase 2 null mice due to elevated activity of TNFα-converting enzyme. FEBS Lett. 589:2213–17 [Google Scholar]
  41. Hou J, Chen Q, Zhang K, Cheng B, Xie G. 41.  et al. 2015. Sphingosine 1-phosphate receptor 2 signaling suppresses macrophage phagocytosis and impairs host defense against sepsis. Anesthesiology 123:409–22 [Google Scholar]
  42. Baudiss K, Ayata CK, Lazar Z, Cicko S, Beckert J. 42.  et al. 2015. Ceramide-1-phosphate inhibits cigarette smoke–induced airway inflammation. Eur. Respir. J. 45:1669–80 [Google Scholar]
  43. Lamour NF, Chalfant CE. 43.  2005. Ceramide-1-phosphate: the “missing” link in eicosanoid biosynthesis and inflammation. Mol. Interv. 5:358–67 [Google Scholar]
  44. Rivera IG, Ordonez M, Presa N, Gomez-Larrauri A, Simon J. 44.  et al. 2015. Sphingomyelinase D/ceramide 1-phosphate in cell survival and inflammation. Toxins 7:1457–66 [Google Scholar]
  45. Arana L, Gangoiti P, Ouro A, Trueba M, Gomez-Munoz A. 45.  2010. Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis. 9:15 [Google Scholar]
  46. Cornell TT, Hinkovska-Galcheva V, Sun L, Cai Q, Hershenson MB. 46.  et al. 2009. Ceramide-dependent PP2A regulation of TNFα-induced IL-8 production in respiratory epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 296:L849–56 [Google Scholar]
  47. Ryan AJ, McCoy DM, McGowan SE, Salome RG, Mallampalli RK. 47.  2003. Alveolar sphingolipids generated in response to TNF-α modifies surfactant biophysical activity. J. Appl. Physiol. 1985 94:253–58 [Google Scholar]
  48. von Bismarck P, Wistadt CF, Klemm K, Winoto-Morbach S, Uhlig U. 48.  et al. 2008. Improved pulmonary function by acid sphingomyelinase inhibition in a newborn piglet lavage model. Am. J. Respir. Crit. Care Med. 177:1233–41 [Google Scholar]
  49. Tabeling C, Yu H, Wang L, Ranke H, Goldenberg NM. 49.  et al. 2015. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction. PNAS 112:E1614–23 [Google Scholar]
  50. Garg SK, Volpe E, Palmieri G, Mattei M, Galati D. 50.  et al. 2004. Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. J. Infect. Dis. 189:2129–38 [Google Scholar]
  51. Pewzner-Jung Y, Tavakoli Tabazavareh S, Grassme H, Becker KA, Japtok L. 51.  et al. 2014. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa. EMBO Mol. Med. 6:1205–14 [Google Scholar]
  52. Bhat S, Spitalnik SL, Gonzalez-Scarano F, Silberberg DH. 52.  1991. Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. PNAS 88:7131–34 [Google Scholar]
  53. Finnegan CM, Rawat SS, Puri A, Wang JM, Ruscetti FW, Blumenthal R. 53.  2004. Ceramide, a target for antiretroviral therapy. PNAS 101:15452–57 [Google Scholar]
  54. Monick MM, Cameron K, Powers LS, Butler NS, McCoy D. 54.  et al. 2004. Sphingosine kinase mediates activation of extracellular signal–related kinase and Akt by respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 30:844–52 [Google Scholar]
  55. Pritzl CJ, Seo YJ, Xia C, Vijayan M, Stokes ZD, Hahm B. 55.  2015. A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections. J. Immunol. 194:4339–49 [Google Scholar]
  56. Kawakami K, Kinjo Y, Yara S, Koguchi Y, Uezu K. 56.  et al. 2001. Activation of Vα14+ natural killer T cells by α-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun. 69:213–20 [Google Scholar]
  57. Tuder RM, Petrache I. 57.  2012. Pathogenesis of chronic obstructive pulmonary disease. J. Clin. Investig. 122:2749–55 [Google Scholar]
  58. Petrache I, Petrusca DN. 58.  2013. The involvement of sphingolipids in chronic obstructive pulmonary diseases. Handb. Exp. Pharmacol. 2013:247–64 [Google Scholar]
  59. Petrache I, Natarajan V, Zhen L, Medler TR, Richter AT. 59.  et al. 2005. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat. Med. 11:491–98 [Google Scholar]
  60. Petrusca DN, Gu Y, Adamowicz JJ, Rush NI, Hubbard WC. 60.  et al. 2010. Sphingolipid-mediated inhibition of apoptotic cell clearance by alveolar macrophages. J. Biol. Chem. 285:40322–32 [Google Scholar]
  61. Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL. 61.  2011. Modulation of macrophage efferocytosis in inflammation. Front. Immunol. 2:57 [Google Scholar]
  62. Bodas M, Min T, Vij N. 62.  2015. Lactosylceramide-accumulation in lipid-rafts mediate aberrant-autophagy, inflammation and apoptosis in cigarette smoke induced emphysema. Apoptosis 20:725–39 [Google Scholar]
  63. Diab KJ, Adamowicz JJ, Kamocki K, Rush NI, Garrison J. 63.  et al. 2010. Stimulation of sphingosine 1-phosphate signaling as an alveolar cell survival strategy in emphysema. Am. J. Respir. Crit. Care Med. 181:344–52 [Google Scholar]
  64. Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Schweitzer KS, Berdyshev EV. 64.  et al. 2015. Space radiation associated lung injury in a murine model. Am. J. Physiol. Lung Cell. Mol. Physiol. 308:L416–28 [Google Scholar]
  65. Bowler RP, Jacobson S, Cruickshank C, Hughes GJ, Siska C. 65.  et al. 2015. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am. J. Respir. Crit. Care Med. 191:275–84 [Google Scholar]
  66. Cruickshank-Quinn CI, Mahaffey S, Justice MJ, Hughes G, Armstrong M. 66.  et al. 2014. Transient and persistent metabolomic changes in plasma following chronic cigarette smoke exposure in a mouse model. PLOS ONE 9:e101855 [Google Scholar]
  67. Petrache I, Medler TR, Richter AT, Kamocki K, Chukwueke U. 67.  et al. 2008. Superoxide dismutase protects against apoptosis and alveolar enlargement induced by ceramide. Am. J. Physiol. Lung Cell. Mol. Physiol. 295:L44–53 [Google Scholar]
  68. Grassme H, Riethmuller J, Gulbins E. 68.  2013. Ceramide in cystic fibrosis. Handb. Exp. Pharmacol. 2013:265–74 [Google Scholar]
  69. Brodlie M, Lordan JL, Ward C. 69.  2011. Ceramide and cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 183:133 [Google Scholar]
  70. Becker KA, Henry B, Ziobro R, Riethmuller J, Gulbins E. 70.  2011. Lipids in cystic fibrosis. Expert Rev. Respir. Med. 5:527–35 [Google Scholar]
  71. Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B. 71.  et al. 2008. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med. 14:382–91 [Google Scholar]
  72. Becker KA, Grassme H, Zhang Y, Gulbins E. 72.  2010. Ceramide in Pseudomonas aeruginosa infections and cystic fibrosis. Cell. Physiol. Biochem. 26:57–66 [Google Scholar]
  73. Boujaoude LC, Bradshaw-Wilder C, Mao C, Cohn J, Ogretmen B. 73.  et al. 2001. Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. J. Biol. Chem. 276:35258–64 [Google Scholar]
  74. Hamai H, Keyserman F, Quittell LM, Worgall TS. 74.  2009. Defective CFTR increases synthesis and mass of sphingolipids that modulate membrane composition and lipid signaling. J. Lipid Res. 50:1101–8 [Google Scholar]
  75. Noe J, Petrusca D, Rush N, Deng P, VanDemark M. 75.  et al. 2009. CFTR regulation of intracellular pH and ceramides is required for lung endothelial cell apoptosis. Am. J. Respir. Cell Mol. Biol. 41:314–23 [Google Scholar]
  76. Cantin AM, Hanrahan JW, Bilodeau G, Ellis L, Dupuis A. 76.  et al. 2006. Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am. J. Respir. Crit. Care Med. 173:1139–44 [Google Scholar]
  77. Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG. 77.  et al. 2012. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J. 26:533–45 [Google Scholar]
  78. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D. 78.  et al. 2007. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448:470–73 [Google Scholar]
  79. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E. 79.  et al. 2010. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363:1211–21 [Google Scholar]
  80. Sharma S, Zhou X, Thibault DM, Himes BE, Liu A. 80.  et al. 2014. A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes. J. Allergy Clin. Immunol. 134:1153–62 [Google Scholar]
  81. Oyeniran C, Sturgill JL, Hait NC, Huang WC, Avni D. 81.  et al. 2015. Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J. Allergy Clin. Immunol. 1361035–46.e6 [Google Scholar]
  82. Siow D, Sunkara M, Dunn TM, Morris AJ, Wattenberg B. 82.  2015. ORMDL/serine palmitoyltransferase stoichiometry determines effects of ORMDL3 expression on sphingolipid biosynthesis. J. Lipid Res. 56:898–908 [Google Scholar]
  83. Jolly PS, Rosenfeldt HM, Milstien S, Spiegel S. 83.  2002. The roles of sphingosine-1-phosphate in asthma. Mol. Immunol. 38:1239–45 [Google Scholar]
  84. Fuerst E, Foster HR, Ward JP, Corrigan CJ, Cousins DJ, Woszczek G. 84.  2014. Sphingosine-1-phosphate induces pro-remodelling response in airway smooth muscle cells. Allergy 69:1531–39 [Google Scholar]
  85. Price MM, Oskeritzian CA, Falanga YT, Harikumar KB, Allegood JC. 85.  et al. 2013. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell–dependent murine model of allergic asthma. J. Allergy Clin. Immunol. 131:501–11.e1 [Google Scholar]
  86. Trifilieff A, Fozard JR. 86.  2012. Sphingosine-1-phosphate-induced airway hyper-reactivity in rodents is mediated by the sphingosine-1-phosphate type 3 receptor. J. Pharmacol. Exp. Ther. 342:399–406 [Google Scholar]
  87. Karmouty-Quintana H, Siddiqui S, Hassan M, Tsuchiya K, Risse PA. 87.  et al. 2012. Treatment with a sphingosine-1-phosphate analog inhibits airway remodeling following repeated allergen exposure. Am. J. Physiol. Lung Cell. Mol. Physiol. 302:L736–45 [Google Scholar]
  88. Chiba Y, Takeuchi H, Sakai H, Misawa M. 88.  2010. SKI-II, an inhibitor of sphingosine kinase, ameliorates antigen-induced bronchial smooth muscle hyperresponsiveness, but not airway inflammation, in mice. J. Pharmacol. Sci. 114:304–10 [Google Scholar]
  89. Roviezzo F, D'Agostino B, Brancaleone V, De Gruttola L, Bucci M. 89.  et al. 2010. Systemic administration of sphingosine-1-phosphate increases bronchial hyperresponsiveness in the mouse. Am. J. Respir. Cell Mol. Biol. 42:572–77 [Google Scholar]
  90. Roviezzo F, Di Lorenzo A, Bucci M, Brancaleone V, Vellecco V. 90.  et al. 2007. Sphingosine-1-phosphate/sphingosine kinase pathway is involved in mouse airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 36:757–62 [Google Scholar]
  91. Ammit AJ, Hastie AT, Edsall LC, Hoffman RK, Amrani Y. 91.  et al. 2001. Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J. 15:1212–14 [Google Scholar]
  92. Rosenfeldt HM, Amrani Y, Watterson KR, Murthy KS, Panettieri RA Jr, Spiegel S. 92.  2003. Sphingosine-1-phosphate stimulates contraction of human airway smooth muscle cells. FASEB J. 17:1789–99 [Google Scholar]
  93. Oskeritzian CA, Hait NC, Wedman P, Chumanevich A, Kolawole EM. 93.  et al. 2015. The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell–dependent acute allergic responses. J. Allergy Clin. Immunol. 135:1008–18.e1 [Google Scholar]
  94. Huang LS, Berdyshev E, Mathew B, Fu P, Gorshkova IA. 94.  et al. 2013. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis. FASEB J. 27:1749–60 [Google Scholar]
  95. Milara J, Navarro R, Juan G, Peiro T, Serrano A. 95.  et al. 2012. Sphingosine-1-phosphate is increased in patients with idiopathic pulmonary fibrosis and mediates epithelial to mesenchymal transition. Thorax 67:147–56 [Google Scholar]
  96. Huang LS, Natarajan V. 96.  2015. Sphingolipids in pulmonary fibrosis. Adv. Biol. Regul. 57:55–63 [Google Scholar]
  97. Murakami K, Kohno M, Kadoya M, Nagahara H, Fujii W. 97.  et al. 2014. Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model. PLOS ONE 9:e106792 [Google Scholar]
  98. Sobel K, Menyhart K, Killer N, Renault B, Bauer Y. 98.  et al. 2013. Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling. J. Biol. Chem. 288:14839–51 [Google Scholar]
  99. Gorshkova I, Zhou T, Mathew B, Jacobson JR, Takekoshi D. 99.  et al. 2012. Inhibition of serine palmitoyltransferase delays the onset of radiation-induced pulmonary fibrosis through the negative regulation of sphingosine kinase-1 expression. J. Lipid Res. 53:1553–68 [Google Scholar]
  100. Mathew B, Jacobson JR, Berdyshev E, Huang Y, Sun X. 100.  et al. 2011. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. FASEB J. 25:3388–400 [Google Scholar]
  101. Roberts WC, Fredrickson DS. 101.  1967. Gaucher's disease of the lung causing severe pulmonary hypertension with associated acute recurrent pericarditis. Circulation 35:783–89 [Google Scholar]
  102. Petrusca DN, Van Demark M, Gu Y, Justice MJ, Rogozea A. 102.  et al. 2014. Smoking exposure induces human lung endothelial cell adaptation to apoptotic stress. Am. J. Respir. Cell Mol. Biol. 50:513–25 [Google Scholar]
  103. Chen J, Tang H, Sysol JR, Moreno-Vinasco L, Shioura KM. 103.  et al. 2014. The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 190:1032–43 [Google Scholar]
  104. Hsiao SH, Constable PD, Smith GW, Haschek WM. 104.  2005. Effects of exogenous sphinganine, sphingosine, and sphingosine-1-phosphate on relaxation and contraction of porcine thoracic aortic and pulmonary arterial rings. Toxicol. Sci. 86:194–99 [Google Scholar]
  105. Ota H, Beutz MA, Ito M, Abe K, Oka M, McMurtry IF. 105.  2011. S1P4 receptor mediates S1P-induced vasoconstriction in normotensive and hypertensive rat lungs. Pulm. Circ. 1:399–404 [Google Scholar]
  106. Haberberger RV, Tabeling C, Runciman S, Gutbier B, Konig P. 106.  et al. 2009. Role of sphingosine kinase 1 in allergen-induced pulmonary vascular remodeling and hyperresponsiveness. J. Allergy Clin. Immunol. 124:933–41e1–9 [Google Scholar]
  107. Ogretmen B, Schady D, Usta J, Wood R, Kraveka JM. 107.  et al. 2001. Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells. J. Biol. Chem. 276:24901–10 [Google Scholar]
  108. Chalfant CE, Rathman K, Pinkerman RL, Wood RE, Obeid LM. 108.  et al. 2002. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells: dependence on protein phosphatase-1. J. Biol. Chem. 277:12587–95 [Google Scholar]
  109. Alberg AJ, Armeson K, Pierce JS, Bielawski J, Bielawska A. 109.  et al. 2013. Plasma sphingolipids and lung cancer: a population-based, nested case-control study. Cancer Epidemiol. Biomark. Prev. 22:1374–82 [Google Scholar]
  110. Lam CW, Law CY. 110.  2014. Untargeted mass spectrometry–based metabolomic profiling of pleural effusions: fatty acids as novel cancer biomarkers for malignant pleural effusions. J. Proteome Res. 13:4040–46 [Google Scholar]
  111. Kabayama K, Ito N, Honke K, Igarashi Y, Inokuchi J. 111.  2001. Suppression of integrin expression and tumorigenicity by sulfation of lactosylceramide in 3LL Lewis lung carcinoma cells. J. Biol. Chem. 276:26777–83 [Google Scholar]
  112. Tyler A, Johansson A, Karlsson T, Gudey SK, Brannstrom T. 112.  et al. 2015. Targeting glucosylceramide synthase induction of cell surface globotriaosylceramide (Gb3) in acquired cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells. Exp. Cell Res. 336:23–32 [Google Scholar]
  113. Yazama H, Kitatani K, Fujiwara K, Kato M, Hashimoto-Nishimura M. 113.  et al. 2015. Dietary glucosylceramides suppress tumor growth in a mouse xenograft model of head and neck squamous cell carcinoma by the inhibition of angiogenesis through an increase in ceramide. Int. J. Clin. Oncol. 20:438–46 [Google Scholar]
  114. Tibboel J, Reiss I, de Jongste JC, Post M. 114.  2013. Ceramides: a potential therapeutic target in pulmonary emphysema. Respir. Res. 14:96 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-105221
Loading
/content/journals/10.1146/annurev-physiol-021115-105221
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error